Towards complete automation of test campaign simulations using STEAM

Daniel Mayr

With special thanks to my supervisor Emmanuele Ravaioli and also to SM18 colleagues

5th May 2023

OUR VISION

Full automation of transient simulations in SC magnets in a reliable, sustainable, consistent and repeatable way

To achieve this we need 3 main ingredients:

- 1. Validated Magnet Models
- 2. A way to get magnet specific conductor parameters
- 3. A way to get event specific information

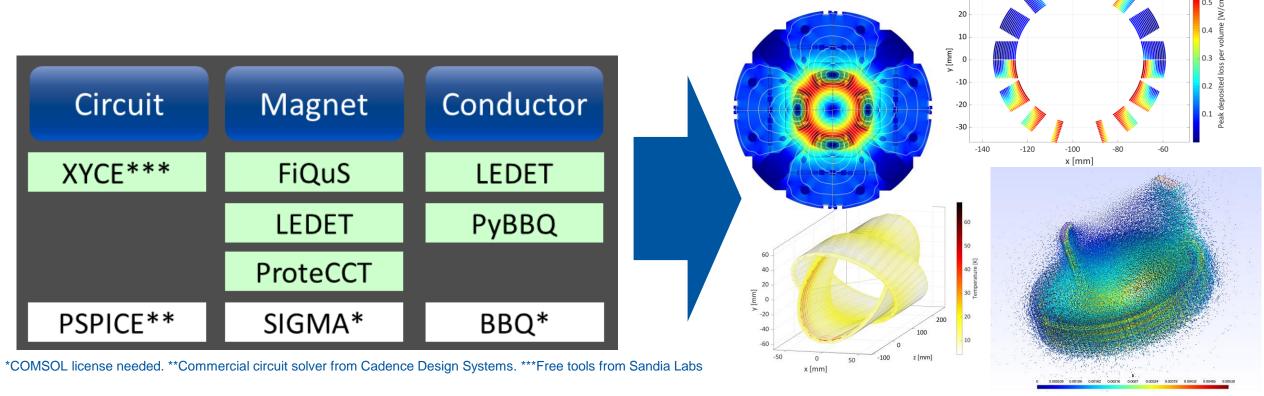

Motivation

My main use case:

 Model validation (e.g. HL HOC magnets) 100s of measurements

Many other use cases:

- 1. Comparison to measurement to identify unusual behaviour
- 2. Analyse large group of tests in a consistent manner
- 3. Provide tool for users outside of CERN
- 4. Regular tests of magnet models



Short overview of STEAM Framework

Simulation of Transient Effects in Accelerator superconducting Magnet circuits

Goal: perform diverse **transient simulations** across all levels of detail, involving **circuits, magnets, conductors, wires and filaments**. → No single tool can do it all: STEAM **connects different tools**

inter-filament coupling loss per unit volume (for t<500 m

How to use STEAM: a simplified simulation setup

- SetUpFolder

STEAM is organized in steps: - MakeModel

- ModifyModel
- ModifyModelMultipleVariables
- RunSimulation
- ...

The user first defines the steps

AnalysisStepDefinition:

setup_folder_LEDET: <3 keys> make_ref_model: <11 keys> modify_current: <8 keys> modify_resistances: <7 keys> RunSimList: <5 keys>

Then their order

AnalysisStepSequence:

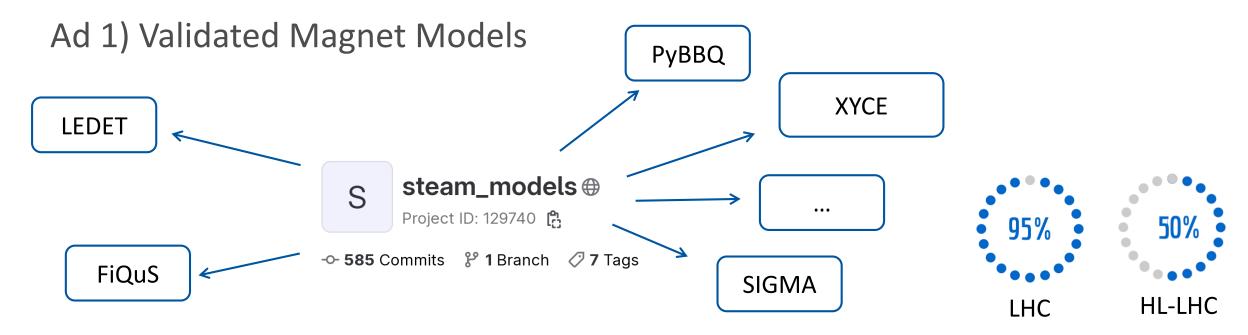
- setup_folder_LEDET
- make_ref_model
- modify_current
- modify_resistances
- RunSimList

Let's try to setup a test campaign to validate a magnet model \rightarrow

- 100s of measurements
- For every measurement we need to change:
 - Bath temperature
 - Conductor: RRR, length, ...
 - Initial current
 - Quench Heater: time, ...
 - EE, CLIQ, ...

In total: 100s variables

 \Rightarrow 100s*100s = 10.000s variables


 \Rightarrow 10.000s of hand crafted lines

Back to our problem...

We need 3 main ingredients to run automated test campaigns:

- 1. Validated Magnet Models
- 2. A way to get magnet specific conductor parameters
- 3. A way to get event specific information

Ad 2) A way to get magnet specific conductor parameters

Introduction of new step: ParsimConductor

1. Reads conductor database

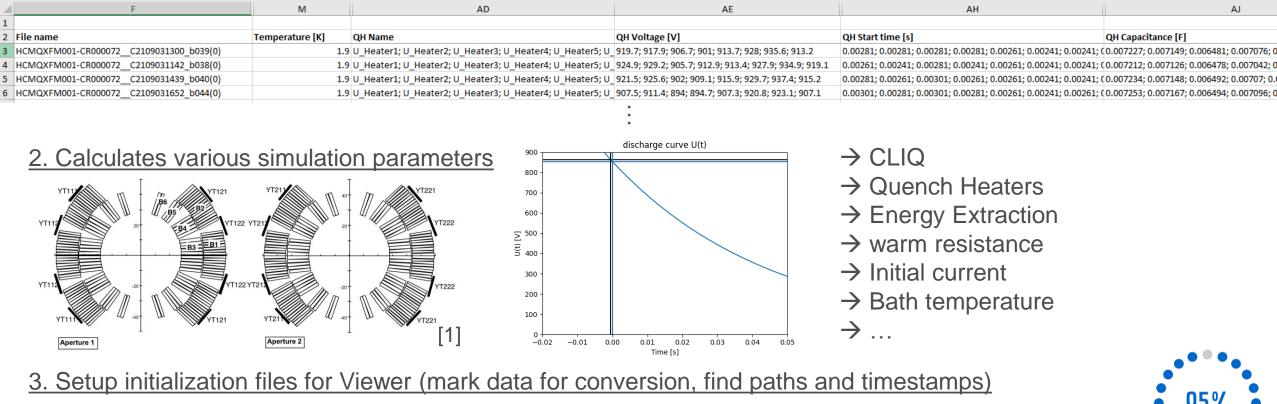
	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р
1	Magnet	Coil	width [m]	Ns [-]	Ds [mm]	Ave Cu/noCu in SS	Ic(T=4.22 K,B=12 T)	lc(T=4.22 K,B=15 T)	Estimated coil RRR	Tc0 [K]	Bc20 [T]	Fil twist-pitch [mm]	Ave Cu/noCu	Strand twist-pitch [m]	RT coil resistance [Ohm]	Cu/nocu from RT meas
2	MBRB	V1U	0.0151	36	0.825	1.19	720	393	190	9.2	14.5	16	1.95	0.712	0.6831	1.76369045
3	MBRB	V1L	0.0152	36	0.824	1.2	724	396	[190, 191]	9.2	16		1.95		0.6824	1.768538944
4	MBRB	V2U	0.015	36		1.190000	704	384	184		16		1.95	0.711	0.6815	1.774827829
5	MBRB	V2L	0.0151	36		1.20	693	377	193		16	14	1.95	0.713	0.6819	1.772025115
1																

2. Calculates conductor parameters for all coils

Critical current measurements \rightarrow Jc fit parameters (CUDI1, Summers, Bordini)

RT resistance measurement \rightarrow Optimization of Variables with some uncertainty

3. Assigns parameters to all the correct conductors in the model \rightarrow new Step: ParsimSweeper



Ad 3) A way to get event specific information

Introduction of new step: ParsimEvent

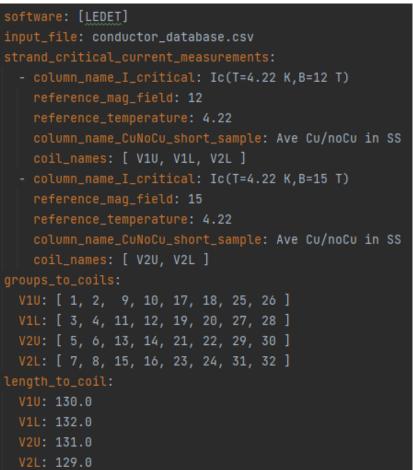
1. Reads quench dictionary

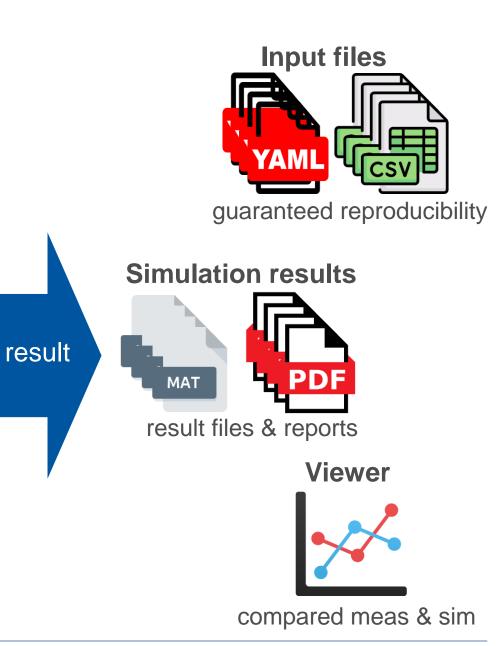
4. Assigns parameters to the model → new Step: ParsimSweeper

Workflow: campaign setup

How to use STEAM campaigns:

AnalysisStepSequence:

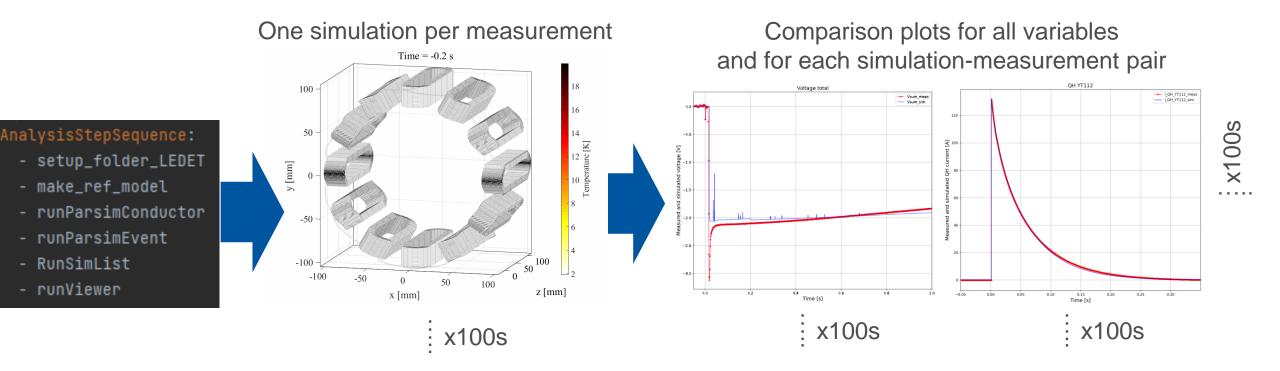

- setup_folder_LEDET
- make_ref_model
- runParsimConductor
- runParsimEvent
- RunSimList
- runViewer


ParsimEvent definition:

software: [LEDET]
input_file: Quench_Dictionary.csv
rel_quench_heater_trip_threshold: 0.99
dict_QH_circuits_to_QH_strips:
 U_Heater1: [1, 2]
 U_Heater2: [8, 7]

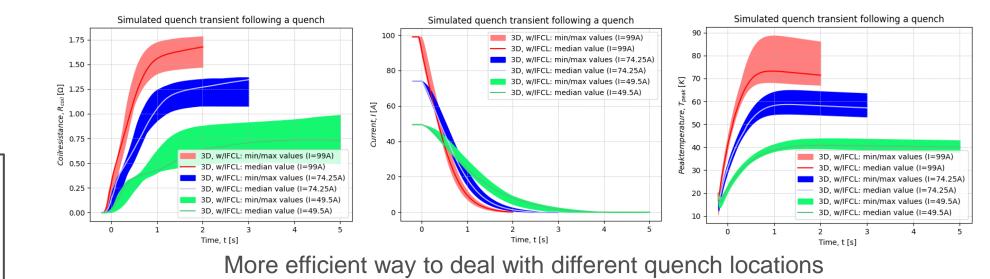
- U_Heater3: [3, 4]
- U Ucator (. [6, 4]
- U_Heater4: [6, 5]

ParsimConductor definition:

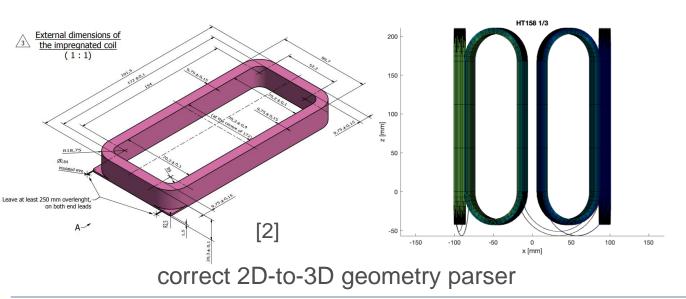


Example Application: validation of HL HOC magnets

my main project and Master's thesis



This would be impossible by manually crafting input files!



Outlook

Improve the Viewer:
→ More flexible
→ Allow 2D plots
→ Allow multiple tools in one plot

Guide on Gitlab how to use ParsimConductor and ParsimEvent

ô (
Equipment Identifier: HCMQXFBS01-CR000002 Image: Comparison of the second s									
<i>Description:</i> 150mm Single Aperture Nb3Sn Series Long Magnet (Q2)									
Main Made of Equipment data ctions : History xternal Links	Manufacturing 🐧 Operation 🐧 No	on-conformities 🐧 Documer	nts 🐧 History 🐧 Map 💧						
	No external data lin	nk exists							
roperty Values	Nominal Value	Value	Unit						
Key size (centering)		13.2	mm						
Max. bladder pressure (cent	tering)	210	bar						
Shell azimuthal stress, P3, I centering)	E (after	14	MPa						
Shell azimuthal stress, P4, I	E (after	15	MPa	11.					

retrieve conductor data automatically from MTF

Conclusion

We are in the process of solving the problems needed for a fully

automated campaign analysis:

1. Validated Magnet Models

HL-LHC

2. A way to get magnet specific conductor parameters

LHC

3. A way to get event specific information 35%

We are much closer to reliably **automate transient simulations** for accelerator magnets, ensuring **consistency and repeatability**.

[1]<u>https://indico.cern.ch/event/311824/contribution/10/attachments</u> /597262/821989/QuenchHeaters_FRM.pptx

[2]https://edms.cern.ch/ui/file/2317707/AC/lhcmcsxfc0003-vAC.pdf

[3]https://edms5.cern.ch/pls/asbuilt/mtf_equip.eqp_main_top?p_rec_ type=A&p_rec_id=HCMQXFBS01-CR000002

Last accessed: 04.05.2023

