LHCHWG-2022-002

Modeling of STXS 1.2 for the determination of the Higgs boson trilinear self-coupling 29 March 2022

Carlo E. Pandini¹, Edward J. T. Scott², Fabio Monti³, Fabio L. Alves⁴, Hongtao Yang⁵, Yanping Huang³, Jin Wang³, Jonathon M. Langford², Kunlin Ran³, Mauro Donega⁶, Mingshui Chen³, Nicolas Berger⁷, Nicholas Wardle², Osama Karkout¹, Shan Jin⁴, Stefano Manzoni⁸, Xinmeng Ye^{9,10}, Zirui Wang¹⁰

¹ Nikhef, Amsterdam, the Netherlands
 ² Imperial College London, London, United Kingdom
 ³ Institute of High Energy Physics, Chinese Academny of Science, Beijing, China

 ⁴ Nanjing University, Nanjing, China
 ⁵ Lawrence Berkeley National Lab., Berkeley(CA), USA
 ⁶ ETH Zürich, Zürich, Switzerland

 ⁷ Laboratoire d'Annecy de Physique des Particules, Annecy, France

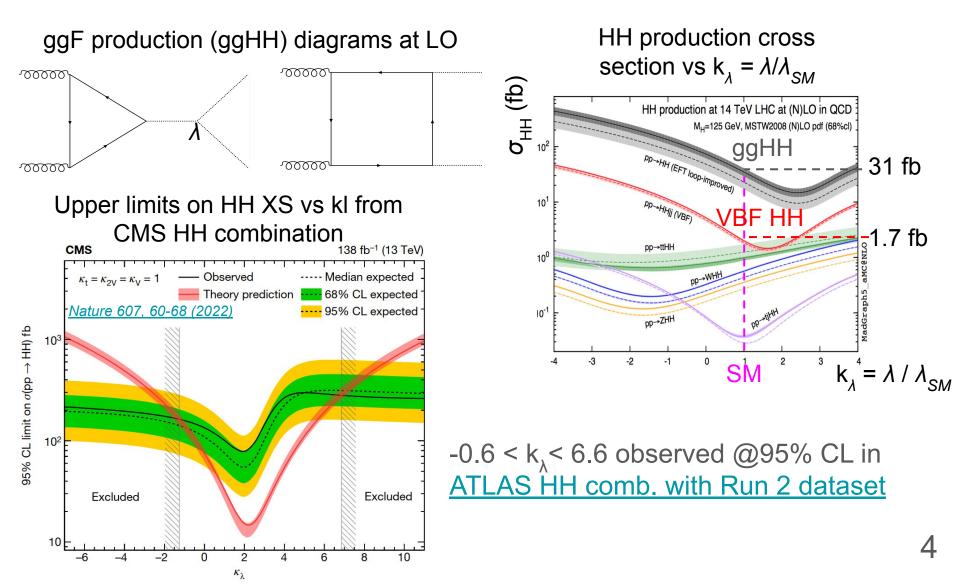
 ⁸ CERN, Meyrin, Switzerland
 ⁹ University of Science and Technology of China, Hefei, China
 ¹⁰ Michigan University, Ann Arbor(MI), USA

Outline

- Motivation for trilinear Higgs self-coupling measurement
- Methods and results
- Latest results from CMS and ATLAS
- Outlook for future

Motivation for trilinear self-coupling measurement

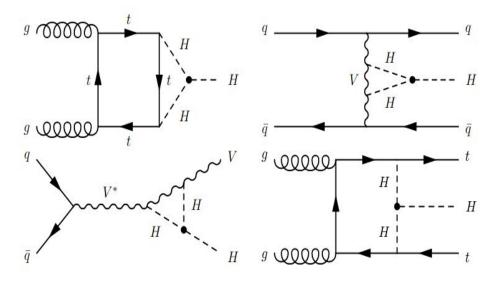
Missing elements to complete the picture

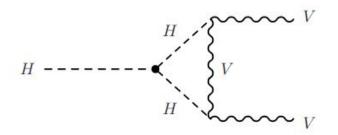

- H couplings to s quark and 1st generation charged fermions
- HHVV coupling
- H self-couplings

H trilinear coupling $\lambda_{\rm SM} = m_{\rm H}^2 / 2v^2 \sim 0.13 \rightarrow v =$ Higgs boson v.e.v.

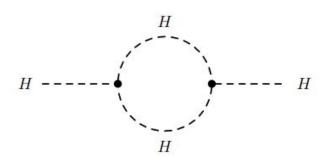
 λ measurement is a fundamental test of SM

λ constraints from double-H searches

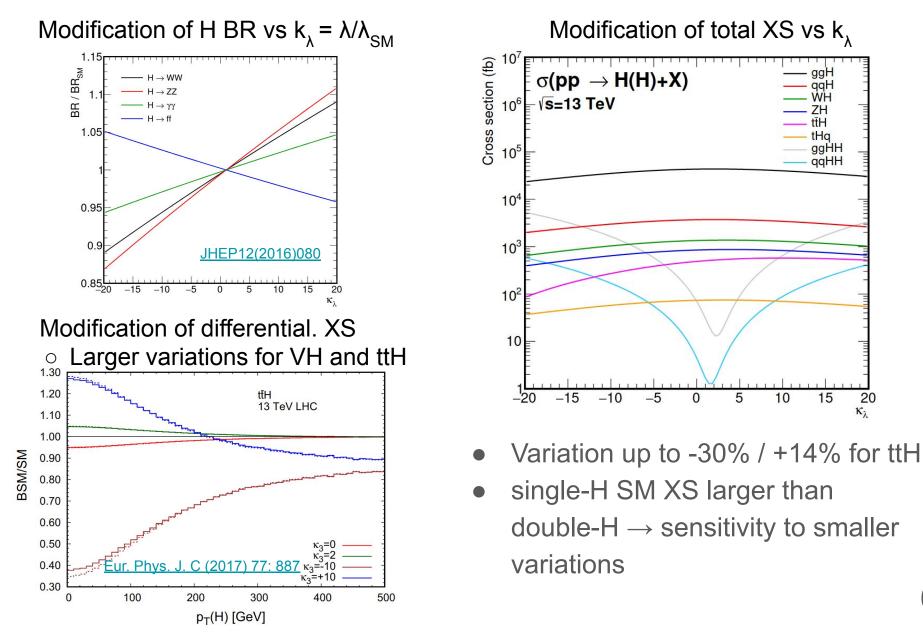

λ entering in the LO HH cross section calculation


Trilinear self-coupling in single-H mechanisms

 λ-dependent NLO electroweak corrections to single-H XS and BR


Examples of λ -dependent diagrams for single-H prod. mechanisms O(λ)

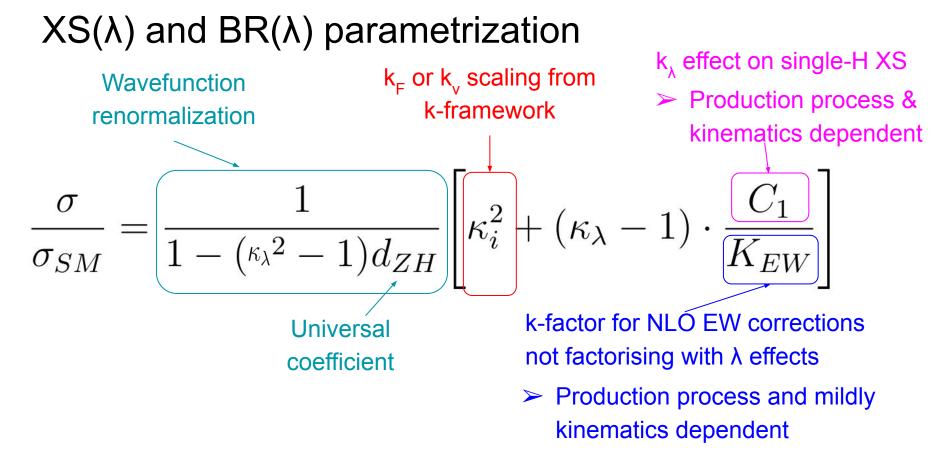
Example of λ -dependent diagrams for H \rightarrow VV decay



One universal correction for H wave-function renormalization $O(\lambda^2)$

5

Effect of λ corrections on Higgs XS and BR


Ha ggHH

qqHH

15

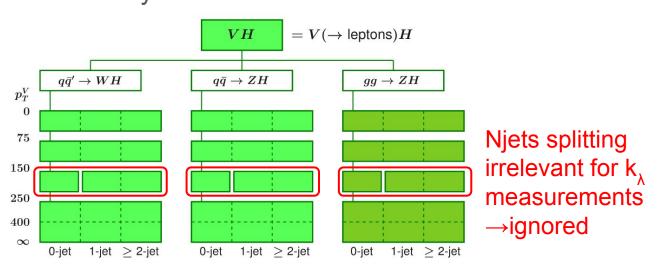
20

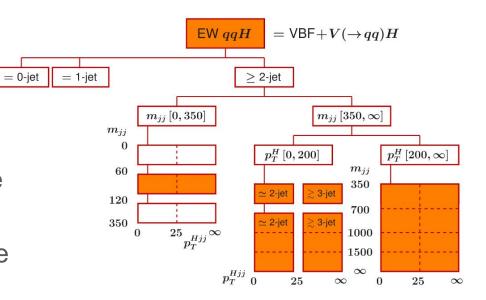
K

Similarly for $BR(\lambda)$ but no kinematics dependence

$$\frac{BR^f}{BR^f_{SM}} = \frac{\kappa_f^2 + C_1^f(\kappa_\lambda - 1)}{\sum_j BR^j_{SM} \left[\kappa_f^2 + C_1^j(\kappa_\lambda - 1)\right]}$$

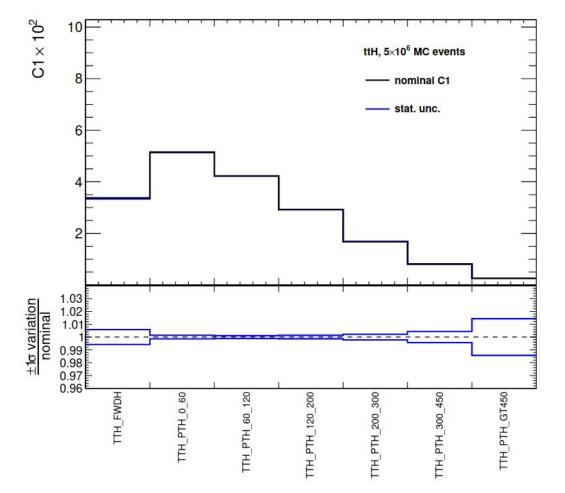
JHEP12(2016)080

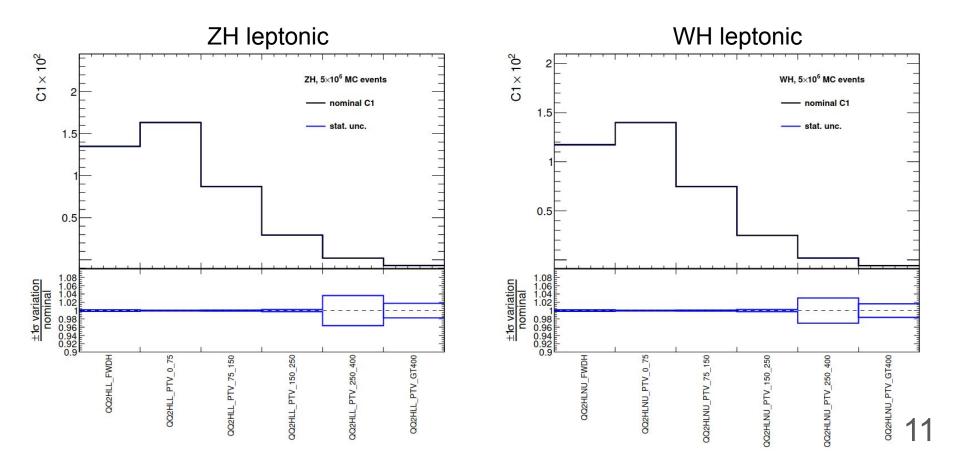

$XS(\lambda)$ parametrization


$$\frac{\sigma}{\sigma_{SM}} = \frac{1}{1 - (\lambda^2 - 1)d_{ZH}} \left[\kappa_i^2 + (\kappa_\lambda - 1) \cdot \frac{C_1}{K_{EW}} \right]$$

- C₁ values derived for each STXS 1.2 bin
 C Events generated @LO with Madgraph_amc@nlo and PDF4LHC15_nlo_mc
 C Reweight LO events to include NLO EW λ effects
 C Showering+hadronization with Pythia8
 - STXS 1.2 classification with Rivet
- Inclusive XS(λ) scaling for ggH bins
 - Calculations not available for ggH
 - Small C₁ dependence on kinematics
- 5M MC events for WH, ZH, ttH, and qqH
- Estimate uncertainties from MC stat, $\mu_F \& \mu_R$ scales, & PDF
 - Negligible wrt syst. uncertainties affecting STXS measurements

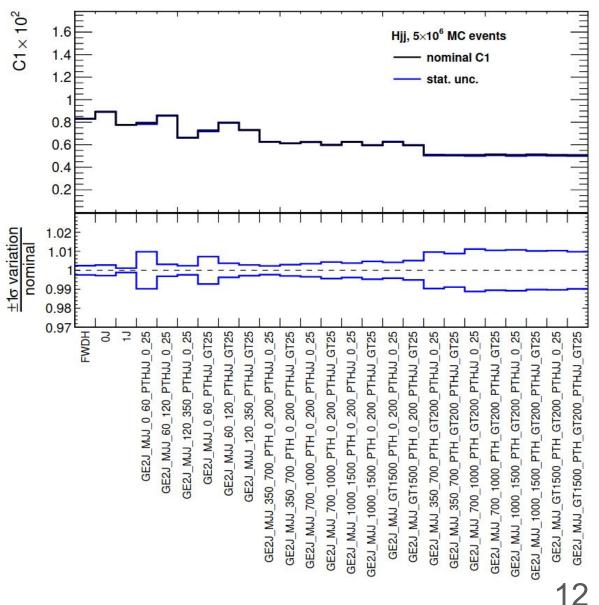
STXS 1.2 binning


- C₁ coefficients calculated for both full and reduced granularity
 - In reduced granularity ignore dashed lines
 - Granularity dependent on the specific CMS/ATLAS analysis



 $\begin{array}{c} t\bar{t}H\\ p_T^H\\ 0\\ 60\\ 120\\ 200\\ 300\\ 450\\ \infty\end{array}$

- C_1 coefficients for ttH
- Process with largest $C_1 \rightarrow$ largest sensitivity to k_{λ} variations
- Large effect also at differential level



- C_1 coefficients for VH leptonic
- Significant variation of $C_1 vs p_T(V)$
- Large relative uncertainty on some C_1 because value very close to zero \rightarrow negligible impact on parametrization

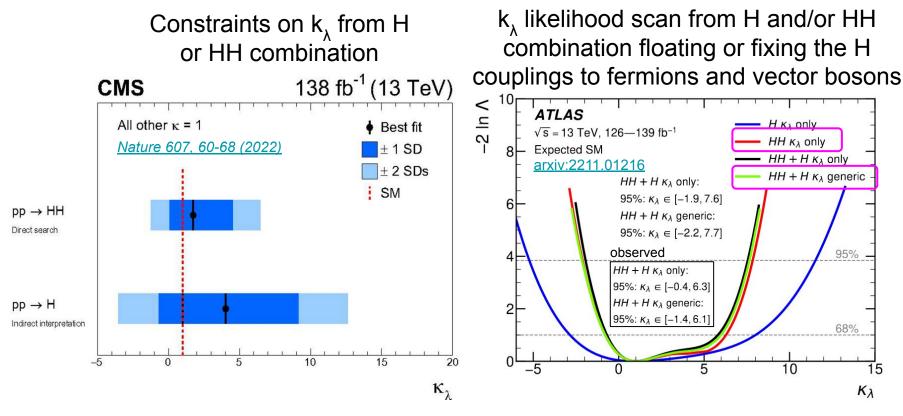
 C_1 coefficients for qqH

- Mild effect at differential level
- C₁ larger for low
 m_{jj} dominated by
 VH(had)

Recipe for k-factors for EW corrections

$$\frac{\sigma}{\sigma_{SM}} = \frac{1}{1 - (\lambda^2 - 1)d_{ZH}} \left[\kappa_i^2 + (\kappa_\lambda - 1) \cdot \frac{C_1}{K_{EW}} \right]$$

Process and mildly kinematics dependent

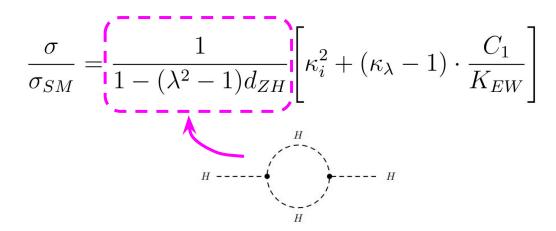

- NLO EW corrections not factorising with λ effects
- K_{EW} with STXS 1.2 granularity provided by the note
 - For VH & qqH from previous works of LHCHWG and from YR4
 - For ttH new calculation using ______
 MG5_aMC@NLO 3.3.1

STXS BIN	K_{EW}
TTH_FWDH	1.017
TTH_PTH_0_60	1.041
TTH_PTH_60_120	1.025
TTH_PTH_120_200	1.002
TTH_PTH_200_300	0.978
TTH_PTH_300_450	0.956
TTH_PTH_GT450	0.923

• If inclusive K_{EW} used in both σ_{SM} and in parametric formula, then negligible difference in σ/σ_{SM}

Available results from CMS & ATLAS

• Results of the note used in CMS & ATLAS public results



Two-fold benefit from single-H

- Solve degeneracy from additional parameters in the fit
- Improve constraints on k_{λ}

Outlook for the future

- Parametrization w/ incomplete perturbative order expansion
 - NLO EW in k_{λ}
 - $\circ~$ LO in k_F, k_V, k_... (kappa-framework) \rightarrow missing NLO EW
- > Negligible effect for small deviations of k_{F} , k_{V} , k from 1
- Alternative approach using EFT?
 - $\circ~$ In SMEFT is the effect of wavefunction renormalization reabsorbed by the c_{_{\!H}} parameter?

Summary

- k_{λ} measurement is a fundamental test of the SM
- k_λ can be determined from single-H XS measurements
 Differential info improves accuracy and precision on k_λ
- Joint CMS and ATLAS effort for modeling STXS 1.2 to constrain $k_{\lambda} \rightarrow$ LHCHWG-2022-002
- Results of the note used in CMS & ATLAS public results
 - Single-H enriched categories solve degeneracy from additional parameters in the fit (e.g. k_v & k_F) and improve constraints on k_λ
- Alternative approach using EFT could be an interesting target

BACKUP

Setup for the calculation

• MADGRAPH5_AMC@NLO (v2.5.5) at LO accuracy interfaced with LHAPDF6 and PDF set PDF4LHC15 NLO MC

- Pythia8 (v2.45) with default tune "Monash 2013"
 - \circ Negligible changes of the C $_1$ values with alternative tunes
- μ_{F} and μ_{R} set dynamically equal to

$$\frac{1}{2}\sum_{i}\sqrt{p_{T,i}^2+m_i^2}$$
; *i* = particle in the final state

Estimation of C_1 and uncertainties

- Each MC event bring two weights
 - \circ w_{LO} = weight for the LO XS
 - \circ w_{λ} = weight for λ -dependent corrections
- C₁ in a certain STXS bin *i* computed as

$$C_1^i = rac{\sum_i w_\lambda^i}{\sum_i w_{LO}^i}$$
 Sums over all MC events falling in the considered STXS bin

- Uncertainty on μ_F and μ_R from independent variations of the two scales of ×0.5 and ×2 the nominal ones
- Uncertainty on PDF from systematics variations provided by the considered PDF set & from C₁ computation with alternative PDF sets

Non-factorizing NLO EW corrections

$$\begin{split} \frac{\sigma_{NLO_{EW}}^{i}}{\sigma_{NLO_{EW},SM}^{i}} &= \frac{Z_{H}^{BSM} \left\{ \sigma_{LO,SM}^{i} \left[(\kappa_{\lambda} - 1)C_{1}^{i} + \kappa_{i}^{2}K_{EW}^{i} \right] \right\}}{\sigma_{LO,SM}^{i}K_{EW}^{i}} \\ \text{ with } Z_{H}^{BSM} &= \frac{1}{1 - (\kappa_{\lambda}^{2} - 1)\delta Z_{H}} \\ \text{ which simplifies to:} \\ \frac{\sigma_{NLO_{EW}}^{i}}{\sigma_{NLO_{EW},SM}^{i}} &= Z_{H}^{BSM} \left[\frac{(\kappa_{\lambda} - 1)C_{1}^{i}}{K_{EW}^{i}} + \kappa_{i}^{2} \right] \end{split}$$