Future Circular Collider "Physics, Experiment, Detector Panel"

Muon Detector & Gaseous Detectors (Preparation for P5 meeting)

Coordinators:

Marcus Hohlmann (Florida Inst. of Technology, hohlmann@fit.edu)
Bing Zhou (U. Michigan, bzhou@michigan.edu)

Meeting #4

Apr 5, 2023

P5 Town Hall Meeting

on the Future of High Energy Physics

Hosted by Brookhaven National Laboratory April 12-14, 2023

Agenda

■ P5 Town Hall Meeting (12-April 14, 2023): Timetable · Indico (bnl.gov)

Thu, 4/13

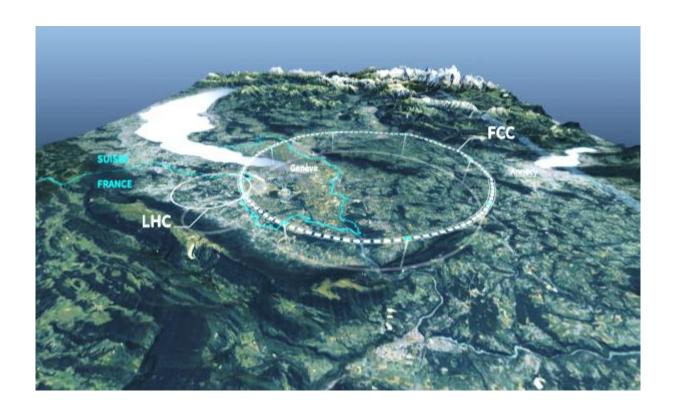
INTERNATIONAL - (1) View from KEK (remote)	Masa Yamauchi	
Berkner Hall, Brookhaven National Laboratory	08:30 - 08:50	EDT
(2) View from IHEP (remote)	Yifang Wang	
Berkner Hall, Brookhaven National Laboratory	08:50 - 09:10	
(3) View from CERN	Fabiola Gianotti	
Berkher Hall, Brookhaven National Laboratory	09:10 - 09:40	
Coffee Break		
Berkher Hall, Brookhaven National Laboratory	09:40 - 10:10	-
FUTURE COLLIDERS (1) Implementation Task Force	Thomas Roser	
Berkher Hall, Brookhaven National Laboratory	10:10 - 10:40	
(2) Physics at Higgs Factories (circular & linear)	Liahtao Wahg	
Berkher Hall, Brookhaven National Laboratory	10:40 - 11:10	-
(3) Detector Circular Colliders	Srini Rajagopalan	
Berkner Hall, Brookhaven National Laboratory	11:10 - 11:35	
(4) Detector Linear Colliders	White Andrew	
Berkher Hall, Brookhaven National Laboratory	11:35 - 12:00	

Update from last coord. meeting

- Presented a draft of the MDGD slide for the P5 townhall talk to the coord. group
- Srini incorporated that into his slide draft:

Gaseous Detectors (M. Hohlmann, B. Zhou)

- ❖ Significant expertise in U.S. built over past decades at the Tevatron/LHC and NP experiments: 11 institutes with ~50 physicists have already expressed interest.
- Three thrust areas identified as key areas of engagement for U.S.:
 - Develop robust, large-area muon/gaseous detectors with fast timing and high spatial resolution.
 Muons play a key role in precision measurement of Higgs, Z→μμ provides a key benchmarking point
 - Create a US-based R&D facility for MPGDs at a national lab (JLab? synergy with NP)
 - Develop services and infrastructure for these systems.
- ❖ Develop and test the initial prototypes and electronics and establish the MPGD facility by ~2028 (FCC approval) to lay the foundation for a significant participation.
 - Large Area (at low cost)
 - Time resolution (< 1 ns)
 - Fine Granularity and high spatial resolution → momentum resolution
 - High-rate capability of O(10 kHz/cm²)
 - Low mass detectors when used as inner tracking devices


Update from last coord. meeting

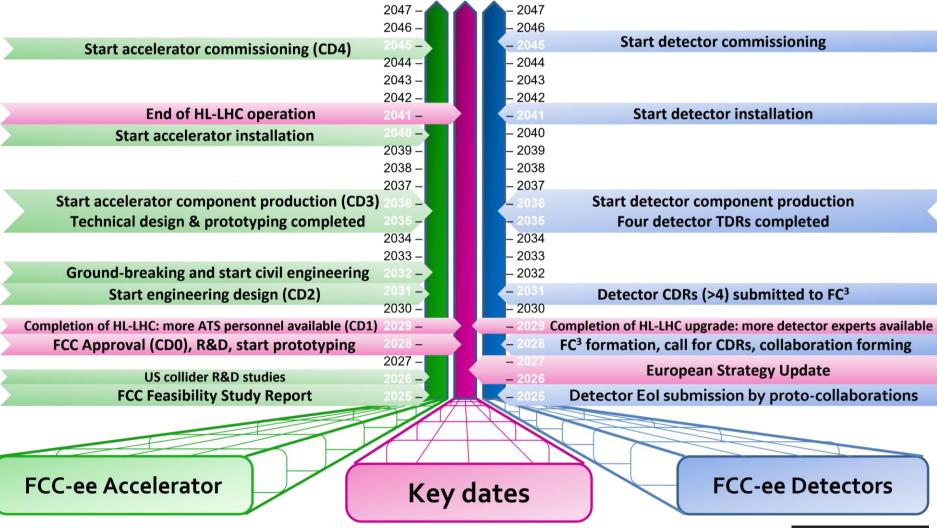
Our feedback

- Add LLPs to physics motivation
- Add L1 trigger capabilities for muons
- Write out "Micro-Pattern Gas Detectors" at least once

Gaseous Detectors (M. Hohlmann, B. Zhou)

- ❖ Significant expertise in U.S. built over past decades at the Tevatron/LHC and NP experiments: 11 institutes with ~50 physicists have already expressed interest.
- ❖Three thrust areas identified as key areas of engagement for U.S.:
 - Develop robust, large-area muon/gaseous detectors with fast timing and high spatial resolution.
 Muons play a key role in precision measurement of Higgs, Z→μμ provides a key benchmarking point
 - Create a US-based R&D facility for MPGDs at a national lab (JLab? synergy with NP)
 - Develop services and infrastructure for these systems.
- ❖ Develop and test the initial prototypes and electronics and establish the MPGD facility by ~2028 (FCC approval) to lay the foundation for a significant participation.
 - Large Area (at low cost)
 - Time resolution (< 1 ns)
 - Fine Granularity and high spatial resolution → momentum resolution
 - High-rate capability of O(10 kHz/cm²)
 - Low mass detectors when used as inner tracking devices

The End


Thank you!

Backup

FCC – Timeline Update

From Michael Benedikt via Srini Rajagopalan

