

Institute of Particle Physics and Accelerator Technologies

Update from the CBG SPWG

Kārlis Dreimanis

05.05.2023.

- Recap of the programme:
 - DSP "Particle physics and accelerator technologies" is implemented jointly by RTU and UL;
 - The development, implementation and oversight is done with the support of the CBG partners;
 - The programme has a dedicated study programme council consisting of 8 council members:
 - 2 representing RTU;
 - 2 representing UL;
 - 2 representing the CBG;
 - 2 representing CERN;
 - + 2 programme directors (1 from RTU, 1 from UL);
- Student attestation is performed yearly; for the academic year 2022/23 it is planned for the week of the 12th of June;
- The study direction (physics, materials science and mathematics) containing this DSP was undergoing accreditation during 2022;

Doctoral Study Programme

- The accreditation performed at RTU and UL <u>separately</u>:
 - Commission accrediting the UL study direction evaluated the programme as excellent (highest award);
 - Commission accrediting the RTU study direction evaluated the programme as good (second highest award);
 - Overall, the study directions were accredited as excellent at both universities;
- <u>Main recommendations:</u>
 - Improvement of the study course descriptions (on-going; will include some more substantial course changes as well);
 - Include *newer* literature (on-going, but we still note that some literature is from the 70s by design);
 - Ensure equal lecturer *vetting* for the guest lecturers (appropriate mechanisms will be developed);
 - Develop and implement a corresponding master's programme (on-going);

Doctoral students

- The programme has had only two intakes of doctoral students autumn 2021 and autumn 2022;
- A 3rd year student started their PhD with us via an alternative programme and was transferred at the earliest possibility;
- Particle & atomic physics:

0	Andris Potrebko	(Y3, RTU)	Measurement of the top/anti-top mass difference at CMS;
0	Antra Gaile	(Y2, RTU)	Measurement of anomalous Higgs couplings in $H \rightarrow ZZ \rightarrow 41$ channel at CMS;
0	Valts Krūmiņš	(Y2, UL)	Optical interferometry system for anti-beam positron measurements at AEgIS;
0	Normunds Ralfs Strautnieks	(Y2, UL)	Study of lepton universality in top decays at CMS;
0	Conrado Munoz Diaz	(Y1, RTU)	Measurement of the boosted top quark mass at CMS;
0	Dimitrios Sidiropoulos Kontos	(Y, RTU)	Study of the boosted top substructure at CMS;
0	Dace Osīte	(Y1, RTU)	Search for the dead-cone effect in b-decays from top quarks at CMS;

Accelerator technologies & medical physics:

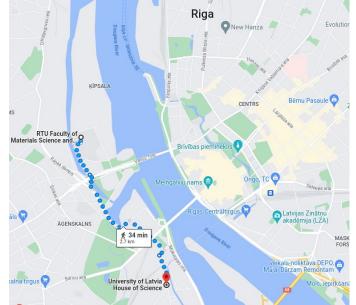
0	Lazar Nikitovic	(Y2, RTU)	Design of a high-frequency linear accelerator for injection into a therapy synchrotron;
0	Kristaps Paļskis	(Y2, RTU)	Optimization of ion beam parameters for very high dose rate (FLASH) radiotherapy;
0	Luca Piacentini	(Y2, RTU)	Integration of Systems, of a Carbon Ion Rotating Gantry for Medical Treatments;
0	Tobia Romano	(Y1, RTU+PoliMi)	Study of sintering behaviour of pure copper processed via binder jetting AM;

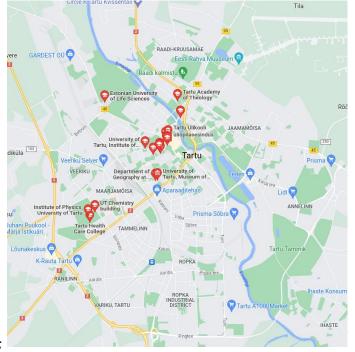
Development of the master's programme

- Recap: Erasmus Mundus Design Measures (EMDM):
 - Successful bid for EMDM funding in 2022;
 - 55 kEur (15 months until 31st of December 2023);
 - Deliverable: developed joint mechanisms for a new master's study programme;
- Aims of the EMDM project:
 - to develop joint mechanisms for admissions, evaluation, award of the degree, dissemination;
 - to develop the above mechanisms to be fully in line with the requirements for the <u>Erasmus Mundus Joint Masters (EMJM)</u> calls;
 - to develop a curriculum that would be highly competitive & desirable internationally (incl. to Western European students);
- Aims of the planned master's programme:
 - to develop the scientific capacity in modern fundamental physics and related technologies in the Baltic region;
 - to train and develop human resources with the skills and competencies desired by the local industry;
 - to increase the internationalisation of the higher education ecosystem in the Baltic region;

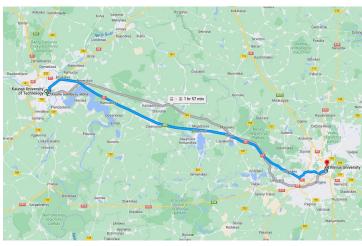
Development of the master's programme

- Two-year <u>academic</u> master's comprising 120 ECTS, focused on topics relatable to:
 - Particle physics (experiment [primary], theory & phenomenology [secondary]);
 - Detector Technologies;
 - Accelerator Physics;
 - Accelerator Technologies;
- Programme to be implemented by a consortium of Universities from the three Baltic states (as of May 5th, 2023):
 - Riga Technical University (RTU, lead), Latvia (LV);
 - University of Latvia (UL), Latvia (LV);
 - University of Tartu (UT), Estonia (EE);
 - Vilnius University (VU), Lithuania (LT);
 - Kaunas University of Technology (KTU), Lithuania (LT);


Development of the master's programme


- Two year (120 ECTS) master's split into four semesters of equal weight (30 ECTS):
 - Semester 1: focused on laying down & strengthening the essential foundational knowledge, skills and competencies;
 - Semester 2: focused on deepening the skills and competencies, as well as providing initial specialisation;
 - Semester 3: focused on deepening specialisation and providing highly specific skills and competencies;
 - Semester 4: focused providing the research experience via the master's project/thesis.
- For the masters projects, we intent to cooperate with the relevant industry:
 - Baltic Scientific Instruments, ... (LV);
 - GScan, ... (EE);
 - Teltonika, ... (LT);
- Important: a requirement for a EMJM master's programme "all students must spend at least a semester in a country that is not their home country at the commencement of their studies";

- Semester 1, October January (Y1) : Latvia;
 - Physical proximity of UL and RTU campuses allows for Riga to be the best-placed city, where students can enjoy the broadest fundamental knowledge base;
 ie. modular courses that require little specialisation and longer duration;
- Semester 2, February June (Y1) : Estonia;
 - Initial specialisation courses can be of shorter duration than fundamental courses, but travel during the semester would be sub-optimal;
 - Keeps all students *close* for longer;
- Semester 3, October January (Y2) : Lithuania;
 - Highly specialised courses can be shorter & more intense;
 - Split between VU and KTU based on specialisation can be made;
 - Good public transport links still allow for travel between cities if-need-be;
- Semester 4, February June (Y2) : all participating countries;
 - Aim for an approximately equal distribution of projects for all involved HEIs;
 - Encourage industry partners to provide projects & internship opportunities.



- Semester 1, October January (Y1) : Latvia;
 - Physical proximity of UL and RTU campuses allows for Riga to be the best-placed city, where students can enjoy the broadest fundamental knowledge base;
 ie. modular courses that require little specialisation and longer duration;
- Semester 2, February June (Y1) : Estonia;
 - Initial specialisation courses can be of shorter duration than fundamental courses, but travel during the semester would be sub-optimal;
 - Keeps all students *close* for longer;
- Semester 3, October January (Y2) : Lithuania;
 - Highly specialised courses can be shorter & more intense;
 - Split between VU and KTU based on specialisation can be made;
 - Good public transport links still allow for travel between cities if-need-be;
- Semester 4, February June (Y2) : all participating countries;
 - Aim for an approximately equal distribution of projects for all involved HEIs;
 - Encourage industry partners to provide projects & internship opportunities.

- Semester 1, October January (Y1) : Latvia;
 - Physical proximity of UL and RTU campuses allows for Riga to be the best-placed city, where students can enjoy the broadest fundamental knowledge base;
 ie. modular courses that require little specialisation and longer duration;
- Semester 2, February June (Y1) : Estonia;
 - Initial specialisation courses can be of shorter duration than fundamental courses, but travel during the semester would be sub-optimal;
 - Keeps all students *close* for longer;
- Semester 3, October January (Y2) : Lithuania;
 - Highly specialised courses can be shorter & more intense;
 - Split between VU and KTU based on specialisation can be made;
 - Good public transport links still allow for travel between cities if-need-be;
- Semester 4, February June (Y2) : all participating countries;
 - Aim for an approximately equal distribution of projects for all involved HEIs;
 - Encourage industry partners to provide projects & internship opportunities.

- Semester 1, October January (Y1) : Latvia;
 - Physical proximity of UL and RTU campuses allows for Riga to be the best-placed city, where students can enjoy the broadest fundamental knowledge base;
 ie. modular courses that require little specialisation and longer duration;
- Semester 2, February June (Y1) : Estonia;
 - Initial specialisation courses can be of shorter duration than fundamental courses, but travel during the semester would be sub-optimal;
 - Keeps all students *close* for longer;
- Semester 3, October January (Y2) : Lithuania;
 - Highly specialised courses can be shorter & more intense;
 - Split between VU and KTU based on specialisation can be made;
 - Good public transport links still allow for travel between cities if-need-be;
- Semester 4, February June (Y2) : all participating countries;
 - Aim for an approximately equal distribution of projects for all involved HEIs;
 - Encourage industry partners to provide projects & internship opportunities.

News from the CERN council

Encouraging (for us) discussion in the ECFA* report at the CERN Council: [the Taskforce] "calls for the creation of a dedicated panel in this area under the auspices of ECFA, in consultation with organisations or communities representing neighbouring disciplines and ICFA";

"The role of this coordination panel would primarily be to enhance the synergies between existing training programmes and <u>stimulate</u> <u>the creation</u> of complementary ones where relevant, in particular multidisciplinary schools or <u>academia-industry-joined training</u> <u>programmes</u>. The second equally important DCT sets out as a goal the <u>creation of a European master's degree programme in HEP</u> <u>instrumentation</u> [read:accelerator and detector physics and technologies], to also be a potential responsibility of this proposed panel to help coordinate." [from the R&D roadmap document: <u>https://cds.cern.ch/record/2784893</u>];

additionally,

"ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at future Higgs factories to gather."

- There is great interest in our planned activities from CERN and the accelerator-based research facilities!
- With our planned programme we are <u>literally ahead of the curve</u> and ahead of CERN!
- Potentially, we could receive significant aid from CERN and ECFA in our pursuit!

* European Committee for Future Accelerators

- The project group held a workshop at RTU on the 27th of April;
- Great breakthroughs achieved via face-to-face discussions;
- A second workshop planned in June;

Curriculum outline

- Initially hoped to retain many existing courses, in order to minimise the workload on the consortium members; This idea has been mostly scrapped and the current plan is to introduce new, tailor-made study courses;
- Work on course development initiated *from the ground up*, ie. from the desired learning outcomes at the end of each semester towards the topics;
- <u>Semester 1:</u> students must have an overall understanding & skills in the scientific topics covered by the study programme:
 - Broad understanding of modem [particle] physics:
 - Standard Model (overview, mechanics and kinematics);
 - Material radiation interaction (overview and introduction to detector systems);
 - Strong skills in applied mathematics for research (statistics);
 - High-level programming language skills (python, C++);
 - Accelerator physics topics:
 - Electrodynamics;
 - Superconductivity;
 - Instrumentation (types of systems, design overviews, engineering & design concepts);

Curriculum outline

- Initially hoped to retain many existing courses, in order to minimise the workload on the consortium members; This idea has been mostly scrapped and the current plan is to introduce new, tailor-made study courses;
- Work on course development initiated *from the ground up*, ie. from the desired learning outcomes at the end of each semester towards the topics;
- <u>Semester 2</u>: students must obtain deeper knowledge in all of the fundamental scientific aspects of the programme and begin initial specialisation:
 - General understanding of field theories;
 - Group theory, free fields, interacting fields and connection to the Standard Model;
 - Finite element analysis and computer-aided design;
 - Specialisation topics (non-exhaustive):
 - Quantum field theory;
 - General relativity;
 - Robotics and firmware;
 - Plasma physics for accelerators;

Curriculum outline

- Initially hoped to retain many existing courses, in order to minimise the workload on the consortium members; This idea has been mostly scrapped and the current plan is to introduce new, tailor-made study courses;
- Work on course development initiated *from the ground up*, ie. from the desired learning outcomes at the end of each semester towards the topics;
- <u>Semester 3:</u> students must obtain specialised knowledge of the fundamental scientific aspects within their chosen pathway of expertise:
 - Data analysis methods in high-energy physics (possibly with a particular focus on CMS);
 - Quantum field theory (incl. QED and QCD);
 - Medical physics (use of particle and radiation therapy, use of accelerators);
 - Advanced materials:
 - HEP instrumentation (accelerators, magnets);
 - Advanced material-radiation interaction and particle detectors;
 - Quantum field theory (incl. QED and QCD);
 - Medical physics (use of particle and radiation therapy, use of accelerators);

Mantra of the programme

- We aim to create a highly competitive and unique-in-Europe master's programme aimed at HEP and HEP instrumentation;
- We must strive to create a curriculum and a study experience that is attractive to everyone interested in the field!
- We are small Baltic countries without highly-recognised HE sector in the West; we must seek to change that!
- Mantra:
 - Where other programmes offer 5 lecture-hours per ECTS, we must offer 6;
 - Where other programmes offer 1 tutorial hour per ECTS, we must offer 2;
 - Where other programmes are localised on the campuses of their respective Universities, we offer a chance to spend a semester in three different countries!
- We will also aim to offer, in collaboration with our industrial partners and CERN, internships in the inter-year summer.

Decisions reached at the Workshop

- The degree to be awarded was discussed at length in terms of both the area and the award of the diploma;
 - It was concluded that **only the award of a uniform degree is viable** for the consortium master of physics;
 - Naming of a further specialisation of the degree (eg. particle physics, accelerator physics, medical physics)
 is not planned at this time, but the student's specialisation should be inferred from the diploma supplement;
 - It was concluded that only a joint-diploma is viable long-term (afterwards also emphasised by the rector of Vilnius University);
- The admission of students would proceed as a stepped-process, with them being admitted in Latvia in semester 1, in Estonia in semester 2 and Lithuania in semester 3, followed by graduating with the aforementioned joint-diploma;
- We are still aiming to submit an EMJM project proposal in February 2024:
 - Consortium is in agreement that the implementation in the current form can only proceed with a successful bid;
 - If successful, the first intake of students would be September 2025;
- Joint-diploma requirement might be *a bridge too far* for this project call:
 - Support from the policy makers will be paramount;
 - In case it is not viable to submit the project of the 2024 call, the 2025 call will be utilised;
 - If successful, the first intake of students would be September 2026;

- DSP is progressing well; a major deficiency, as identified by the commission of experts, lack of a master's programme;
- We have successfully bid for EMDM project funding, allowing to kick-start the development of such a master's programme;
- EMDM project on-going with a consortium of 5 Universities of the CBG (RTU, UL, UT, VU, KTU);
- Multiple meetings and a workshop held reasonable progress;

- Aim to create a project proposal for the implementation of a new master's programme in HEP instrumentation:
 - Clear need as identified by ECFA and CERN (we are literally a year ahead of them!);
 - A semester of study in each of the three Baltic states followed by the fourth semester in the country of choice;
 - Single joint-diploma in physics awarded;

• Aim for the 2024 EMJM call!

Thank you

- We explicitly aim to develop a program eligible to be submitted to the Erasmus Mundus Joint Masters (EMJM) call;
- EMJM calls typically close in mid-February \rightarrow aim to have a project proposal ready for February 2024;
- EMJM:
 - Supports the implementation of Joint-Masters programs for up to 74 months (renewable);
 - Allows for the support of up to 4-5 full editions of a 2-year master's cohorts;
 - Financial support:
 - Institutionally: 750 Eur/month per student for up to 100 students;
 - Stipends: 1'400 Eur/month stipend for up to 60 students; max. 10% of stipends to students of the same nationality;
- At least 1 semester in 2 partner-HEIs other than in the country of residence of the student;
- For our program, at least 1 semester in each of the three Baltic countries;

- Reminder, this project was awarded a lump sum grant of 55 kEur;
 - Original plan was to fund travel for meetings using these funds directly from the RTU accounts;
 - Given the current status, plan to split these funds among partners based on a consortium agreement;
 - The consortium agreement for **this** project must be developed **ASAP**;
 - Propose to split of **40 kEur** among the 5 partners to fund the day-to-day work on the programme development in 2023;
 - This results in **8 kEur per partner** for the next 7 months (May-December);
- **15 kEur** to be retained by RTU at this stage for other related near-term activities:
 - Creation of the visual identity and promotional material, including a dedicated web-page;
 - Licensing costs in Latvia and in partner countries, if required;
 - Other miscellaneous costs arising;