The CTA Operator tools public repository

In which we discuss packaging and tagging

Richard Bachmann

Outline

Goals

Repository structure
Packaging with pip
Tagging and releasing

Using the packages

cE?N\/
\{
S,

Goals

- Provide operator tools “as is” to the CTA community

- Needs: Mechanism of installing and upgrading
- Needs: Config management

- Use the same tools ourselves
- Host example monitoring configs

The CTA Operator tools public repository

Repository structure

* https://gitlab.cern.ch/cta/cta-operations

Project: Pip package:

LICENSE
ci_helpers <-- Misc. CI utilities Makefile
cta-ops-config.yaml <-- Reference config file pyproject.toml
monitoring README.md
grafana src
dashboards <-- Dashboard json and previews atresys
td-agent <-- Fluentd config files email_templates
LICENSE cta_ops_repack_O_scan.py
README.md e
requirements.txt <-- Full install requirements list __init__.py
rpm <-- RPM package(s) for general setup
tools
pip <-- Individual tools, written in Python
ctautils <-- Misc. utilities
tapeadmin <-- Tape interaction utilities
cta-ops-repack-automation <-- Repack automation tools

The CTA Operator tools public repository

https://gitlab.cern.ch/cta/cta-operations

Building with pip
Specifications

* PEP 517 - A build-system independent format for source trees
- https://peps.python.org/pep-0517/

* PEP 518 - Specifying Minimum Build System Requirements for Python Projects
- https://peps.python.org/pep-0518/

* PEP 503 - Simple Repository API
- https://peps.python.org/pep-0503/

* Python Packaging Authority (PyPA) tutorials and specs

- https://packaging.python.org/en/latest/#

The CTA Operator tools public repos

https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0503/
https://packaging.python.org/en/latest/

Build tools

Build frontend Build backend

A build frontend is a tool that users The actual building is done by each
might run that takes arbitrary source source tree’s build backend.
trees or source distributions and builds

wheels from them. * We use 'setuptools’

* We use ’build’

+ wrapped by make

The CTA Operator tools public repository

Package metadata

Allin the toml file

. [project]
. 1) name = "atresys"
authors = [
name = "CERN", email = "tape-operations@cern.ch"},

1
. description = "Tools for automating tape repack workflows"
readne = "README.md"
—3.6"

requires-python .
license = {file = "LICENSE"}

[build-systen]
requires = ["setuptools>=61.2", "setuptools_scm>=
build-backend set\lptools build meta

.2"]

. classifiers = [

. "Programming Language :: Python :: 3"
pyp rOJ e . Ol n "License :: OSI Approved :: GNU General Public License V3 (GPLV3)",

"Operating System :: POSIX :: Linux
]

. 3 3 ", w oo woo 0
https://setuptools.pypa.io/en/latest/userguide/ keywords = ["CTA", "tape", "CERN']
pyproject_config.html dynamic = ["version"]

dependencies = [
"ctautils’
"tapeadni;

"tabulate"

[project.urls]
repository = "https://gitlab.cern.ch/cta/cta-operations,
documentation = "https://gitlab.cern.ch/cta/cta-operations/-/wikis/tools/ATRESYS---Automated-Tape-REpac

[project.scripts]
cta-ops-repack-manager = "atresys:cta_ops_repack_manager.main”

https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html

Tagging convention

Present internal repo

situation
* 0.4-123

- ’0.4’ - unused
- ’-123’ - incremented when new
release is created

Pro posal (but we could use anything else
really)

* 58.6.1

- ’5.8.6’ - min CTA version needed to
run
* Update if backwards incompatible
cta-admin changes
- “1‘- Incremented when new ops
release is made, set to 0 when CTA
min version changes

rator tools public repos

Versioning with the build system

Setuptools-scm

* Allows us to build with dynamic version
from Cl tags

° https://pypi.org/project/setuptools-scm/

* Does intermediate versions based on tag

In the standard configuration setuptools-scm takes a look at
three things:

® latest tag (with a version number)

® the distance to this tag (e.g. number of revisions since
latest tag)

°* workdir state (e.g. uncommitted changes since latest
tag)

24.03.2023

Last tag: 5.8.6.1

. Codethengit commit

New intermediate version: 5.8.6.2.dev1

Publish intermediate on public repo for

testing, don’t tag
. When happy, tag and publish 5.8.6.2

The CTA Operator tools public r

https://pypi.org/project/setuptools-scm/

Using a tag

Q: Which version should | use?

Assuming the proposed scheme:
* CERN: Most recent tagged release or specific dev release

* Elsewhere: Closest non-dev release with version <= CTA version

rator tools public repo

Gitlab ClI

* Uses EOSWeb space to publish
+ Job for publishing to Gitlab repo available,
publishing to PyPI possible
Pipeline
1. Build (simply runs make)
2. Publish (manual)

- Publish dev commits for testing at
CERN
- Publish tags as 'public release’

Index of /

Last medified Size Description

2022-10-04 17:13

2022-10-04 17:10

2023-03-17 14:22

build

build_pip_pkas

publish

publish_tagged_pip_pkas

The CTA Operator tools public repository

Using the packages

Pip as first-class citizen:

Available using index url:

° https://cta-public-repo.web.cern.ch/cta-operations/pip/simple/
For easy install we provide:

* requirements.txt with external dependency versionlock

python3 -m pip install --extra-index-url https://cta-public-repo.web.cern.ch/cta-operations/pip/simple/
--requirement requirements.txt

* Users can also define it as a repo in their pip.conf file

The CTA Operator tools public repository

https://cta-public-repo.web.cern.ch/cta-operations/pip/simple/

Rpm wrapper

Single ’just install everything’ rpm. Created when we tag.
1. Install ‘tape-local user
2. Setupvenvin $PATH

- Avoid system-level pip pkg interference
- Avoid custom/hacky opt... path

3. pip install --r requirements.txt

4. TODO: keytab setup?

rator tools public repos

In practice

CERN - make a tool public Elsewhere
1. Move tool source code of tool to new * Simple requirements.txt for ’pip install
Gitlab repo (new pip pkg) everything’
2. Add tool to ‘ctaops-lib‘ requirements.txt - Orinstall by hand with pip
- Treat like external dependency * Use RPM
* Versionlock * Use container (creation for summer
- Separate ops and dev release timings student)

Packages are copied to our internal mirror,
fetched by hosts from there. Can use public
repo directly if we want to.

24.03.2023 The CTA Operator tools public repository

CE/RW
\

home cern

http://home.cern

Bonus slide: Why not 0.1.2-style tags?

* Implies semantic versioning

* Indicates that we differentiate between major/minor/patch releases, which we don’t

	Goals
	Repository structure
	Packaging with pip
	Tagging and releasing
	Using the packages
	Backcover
	Bonus slides

