The CTA Operator tools public repository

In which we discuss packaging and tagging

Richard Bachmann
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Goals

- Provide operator tools “as is” to the CTA community

- Needs: Mechanism of installing and upgrading
- Needs: Config management

- Use the same tools ourselves
- Host example monitoring configs
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Repository structure

* https://gitlab.cern.ch/cta/cta-operations

Project: Pip package:

LICENSE
ci_helpers <-- Misc. CI utilities Makefile
cta-ops-config.yaml <-- Reference config file pyproject.toml
monitoring README.md
grafana src
dashboards <-- Dashboard json and previews atresys
td-agent <-- Fluentd config files email_templates
LICENSE cta_ops_repack_O_scan.py
README.md e
requirements.txt <-- Full install requirements list __init__.py
rpm <-- RPM package(s) for general setup
tools
pip <-- Individual tools, written in Python
ctautils <-- Misc. utilities
tapeadmin <-- Tape interaction utilities
cta-ops-repack-automation <-- Repack automation tools
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Building with pip
Specifications

* PEP 517 - A build-system independent format for source trees
- https://peps.python.org/pep-0517/

* PEP 518 - Specifying Minimum Build System Requirements for Python Projects
- https://peps.python.org/pep-0518/

* PEP 503 - Simple Repository API
- https://peps.python.org/pep-0503/

* Python Packaging Authority (PyPA) tutorials and specs

- https://packaging.python.org/en/latest/#
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Build tools

Build frontend Build backend

A build frontend is a tool that users The actual building is done by each
might run that takes arbitrary source source tree’s build backend.
trees or source distributions and builds

wheels from them. * We use 'setuptools’

* We use ’build’

+ wrapped by make
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Package metadata

Allin the toml file

. [project]
. 1) name = "atresys"
authors = [
name = "CERN", email = "tape-operations@cern.ch"},

1
. description = "Tools for automating tape repack workflows"
readne = "README.md"
—3.6"

requires-python .
license = {file = "LICENSE"}

[build-systen]
requires = ["setuptools>=61.2", "setuptools_scm>=
build-backend set\lptools build meta

.2"]

. classifiers = [

. "Programming Language :: Python :: 3"
pyp rOJ e . Ol n "License :: OSI Approved :: GNU General Public License V3 (GPLV3)",

"Operating System :: POSIX :: Linux
]

. 3 3 ", w oo woo 0
https://setuptools.pypa.io/en/latest/userguide/ keywords = ["CTA", "tape", "CERN']
pyproject_config.html dynamic = ["version"]

dependencies = [
"ctautils’
"tapeadni;

"tabulate"

[project.urls]
repository = "https://gitlab.cern.ch/cta/cta-operations,
documentation = "https://gitlab.cern.ch/cta/cta-operations/-/wikis/tools/ATRESYS---Automated-Tape-REpac

[project.scripts]
cta-ops-repack-manager = "atresys:cta_ops_repack_manager.main”



https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html

Tagging convention

Present internal repo

situation
* 0.4-123

- ’0.4’ - unused
- ’-123’ - incremented when new
release is created

Pro posal (but we could use anything else
really)

* 58.6.1

- ’5.8.6’ - min CTA version needed to
run
* Update if backwards incompatible
cta-admin changes
- “1‘- Incremented when new ops
release is made, set to 0 when CTA
min version changes
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Versioning with the build system

Setuptools-scm

* Allows us to build with dynamic version
from Cl tags

° https://pypi.org/project/setuptools-scm/

* Does intermediate versions based on tag

In the standard configuration setuptools-scm takes a look at
three things:

® latest tag (with a version number)

® the distance to this tag (e.g. number of revisions since
latest tag)

°*  workdir state (e.g. uncommitted changes since latest
tag)

24.03.2023

Last tag: 5.8.6.1

. Codethengit commit

New intermediate version: 5.8.6.2.dev1

Publish intermediate on public repo for

testing, don’t tag
. When happy, tag and publish 5.8.6.2
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Using a tag

Q: Which version should | use?

Assuming the proposed scheme:
* CERN: Most recent tagged release or specific dev release

* Elsewhere: Closest non-dev release with version <= CTA version
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Gitlab ClI

* Uses EOSWeb space to publish
+ Job for publishing to Gitlab repo available,
publishing to PyPI possible
Pipeline
1. Build (simply runs make)
2. Publish (manual)

- Publish dev commits for testing at
CERN
- Publish tags as 'public release’

Index of /

Last medified Size Description

2022-10-04 17:13

2022-10-04 17:10

2023-03-17 14:22

build

build_pip_pkas

publish

publish_tagged_pip_pkas
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Using the packages

Pip as first-class citizen:

Available using index url:

° https://cta-public-repo.web.cern.ch/cta-operations/pip/simple/
For easy install we provide:

* requirements.txt with external dependency versionlock

python3 -m pip install --extra-index-url https://cta-public-repo.web.cern.ch/cta-operations/pip/simple/
--requirement requirements.txt

* Users can also define it as a repo in their pip.conf file
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Rpm wrapper

Single ’just install everything’ rpm. Created when we tag.
1. Install ‘tape-local user
2. Setupvenvin $PATH

- Avoid system-level pip pkg interference
- Avoid custom/hacky opt... path

3. pip install --r requirements.txt

4. TODO: keytab setup?
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In practice

CERN - make a tool public Elsewhere
1. Move tool source code of tool to new * Simple requirements.txt for ’pip install
Gitlab repo (new pip pkg) everything’
2. Add tool to ‘ctaops-lib‘ requirements.txt - Orinstall by hand with pip
- Treat like external dependency * Use RPM
* Versionlock * Use container (creation for summer
- Separate ops and dev release timings student)

Packages are copied to our internal mirror,
fetched by hosts from there. Can use public
repo directly if we want to.
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CE/RW
\

home cern


http://home.cern

Bonus slide: Why not 0.1.2-style tags?

* Implies semantic versioning

* Indicates that we differentiate between major/minor/patch releases, which we don’t
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