

Room temperature magnetic measurements of D1 prototype at CERN

10.05.2023

M. Pentella, C. Petrone, TE-MSC-TM

https://indico.cern.ch/event/1269740/

Outline

- Introduction and measurement goals
- MM workflow
- Measurement procedure
- Reference system definition
- Measurement results
- Comparison with previous measurement
- Summary and conclusions

Introduction and goal of the measurements

- Goal: room temperature magnetic measurements of the D1 cold mass prototype
- Reference: <u>HCLMBXF004-KJ000001</u>

Mesurement requirements expressed in terms of 3- σ uncertainty [1]

Roll angle (mrad)	Transverse center (mm)		
0.3	0.6		

MM Workflow

Measurement procedure

- Measurements performed by rotating coil scanner (RCS, or mole), a short 600-mm rotating coil displaced along the magnet longitudinal axis
- Measurements performed in correspondence with 13 longitudinal positions, covering the entire magnetic length (~6.26 m), at an excitation current of 10 A
- Transducer position monitored by a laser tracker throughout the duration of the measurement campaign
- Standard harmonic analysis to post-process data

HILUMI HL-LHC PROJECT

Scanner in operation during the measurement

Reference system definition - 1

Roll angle positive orientation (view from CS side)

Reference system defined according to the **cold mass fiducials** on the endcovers, D9, D10, and D11, and the **gravity**

- z-axis chosen coincident with gravity
- y-axis on the line between the two centers of the endcovers, defined by the fiducials, with positive orientation from CS to NCS
- All the results are expressed in this reference system

Reference system definition - 2

z-axis chosen coincident with gravity (Slide 6)

The two ref. systems are shifted by 1.2 mrad

Reference system defined according to the cold mass fiducials endcovers, D9, D10, and D11

- x-axis chosen coincident with the line between D9 and D10
- y-axis on the line between the two centers of the endcovers, defined by the fiducials, with positive orientation from CS to NCS
- This reference system is used to **compare** the roll angle measurement with KFK's

Roll angle vs y - straight section

Roll angle affected by the field behavior at the two magnet ends

	Central	Average SS	Std.	Integral
B1	5.155 mT	5.155 mT	1.2 units	32.240 mT m
Roll wrt gravity	0.51 mrad	0.355 mrad	0.3 mrad	-0.39 mrad
Roll wrt D9-D10	1.75 mrad	1.591 mrad	0.3 mrad	0.85 mrad

Ref. system with x-axis chosen on the line between D9-D10 (Slide 7)

- b₃ influenced by the **magnet ends**
- All the other harmonics differ by a few sub-units with respect to their average in the SS
- Harmonics in the SS comparable with simulations

			b _n					a _n		
N	Central	Average SS	Std.	Integral	ROXIE	Central	Average SS	Std.	Integral	ROXIE
2	0.87	0.58	0.33	0.69	0.00	-1.67	-1.70	0.67	-1.89	0.00
3	-4.12	-4.22	0.70	-14.88	-2.19	0.09	-0.05	0.19	1.60	0.00
4	0.18	0.14	0.12	0.16	0.00	-0.37	-0.42	0.06	-0.46	0.00
5	2.81	2.70	0.26	2.66	3.51	0.16	-0.02	0.14	-0.13	0.00
6	0.10	0.04	0.07	0.04	0.00	-0.02	-0.04	0.04	-0.05	0.00
7	1.09	1.12	0.07	0.84	1.05	0.02	0.02	0.09	0.16	0.00
8	0.03	0.01	0.02	0.01	0.00	0.15	0.14	0.04	0.15	0.00
9	0.74	0.74	0.03	0.39	0.61	-0.02	-0.01	0.04	-0.02	0.00
10	0.01	0.01	0.01	0.01	0.00	0.11	0.10	0.02	0.11	0.00
11	0.08	0.08	0.01	-0.08	0.04	0.00	0.01	0.02	0.02	0.00
12	0.00	0.00	0.01	0.00	0.00	0.05	0.04	0.01	0.04	0.00
13	-0.68	-0.68	0.01	-0.80	-0.68	0.02	0.02	0.01	0.02	0.00
14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	-1.11	-1.10	0.02	-1.23	-1.18	0.01	0.03	0.03	0.03	0.00

• **Proposal**: finding the transverse center using the feed-down correction of C_{14} on C_{15}

Transverse axis vs y

Integral					
x (mm) z (mm)					
0.16	0.19				

Comparison with previous measurements - 1

	CERN	KEK- Hitachi
Integrated roll angle	0.85	1.14

	CERN	KEK- Hitachi
Integrated B1 (mT m)	32.240	32.251

		b	n	a _n		
	N	CERN	KEK- Hitachi	CERN	KEK- Hitachi	
	2	0.69	-0.15	-1.89	-1.94	
	3	-14.88	-14.38	1.60	1.81	
	4	0.16	0.63	-0.46	-0.56	
	5	2.66	2.31	-0.13	-0.19	
	6	0.04	0.35	-0.05	-0.08	
	7	0.84	0.78	0.16	0.22	
	8	0.01	0.2	0.15	0.09	
	9	0.39	0.32	-0.02	0.05	
	10	0.01	-0.01	0.11	0.1	
	11	-0.08	-0.18	0.02	0.05	
	12	0.00	-0.33	0.04	0.05	
	13	-0.80	-0.87	0.02	0.04	
	14	0.00	-0.6	0.00	0.1	
0	15	-1.23	-1.12	0.03	0.02	

Summary and conclusions

- The first cold mass prototype of D1 was delivered at CERN and it was measured at room temperature by RCS
- Measurement results in very good agreement with the measurements performed at KEK-Hitachi, where the two integrated main fields differ by only 3 units, and the field harmonics are comparable at sub-unit level
- Measurement of the transverse center position is **viable** if using the feed-down correction of C_{14} on C_{15} .

Acknowledgements

I wish to thank P. Rogacki, L. Fiscarelli, H. Prin, N. Bourcey, U. M. Hernandez, R. B. Mercadillo, D. Giloteaux for the great help they provided with the magnetic measurements

Thank you for the attention Any questions?

