LHC Job Matching 2023

03/05/2023 Marco Leite - ATLAS/USP

leite@usp.br

ATLAS

ATLAS Brazil Cluster

ATLAS Brazil Cluster : We are 4 Institutions in 3 states : **USP (São Paulo)**, UFRJ and UERJ (Rio de Janeiro), UFJF (Minas Gerais) 69 Members (14 authors)

Universidade de São Paulo (USP) ATLAS Group

The Group :

2 Researchers : Marco Leite, Marisilvia Donadelli
5 Graduate Students (2 starting the PhD in June 2023)
4 Undergraduate students
We host an ATLAS Tier-2 Grid Facility
Lab infrastructure for Instrumentation R&D (ATLAS)
Two long term (5 years) Research Grants for ATLAS/LHC activities

The University :

USP is the largest University in South Hemisphere : 8 Campi (we are in the main campus) 42 Institutes 94.000 Students (30.000 in MsC or PhD) > 5k academic researchers > CHF 1.5 Billion budget (does not include research grants)

The City :

São Paulo is a very large and busy metropolitan city, with plenty of options for living

ATLAS : the electroweak sector of the Standard Model

One of the main goals of this project is to explore measurements of the W, Z and H boson production in several kinematic regimes and final state channels using current and future LHC data acquired by the ATLAS experiment in proton-proton collisions at sqrt(s) = 13, 13.6 and 14 TeV.

Precision measurements in SM

- So far, no signs of new physics (SM works pretty well...)
- New physics may be out of the LHC reach by **direct searches** (too heavy, too broad...)
- We need higher precision (model and experiment) \Rightarrow then hope it breaks somewhere ...
- If it breaks, someone needs to come with a fix to the model used in the global fit (new physics)

Study of Higgs self-coupling

- Probe the scalar sector of SM trough studies of di-Higgs production
- Direct probe of EWK symmetry breaking potential
- The resonant production of HH is a fertile ground for BSM models validation
- Focus on HH \rightarrow bb $\tau\tau$ channel

Searches for BSM process

• Search for Leptoquarks production

USP ATLAS : Physics Analysis

Several ongoing physics analysis :

ATLAS Note ANA-STDM-2018-41-INT1 21st May 2022

ATLAS Note ANA-STDM-2021-10-INT1 13th January 2023

ATLAS Note ANA-HDBS-2019-27-INT1 6th April 2023

- Double-differential charged-current Drell-Yan cross sections at high transverse masses in pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- Tim Beumker^a, Christoph Dingel^a, Frank Ellinghaus^a, Alison Elliot^b, Uta Klein^c, Johanna Kraus^a, Marco Leite^d, Jesal Mandalia^b, Michael O'Keefe^c,
 - Eram Rizvi^b, Frederic Schröder^a

- Measurements of high-mass di-lepton production with at least one τ -lepton and a search for
- leptoquarks with couplings to third-generation
- fermions at $\sqrt{s} = 13$ TeV with the ATLAS detector
- Alderweireldt, Sarac, Bauce, Matteod, Butterworth, Jonathanb, Corradi,
- Massimo^d, Daumann, Caio Cesar^e, Farrington, Sinead^c, Giagu, Stefano^d,
- Gutschow, Christian^b, Hamity, Guillermo Nicolas^c, Hays, Chris^a, Hrynova,
- Tetiana^f, Juzek, Monika Katarzyna^g, Koch, Simon Florian^a, Lisboa Leite,
- Marco^e, Morodei, Federico^d, Mueller, Roman^h, O'Neill, Aaron Paul^h, Padovano,
- Giovanni^d, Pleskot, Vojtech^k, Pollard, Chris^a, Richter-Was, Elzbietaⁱ, Rieck,
 - Patrick^j, Yue, Luzhan^b, Zhu, Yuanda^b

- Legacy search for the non-resonant production of
- Higgs boson pairs via gluon fusion and vector-boson
- fusion in the $b\bar{b}\tau^+\tau^-$ final state in proton-proton
- collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Ali, Shahzad^a, An, Shiwen^b, Atashi, Shaghayegh^c, Bellos, Panagiotis^d, Bernardi, 7 Gregorio^e, Betti, Alessandra^f, Buat, Quentin^g, Cairo, Valentina^h, Carquin Lopez, Edsonⁱ, Dao, Valerio^h, Deiana, Allison Mccarnⁱ, Deutsch, Christopher^j, Dimitriadi, Christina^j, Dingfelder, Jochen Christian^j, Donadelli, Marisilvia^k,

- Ferrari, Arnaud¹, Fuenzalida Garrido, Sebastian Julioⁱ, Granados, Kyle Angelo^m,
- Grimm, Kathryn^m, Guhit, Jem Aizen Mendiolaⁿ, Han, Liangliang^o, Haslbeck,
- Florian^{h, p}, Higuchi, Yu Nakahama^b, Karkout, Osama^q, Koeneke, Karsten^r, Lai,
- Stan^s, Leney, Katharineⁱ, Lenz, Tatjana^j, Li, Ang^e, Li, Tong^e, Liu, Yanlin^t,
- Longarini, Iacopo^c, Marchiori, Giovanni^e, Melo, Andres Hugo^s, Moser, Brian^h,
- Moss, Joshua^m, Nikolopoulos, Konstantinos^d, Ordek, Serhat^u, Pandini, Carlo
- Enrico^q, Paraskevopoulos, Christos^v, Reynolds, Elliot^w, Sauerburger, Frank^r,
- Schwarz, Thomas Andrewⁿ, Taffard, Anves^c, Togawa, Manabu^b, Varol Mete,
- Tulin^a, Veatch, Jason Robert^m, Wang, Song-Ming^a, Windischhofer, Philipp^x,
- Wollrath, Julian^c, Xu, Zifeng^o, Zhang, Lei^o, Zhang, Sijingⁱ, Zhang, Yulei^{e,y}

- Also:
 - 9 Run-II completed analysis, several internal notes and Editorial Boards 0
 - USP group is very active in ATLAS organization (Executive Board, Chair Advisory Group, Upgrade Ο Speakers Committee, International Computing Board, deputy National Institute Representative)

Double-differential CCDY cross section in high mT_w

Physics from the tails :

- Constraints to proton PDF
- Checks of lepton universality
- First measurement at this phase space @ LHC
- Phase space interesting for SM EFT interpretations
- Lays the groundwork for *ΓW* measurement

ATLAS Note ANA-STDM-2018-41-INT1 21st May 2022

ATLAS-ANA-STDM-2018-41

Double-differential charged-current Drell-Yan cross sections at high transverse masses in pp collisions at $\sqrt{s} = 13$ TeV

Tim Beumker^a, Christoph Dingel^a, Frank Ellinghaus^a, Alison Elliot^b, Uta Klein^c, Johanna Kraus^a, Marco Leite^d, Jesal Mandalia^b, Michael O'Keefe^c, Eram Rizvi^b, Frederic Schröder^a

Double-differential NCDY (τ channel) high m_{$\tau\tau$}

- Few LHC analysis on 3rd lepton generation,
 - but many BSM scenarios sensitive to 3rd generation
- High priority for understanding the $b \rightarrow l$ anomalies
 - Search for DY processes mediated by a leptoquark
- Analysis on the pole and high mll mass region (>120 GeV)

F. Wilsch

ATLAS-ANA-STDM-2021-10

- Investigate the production of Leptoquarks as source of Lepton Flavor Universality violation
- Signal generation using Madgraph
- Test and set exclusion limits
- Sensibility in the high mass region of $Z \rightarrow \tau \tau + b$
 - Look for the associated 1(2) b production
- Analysis will also include charge current DY (other next analysis !)
 - \circ W $\rightarrow \tau v$
 - $W \rightarrow \tau \nu + 1(2)b$
- Add 13.6 Run-3 dataset

Search for Higgs boson pair production: HH \rightarrow bb $\tau\tau$ channel

Higgs scalar potential is still largely unconstrained - could give direct insight into the structure of the Higgs potential
 Higgs can interact with itself, producing a pair of Higgs
 Known m_H (~ 125 GeV), SM predicts λ(~ 0.13)
 New physics can alter this number!

- Gluon-Gluon Fusion (**ggF**)
 - \circ Dominant process at LHC
 - Destructive interference between triangle and box diagram makes the cross-section tiny (1000 smaller than single Higgs, ~ 30fb)

- Vector Boson Fusion (VBF)
 - Second most abundant production mode
 - VBF topology provides a clean signature
 - Direct handle to vector boson coupling modifiers $\mathbf{\kappa}_{2V}$ and $\mathbf{\kappa}_{V}$

USP ATLAS : Upgrades

• Liquid Argon Phase-I Digital Trigger

- → LTDB performance studies
- → Signal reconstruction and calibration
- → Data Quality

• Phase-II High Granularity Timing Detector

The Phase-I trigger readout electronics upgrade of the

ATLAS Liquid Argon calorimeters

G. Aad,²³ A.V. Akimov,^{6,26} K. Al Khoury,⁷ M. Aleksa,⁶ T. Andeen,³ C. Anelli,³⁷ N. Aranzabal,⁶ C. Armiio.² A. Bagulia.²⁶ J. Ban.⁷ T. Barillari.²⁷ F. Bellachia.¹ M. Benoit.⁵ F. Bernon.²³ A. Berthold, ¹⁰ H. Bervas, ³² D. Besin, ³² A. Betti, ⁹ Y. Bianga, ¹⁰ M. Biaut, ²³ D. Boline, ³³ J. Boudreau,³⁰ T. Bouedo,¹ N. Braam,³⁷ M. Cano Bret,¹⁸ G. Brooiimans,⁷ H. Cai,³⁰ C. Camincher,^{6,37} A. Camplani,^{16,39} S. Cap,¹ A. Carbone,¹⁶ J.W.S. Carter,³⁵ S.V. Chekulaev, 36,26 H. Chen, 5 K. Chen, 5 N. Chevillot, 1 M. Citterio, 16 B. Cleland, 30,† M. Constable,³⁶ S. de Jong,³⁷ A.M. Deiana,⁹ M. Delmastro,¹ B. Deng,⁹ H. Deschamps,³² C. Diaconu,²³ A. Dik,²⁶ B. Dinkespiler,²³ N. Dumont Davot,¹ A. Emerman,⁷ Y. Enari,³⁴ P.J. Falke,^{1,38} J. Farrell,⁵ W. Fielitz,⁵ E. Fortin,²³ J. Fragnaud,¹ S. Franchino,¹⁴ L. Gantel,¹ K. Gigliotti,² D. Gong,⁹ A. Grabas,³² P. Grohs,¹⁰ N. Guettouche,²³ T. Guillemin,¹ D. Guo,⁹ J. Guo,¹³ L. Hasley,⁹ C. Hayes,^{33,40} R. Hentges,¹⁰ L. Hervas,⁶ M. Hils,¹⁰ J. Hobbs,³³ A. Hoffman.⁵ D. Hoffmann.²³ P. Horn.¹⁰ T. Hrvn'ova.¹ L. Iconomidou-Favard.¹⁵ B. Iguchi.³⁴ T. James,⁹ J. Ye,⁹ K. Johns,² T. Junkermann,¹⁴ C. Kahra,²² E.F. Kay,³⁷ R. Keeler,³¹ S. Ketabchi Haghighat, 35 P. Kinget, 8 E. Knoops, 23 A. Kolbasin, 26 P. Krieger, 35 J. Kuppambatti,⁸ L.L. Kurchaninov,³⁶ E. Ladygin,¹⁹ S. Lafrasse,¹ M.P.J. Landon,²¹ F. Lanni,⁵ S. Latorre, ¹⁶ D. Laugier,²³ M. Lazzaroni, ^{16,17} X. Le,⁹ P. Le Bourlout, ³² C.A. Lee, ⁵ M. Lefebvre,³⁷ M.A.L. Leite, 20 C. Leroy, 25 X. Li, 9 Z. Li, 23, 12 F. Liang, 9 H. Liu, 5 C. Liu, 9 T. Liu, 9 H. Ma, 5 L.L. Ma, 12 D.J. Mahon, 7 U. Mallik, 18 B. Mansoulie, 32 A.L. Maslennikov, 28, 29 N. Matsuzawa, 34 R.A. McPherson,^{37,a} S. Menke,²⁷ A. Milic,^{35,6} Y. Minami,³⁴ E. Molina,³² E. Monnier,²³ N. Morange,¹⁵ L. Morvaj,^{6,33} J. Mueller,³⁰ C. Mwewa,⁵ R. Naravan,⁹ N. Nikiforou,^{3,6} I. Ochoa, 7,41 R. Oishi, 34 D. Oliveira Damazio, 5 R.E. Owen, 31 C. Pancake, 33 D.K. Panchal, 3 G. Perrot.¹ M.-A. Pleier.^{5,*} P. Poffenberger.^{37,†} R. Porter.³⁷ S. Quan.⁹ J. Rabel.³⁰ A. Rov.³ J.P. Rutherfoord,² F. Sabatini,¹⁶ F. Salomon,²³ E. Sauvan,¹ A.C. Schaffer,¹⁵ R.D. Schamberger.³³ Ph. Schwemling.³² C. Secord.³⁷ L. Selem.¹ K. Sexton.^{5,†} E. Shafto.³³ M.V. Silva Oliveira,⁶ S. Simion,¹⁵ S. Singh,³⁵ W. Sippach,⁷ A.A. Snesarev,²⁶ S. Snyder,⁵ M. Spalla,²⁷ S. Stärz,^{6,24} A. Straessner,¹⁰ P. Strizenec,⁴ R. Stroynowski,⁹ V.V. Sulin,²⁶ J. Tanaka,³⁴ S. Tang,⁵ S. Tapprogge,²² G.F. Tartarelli,¹⁶ G. Tateno,³⁴ K. Terashi,³⁴ S. Tisserant,²³ D. Tompkins,² G. Unal,⁶ M. Unal,³ K. Uno,³⁴ A. Vallier,^{6,23} S. Vieira de Souza,²² R. Walker,² Q. Wang,⁷ C. Wang,^{23,13} R. Wang,²² M. Wessels,¹⁴ I. Wingerter-Seez,¹ K. Wolniewicz,⁵ W. Wu,^{5,13} Z. Xiandong,⁹ R. Xu,³ H. Xu,⁵ S. Yamamoto,³⁴ Y. Yang,³⁴ H. Zaghia,³² J. Zang,³⁴ T. Zhang,³⁴ H.L. Zhu,^{5,11} V. Zhulanov,^{28,29} E. Zonca^{32,†} and G. Zuk³⁰

- → Ultra-fast semiconductor sensor R&D
- → Test beams at CERN SPS
- → Detector construction and commissioning at CERN
- → A new facility for semiconductor sensor at USP is coming up (FAPESP Grant)

SATLAS EXPERIMENT The p

The position :

- FAPESP Grant (<u>https://fapesp.br/en</u>)
- Two years (subject to renewal) and includes one year stationed at CERN supported by FAPESP
- We expect the candidate to take a leading role on Run-3 (2) analysis (HH \rightarrow bb $\tau\tau$ or Drell-Yan precision measurements)
- Also requires participation on Run-3 dataking (operations in LAr) and some HGTD activities at CERN
- For more details on stipend, projects, conditions etc. please feel free to email me !

Marco Leite leite@usp.br