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A little bit of history...

Roots of modern Particle Physics can be traced back to the concept "Atomism” in ancient
Greek culture. To study the smallest components of nature In order to understand It

Particle Physics as we know It today began with the discovery of electron in 1897
by JJ Thomson

Followed by the discovery of photon. Prior to Einstein’s photoelectric theory
(1905) the photon was not recognized as a particle O

In the early 20th century Rutherford discovered the atom, followed by Bohr O g
proposing electrons move around the nucleus In stable orbits

Nucleus
Neutron

With the discovery of neutron in 1932, the atom was complete! iy -
Very soon the number of elementary particles grew, and there was a need of a

gudiebook to explain their behaviour - the Standard Model (developed through

late 20th century)



Two key discoveries In the last 30 years

Top quark was discovered in 1995 by the

CDF and DO experiments at Fermilab The Higgs boson discovered by the

ATLAS and CMS experiments in 2012
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The Higgs announcement at CERN

25th anniversary of the discovery of the Top Quark, Femrilab

The Higgs boson was the last missing piece and
now the SM of Particle Physics Is complete!



Standard Model
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Fields

gluon photon W/Z graviton?
Strong >> Electromagnetic >> Weak >>>Gravitational
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What we see around us

proton neutron

=(0.511 MeV/c? =2.2 MeV/c? =4.7 MeV/c?
1 24 14
Y e 72 u , Vo d ‘

electron up | down |
— -

Proton and neutron together make a nucleus
electrons+nucleus = atoms
Different combinations of these three particles make the world around us

There Is also the neutrino, that Is all around us like some cosmic ghost. More on
that later...



Three generations of fermions

three generations of matter three generations of antimatter
(elementary fermions) (elementary antifermions)
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They differ mainly by mass
Why are there 3 generations? Are there more?

We dont see the 2nd and 3rd generation particles around us, we have to go searching for them and create them in
our accelerators.

* They quickly decay to the first generation fermions



Fermions and Bosons

* Fermions and Bosons differ on one key aspect - their spin
* Spin is the Iintrinsic angular momentum of the elementary particle.
* All elementary particle can be thought of as a wave
* for spin 1 particles, the wave looks the same after 1 full rotation
* for spin 1/2 particles, you need 2 full rotations.
* Fermions follow Pauli exclusion principle - no two identical particle can be in the same state

* Bosons follows Boson statistics - applying to a system of particles applying the same state of
energy




Quantum Field Theory
tells us that every particle
IS assoclated with a field

Classical Quantum

Flelds

gluon photon W/Z
Strong >> Electromagnetic >> Weak
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time
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Understanding the symmetry in SM

* Gauge theory is a “field theory where equations of motion do not change under coordinate
transformations”

* SM can be explained by a perturbative gauge theory and is Lorentz invariant
* |t can be described by the symmetry group : SU(3)c x SU(2)w x U(1)y

* C denotes the color, W the weak Isospin and Y the hypercharge

S=strangeness

B'=bottomness I3= z component of
C=charmness 1 weak Isospin |
T=topness _ / . -
B=Baryon number Y=S+B'+C+T+8B Q—13+2Y

* SU(3): related to the strong interaction mediated by gluons
* SU(2): related to the weak interaction and mediated by W* and Z° bosons

* U(1): related to the EM interaction and mediated by the photon
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Symmetry and Conservation Laws In nature

There I1s symmetry if unchanged by a certain transformation - for physics to be meaningful all
laws should be invariant to the change of status of the observer

Transformation Conserved variable

Translation in space-time Momemtum-Energy

Rotation In space Angular momemtum
Reflection Parity

There are also internal transformations that deal with the conservation of qguantum numbers of a system

To understand the the transformation of a system we write what is called a “Lagrangian” equation,
describing the motions and interactiopzs In a system during a transformation
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Some Intrinsic properties of elementary particles
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GLUON
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Qaurks and color

* Pauli’s exclusion principle tells us no two identical fermion can occupy the same state.

But we know baryons(gqqq) and mesons (qq) exist

* A new quantum number “color” was born to explain this

* Quarks not only come In different flavours, they come in 3 different “colors™- “red”, “green”

J

and “blue”. Three/two different colors made up baryon/meson thus solving the conflict.

* 8 types of gluons: each carrying a color and anti-color. Gluons are responsible for all strong
iInteractions.

* Composite particles are color singlets
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Helicity

* Helicity - observable of an elementary particle. Projection of spin on the
momemtum

h>0;S || p, right handed h < 0;S } p, left handed

* Weak interactions will effect : left chiral particle, right chiral antiparticle

O @

Right-Handed Left-Handed
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Parity and Helicity
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* Right handed neutrinos do not exist, hence violating parity

-

Left-Handed

—=Q

Right-Handed
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Charge Parity and kaons Kaons = {u,d, s}

) us, su, ES, sd
Parify { }

C|IK° >= +|K° >
CP|K°® >= —|K" >

Charge
®

C

* On combining charge conjugation and parity:

K)——>m+m
(1) ——> (-1)*

* Parity transforms left handed neutrino to right handed neutrino (does not exist)
* Charge conjugation transforms right handed neutrino to right handed anti-neutrino , which does exist!

* Kaons violated CP, K° sometimes decays to two pions (even parity) instead of 3 pions (odd parity) —
could this point to why we are missing all the antimatter?
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Symmetry and Conservation Laws for elementary particles
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What Is special about the neutrino?

Although abundant in nature, very difficult to detect as they
Interact with matter rarely and only feels the weak force

In the SM, the neutrino IS massless. But recent
experiments have proved that neutrinos can change
flavour - “neutrino oscillations”.

* For this to work neutrinos need to have some tiny mass

Fermilab has designed the Deep Underground Neutrino
Experiment (DUNE) where the neutrinos travel a long
distance (800 miles) and scientists will record and study
the neutrinos at the start and end as well as all interactions
during the journey.

At the LHC, neutrinos are studied at a much higher energy
scale from W,Z, b or ¢ decays - for cross section
measurements, decays and probe for physics beyond SM
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Higgs boson and Fermion mass

* The Higgs boson first proposed in 1926 by Peter Higgs
and Francois Englert

* Itis a manifestation of the Higgs field where the Higgs
boson wants to be at the lowest possible value - but this
breaks the symmetry in the field

* At the lower point the Vacuum Expectation Value (VEV)
- has a non zero value , but the energy is lower than

before.
Higgs field But no right
handed

A neutrinos!

Left handed
fermion

5 Right handed
e )

fermion

This Interaction with the Higg.s fleld gives fermions their masses
and the coupling with the Higgs field is called the Yukawa coupling
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Finding the Higgs boson Bics
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Electro weak force and spontaneous symmetry breaking

It Is the unification of electromagnetic and weak nuclear interaction based on SU(2)w x U(1)vygauge symmetry.

Glashow, Weinberg and Salam said these the two forces can be understood by the same principle - with 4 massless
mediators

* However we have one massless (y) and three massive mediatiors (W=, Z)

Higgs field below 246 GeV acquires a non zero vacuum expectation energy (VEV) and interacts with the SU(2) and
breaks the symmetry giving all three mediators mass.

As energy falls below 246 GeV, this gauge symmetry is spontaneously broken - leading to the Higgs field

However U(1) remains intact and stays massless - stays in the VeV= 0 plane

Z Energy

Above 246 GeV, VeV is zero
value and all particles are
massless

Below 246 GeV, VeV has a non zero value

y Vacuum expectation
- value

Oim

¢RE

x>



How do we study the SM?

Scientists have been conducting experiements and discovering
particles since the 19th century. Started with the Cathode ray
tube, Geiger Counter, cloud chamber and so on...

It was understood by the early 20th century smashing atoms at
high energy at a target leads to splitting of the target - giving
scientists the oppurtunity to study its components.

The first accelerator was made by Cockcroft and Walton in 1932

using a 400 keV generator to accelerate protons and shoot them

at a lithium target.

Year
1955
1962
1974
1975
1978/1979
1983
1995
plelele

2012

Particle
antiproton
muon neutrino
J/Y meson
tau lepton
gluon
W, Z bosons
top quark
tau neutrino

Higgs boson

Accelerator Name

Bevatron

AGS

SLAC

SLAC

DORIS/PETRA

SPS

Tevatron

Tevatron

LHC

Accelerator Type
proton synchrotron
proton synchrotron
electron linac
electron linac
electron synchrotron
proton synchrotron
proton synchrotron
proton synchrotron

proton syn chrotron

The Large Hadron Collider

'n
A

Location
LBNL, U.S.

BNL, U.S.

California, U.S

California, U.S

DESY, Germany

CERN, Switzerland

Fermilab, U.S.

Fermilab, U.S.

CERN, Switzerland



The Large Hadron collider

* |tis a circular accelerator colliding two proton
beams at 6.8 TeV each. The two proton

beams travel in two separate beam pipes kept LHC
at ultra high vacuum, traveling at a speed
close to light before they collide. SPS

* Thousands of superconducting magnets guide
the beams and focus them to an extremely
small diameter of the order of microns.
Bunches are designed to collide every 25ns

* These collisions produce massive particles
like the Higgs boson and top quarks

* The higher the energy, the more interesting
the physics and the chance of discovering
something new
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The CMS detector

2m 1m
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— = = = Neutral Hadron (e.g. Neutron)
== === Photon

Silicon
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_ Electromagnetic
]|_|! ]]] Calorimeter

Hadron Superconducting
Calorimeter Solenoid

Iran raturn yoke intersparsead

Transverse slice with Muon chambers
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Top Physics

* The LHC is known as the top factory. Being the heaviest elementary particle, It
makes for Iinteresting study

ATLAS+CMS Preliminary
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Beyond the Standard Model

* The Standard Model although a very successful model, many questions
remain unanswered

* Are the three forces actually different or manifestation of grand unified field
theory?

* How can we explain gravity?

* What about dark matter and dark energy which makes up more than 90% of
the universe?

* \WWhat happened to antimatter?

“See that the imagination of nature is far, far greater than the imagination of man”
- Richard Feynmann
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Back up



Where Is all the antimatter?

ANTIMATTER S WHEN DID THIS

GONE MISSING HAPPEN SIR?
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Some more Lagrangians

* The Quantum Field theories on which the SM Is based:

* Quantum Electrodynamics (QED): leptons interact with each other through
the EM force mediated by the photon

— 1 _
LQED — l/)(lyu5u o m) R ZF,qulw o CIl/J)/“AMl/J

* Electroweak sector: Gauge bosons are mediators between fermions

- . 1 1
Lrw = Z’#’}’“ (iau - g =-YwB, —g Tw.u) (0
Y

2 2

* Quantum Chromodynamics (QCD): quarks and gluons interact through the
strong force mediated by gluons

_ 1
Locp = Yi(i(y*D,)ij — mo;j)y; — ZGﬁchllw
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