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Why go beyond the Standard Model?

What is supersymmetry?

What are the benefits of supersymmetry?

How do we look for evidence of supersymmetry?

Current status



Standard Model recap

Review previous talks by Tulika Bose, Chris Palmer, and Titas Roy for more info
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e Describes the known particles (including

* Makes precise predictions that agree with

Electroweak

tri-Boson

VBF and VBS

The Standard Model (SM) works great

the Higgs!) and their interactions

the measurements

CMS preliminary

Overview of CMS cross section results
18 pb~! - 138 fb~! (7,8,13,13.6 TeV)
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Why go beyond the
Standard Model?



Because there are many
open gquestions!

e \What is dark matter?

Dark Matter

Dark Energy




Because there are many
open gquestions!

e \What is dark matter?

* Why does the Higgs boson have the mass it does? And
what is the shape of the Higgs potential?
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Because there are many
open guestions!

e \What is dark matter?

* Why does the Higgs boson have the mass it does? And
what is the shape of the Higgs potential?

* Why are there 3 generations of matter, with large mass
hierarchies?
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Because there are many
open gquestions!

What is dark matter?

Why does the Higgs boson have the mass it does? And
what is the shape of the Higgs potential?

Why are there 3 generations of matter, with large mass
hierarchies?

How to explain the matter-antimatter asymmetry?

How does gravity fit in?

Many theories have been proposed to address these questions

Supersymmetry is one of the more prominent ones



What Is
supersymmetry?




e New symmetry relating fermions and

bosons

* Developed in the context of string theory _

Supersymmetry

60

40

(supergravity) and grand unified theories

20
e Results in a superpartner for each SM

particle, with same quantum numbers 0

except for spin, which differs by 1/2
Particles 60
~ 40
20
0

Supersymmetric “shadow” particles
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Particles in the MSSM

(Minimal Supersymmetric Standard Model)

(L (L(L ¥

S = 1

S=10
Existing particles SUSY particles (MSSM model)

Partner particles are part of the same “supermultiplet”,
so they interact with the strong and electroweak forces in the same way
12



Particles in the MSSM

(Minimal Supersymmetric Standard Model)

®
®

szl 2 e

s =1/2

Existing particles SUSY particles (MSSM model)

What are these extra Higgs bosons?

13



Recap: Higgs in the SM

* |In SM, there is one Higgs field, with 4 degrees
of freedom (dof):

* After spontaneous symmetry breaking, 3 dof
are used to give mass to W+ and Z bosons

1 dof remains, i.e. the Higgs boson,
and the photon remains massless

29w @@ Y

&

* Their coupling with the Higgs field
gives mass to quarks and leptons

14




Higgs in the MSSM

 Through supersymmetry, the spin-0 Higgs field gets a spin-12
Higgsino partner.

Vo o 4

15



Two Higgs doublets!

 Through supersymmetry, the spin-0 Higgs field gets a spin-12

Higgsino partner.
Ve a4

e In fact, we need two copies for things to work out

16



Two Higgs doublets!

Through supersymmetry, the spin-0 Higgs field gets a spin-2

Higgsino partner.
Ve a4

In fact, we need two copies for things to work out
e Reasons are pretty suble and require quantum field theory

Now have 8 dof. We still need to use 3 to give mass to W+ and Z
bosons during electroweak symmetry breaking

Result: 5 Higgs bosons remaining (2 charged, 3 neutral)

17



Particles in the MSSM

(Minimal Supersymmetric Standard Model)

22 3 B

Existing particles SUSY particles (MSSM model)

These get mixed together

18



Neutralinos & Charginos

» After electroweak symmetry breaking, gauge eigenstates
with the same quantum numbers can mix

e The charged electroweak gauginos (the winos) and the
charged higgsinos mix to form “charginos”

afs

e Similarly, the neutral higgsinos mix with the neutral wino
and the bino (or photino and zino after EW symmetry
breaking) to form “neutralinos”

» Mass eigenstates are determined by diagonalizing the
mass matrices

e Details of this mixing matrix determine phenomenological
properties of a given supersymmetric model

19



What are the benefits
of supersymmetry?

And some caveats...



Naturalness

Alice is arranging a vase of flowers, when suddenly the doorbell rings.
On her way to the door, she puts the vase on a rickety table.
However, her rowdy toddlers are playing nearby...

What does she expect to find when she returns?

M. Strassler 2013

21 Analogy by Matt Strassler



https://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-hierarchy-problem/naturalness/

Naturalness

Alice is arranging a vase of flowers, when suddenly the doorbell rings.
On her way to the door, she puts the vase on a rickety table.
However, her rowdy toddlers are playing nearby...

What does she expect to find when she returns?

Natural Natural Highly
Unnatural

M. Strassler 2013

22 Analogy by Matt Strassler



https://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-hierarchy-problem/naturalness/

Naturalness

Alice is arranging a vase of flowers, when suddenly the doorbell rings.
On her way to the door, she puts the vase on a rickety table.
However, her rowdy toddlers are playing nearby...

What did she find?

Highly
Unnatural

Natural Natural

There must be an
explanation, right?!

M. Strassler 2013

23 Analogy by Matt Strassler



https://profmattstrassler.com/articles-and-posts/particle-physics-basics/the-hierarchy-problem/naturalness/

Naturalness and the Higgs boson

Consider all possible universes
where the only thing you change is
the strength of the interaction of
the Higgs field with other particles

You find three broad categories

24

CLASS 1:

Higgs field is OFF
All known particles Massless
Except Higgs particle has Huge Mass

CLASS 2:

Higgs field is ON and HUGH
All known particles including Higgs particle
have Huge Masses

CLASS 3:

Higgs field is ON and smaller than expected
All known particles including Higgs particle
have small masses

M. Strassler 2013



Naturalness and the Higgs boson

Consider all possible universes
where the only thing you change is
the strength of the interaction of
the Higgs field with other particles

You find three broad categories

This is our universe > oo o

Why?

25

CLASS 1:

Higgs field is OFF
All known particles Massless
Except Higgs particle has Huge Mass

CLASS 2:

Higgs field is ON and HUGH
All known particles including Higgs particle
have Huge Masses

CLASS 3:

Higgs field is ON and smaller than expected
All known particles including Higgs particle
have small masses

M. Strassler 2013



Naturalness and the Higgs boson

Energy Contributions from Quantum Fluctuations of Different Fields

Density * The average value of
/ /\ the Higgs field and the
- T ox S L 4+ T mass of the Higgs
s \ boson depend on

quantum fluctuations

IOther Contributions ° A” Other f|e|dS

. (particles) that exist in

\; o nature contribute! Also
the ones we don’t

What We Observe About the knOW abOUt

Higgs Field and Particle

e A priori, no reason to
believe these unknown
effects have anything
to do with the known
interactions/particles

20



Naturalness and the Higgs boson

Energy

Contributions from Quantum Fluctuations of Different Fields

-~ + —+

Higgs Field’s
Average Value

TN

IOther Contributions

\

L+ ~+ ...

What We Observe About the
Higgs Field and Particle

-
-
-
Sesene
.
Seseae
-
-l

27

Whether this seems
unnatural depends on
how far (in energy) we
think the SM should
hold

If we assume it works
until we need quantum
gravity, we’d need
precise cancellations of
1in 1030



Naturalness and the Higgs boson

GENERIC (NATURAL)

VA
N/

NON-GENERIC(UNNATURAL, FINE-TUNED)

28

Options to avoid this issue:

e The SM breaks down at a
relatively low energy

e Could be any number of
new physics models

e The other contributions do
have a relationship with the
known ones

e Supersymmetry is one
such example since
SUSY particles contribute
with opposite sign to the
quantum corrections



Caveat: SUSY breaking

e Unbroken SUSY — superpartners have same mass as their
SM counterparts

* Problem: these would have been discovered a long time ago
e SUSY must be broken, i.e. sparticles must have larger mass

e Should only allow “soft” SUSY breaking
 Don’t spoil nice cancellation that mitigates naturalness
e Hard to write down nice way to break SUSY
 Usually treated as low-energy effective theory

L = Lgusy + Lsoft

 @Gives many new free parameters in the model (105 for MSSM)
e gaugino and sfermion masses, bi- and trilinear couplings

29



SUSY breaking and
EW symmetry breaking

The SM Higgs potential:
V =mfy|H* + \H|*

Electroweak symmetry breaking
occurs when

A > 0and m% < 0

In SM the form of the Higgs potential,
as well as these conditions are explicit assumptions

In SUSY, there is “radiative electroweak symmetry breaking”

 Form of the Higgs potential is a derived quantity in the case of
SUSY with soft breaking

e EW symmetry breaking condition is naturally satisfied as well

30



Supersymmetry & R-parity

e SUSY introduces new particles, and also new interactions that
iInclude those new particles

e Some of these interactions can violate baryon and lepton
number conservation — could lead to rapid proton decay

e (Can avoid this problem by introducing R-parity conservation
e New (multiplicative) quantum number: R-parity
e SM particles have Rp = +1, SUSY particles have Rp = -1

e Significant impact on SUSY phenomenology

* Note: other ways possible to avoid proton decay, but this one is very popular

31



How do we look for
these particles?

... at the LHC ...



How and how often are
these sparticles produced?

R-parity conservation
implies that SUSY
particles are always
produced in pairs!

Squark and gluino pair
production has highest
Cross section

Chargino-neutralino has
lower cross section

Sleptons have lowest
cross section at LHC

cross section [pb]

10*

102 -

106

pp, VS =13 TeV, NLO+NLL - NNLOgpprox+NNLL

— §§ —— XX (higgsino)
gq —— X1 X1 (wino)
_ — 4g XiX2 (wino)
Higgs boson oy N
............ — tt, bb LRl R

250 500

33

750 1000 1250 1500 1750

particle mass [GeV]

2000

1 pb = 100,000 events at 100 fb-1



Sparticle decays

Once produced, supersymmetric particles typically don’t live very
long. Instead they decay into other particles.

With R-parity conservation, a sparticle (Rr = -1) always decays
into another sparticle plus N regular particles (Rr = -1 * (+1)N)

A particle can only decay to other particles if its mass is larger
than the sum of the masses of the other particles.

So, how a given sparticle decays depends on its mass and on
the masses of all other sparticle types as well

e 2-body decays dominate if allowed, e.qg.
e squark — quark + neutralino/chargino
e slepton — lepton + neutralino/chargino

 3- or 4-body decays dominate if mass splittings are small
e top squark = b + W + neutralino

34



Sparticle decays

e Example for top squarks:

Am = m(t)) — m()?(l))

~0
mX1) A[G'eV]
',.'76\ Y
/' /Q ',"'v((\
~0 ,'6 \ ,\I,"’ HQ»\/
) <) R (K N
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* L4 ¢
L4 L4 L4
V4 L4 L4
V4 'O X4
X4 k4
s 'l L4
4 L4
4 24 04 t
s L4 L4
X4 L4 X4
. H H . .
s L4 L4
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More decay examples

Electroweakino decays

q q f f
G /q/N/f/N

In general, SUSY models display a rich variety of possible final states!

- Good general benchmark model



Sparticle decays

e With R-parity conservation, a sparticle (Rp = -1) always decays
into another sparticle plus N regular particles (Rp = -1 * (+1)N)

 This also implies that the Lightest Supersymmetric Particle
(LSP) has to be stable: it has no other sparticle to decay into!

* |n many models the LSP is a neutralino

 Neutral and only couples via the weak interaction
 Neutralino LSP can be a dark matter candidate

- These do not interact
- with the CMS detector,

/ they escape unnoticed!
Py




Missing transverse momentum

 Escaping particles result in “missing transverse momentum”

* Recall basic principle in nature:

Momentum is conserved in collisions

 This also holds in particle collisions

38



Missing transverse momentum

 Escaping particles result in “missing transverse momentum”
* Recall basic principle in nature:

Momentum is conserved in collisions

 This also holds in particle collisions
e One problem: at the LHC, we collide protons
 Protons are not point-like

 The collision is actually between the quarks/gluons inside the
proton

e For any given collision, we don’t know what the energy/
momentum was of the quarks/gluons that actually collided!

e But, we do know that the protons are travelling in a particular
direction

39



Missing transverse momentum

Transverse
Directions

Proton Protor

e Before:

* Only momentum is along the beam axis
e Momentum In transverse direction =0

e After: Still the same! (Momentum conservation)

e So, if we were able to detect all particles produced in the collision,

the sum of their momenta in the transverse plane should add up to O
as well

* If not, e.g. because a neutralino (or neutrino) escaped, there is
“missing transverse momentum”

40



How to design a search for
supersymmetry at the LHC?

1. (Typically) require large amount of missing transverse momentum

* Most backgrounds don’t have much, and our signal is
expected to have a large amount

CMS 137 b (13 TeV)
(7))
< 10° + B Lost
L
107 — g—qq x (m = 1400 GeV, m, = 100 GeV)

Note that the backgrounds
have a falling spectrum
(colored, filled histograms)

- g—qq x (m = 1000 GeV, m = 800 GeV)

And the signal has a much
flatter spectrum (overlaid lines)

300 400 500 600 700 800 900 1000 1100
H_|I'[1ISS [Gev]

41



How to design a search for
supersymmetry at the LHC?

(Typically) Require large amounts of missing transverse momentum

2. Require additional criteria to enhance the signal vs background,
e.g. require that there are a

minimum number of jets, a CMS 137 fo' (13 TeV)
particular number of b-tagged - ¢ vata [z [E03, [ aco
jets, a minimum amount of : — §5q 7 (m, = 1400 GeV, m, = 100 GeV)
total momentum, etc. 200}~ "=~ §-A 7, (m; = 1000 GeV, m,, = 800 GeV)

R N.>6,N =0,H >1200GeV
O\ OO\ OO\ jet b-jet T

\\\\\\\\\\\\\\\\\\\\\\\\\

150
\ Signal stands out
4 1007 above background
D ) E
- q 50
g
() .v' v"‘v“A A ~O
) 5 - o
///:"' X; Q'_ 1;_llll|llll| llllllll Illllllllllllllllllllll_;
R~ -G Ww|g 0.5 R &
o ad X1 8 n . g >§§x\\\\ o \\x\\\\ﬁx\\\\*\#\&i\\\\\i
Ol 0.5t E
q Bl b b L L b L L
D 300 400 500 600 700 800 900 1000 1100
q H™'ss [GeV]
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How to design a search for
supersymmetry at the LHC?

1. (Typically) require large amounts of missing transverse momentum

2. Require additional criteria to enhance the signal vs background
3. Estimate the contribution from standard model processes

e Typical way is to find a “control region” in the data that is similar
to the “signal region” but won’t contain the signal; and then
transfer the background yield over

Npg = TF X Ng§

TF can be computed using simulation or using data
* This is the hardest part of the analysis

e Very important to properly quantify the uncertainties!

43



How to design a search for
supersymmetry at the LHC?

. (Typically) require large amounts of missing transverse momentum

. Require additional criteria to enhance the signal vs background

1

2

3. Estimate the contribution from standard model processes
4

. Look in data to see , _CMS | ~ 1371b'(13 TeV)
Whether your prediCtiOn g 107 ZNi_.Njetss 4<N,<5 6<N,, <7 S;Nje,sg N > 10
. S oso 53! : Data |
matches the observation ww1°g” " =%1° ' * =% :

1

1
1 1
1 1
X . Z5vV
: :
1 ]
1 1
1 1

within uncertainties

: ii

Example of a search with H !lhl
174 distinct “signal regions” _ w H'
targeting a wide variety of ~
SUSY models

700 120 140 160

20 40 60 80 .
Search region bin number



How to design a search for

supersymmetry at the LHC?

1.
2.
3.
4

(Typically) require large amounts of missing transverse momentum
Require additional criteria to enhance the signal vs background
Estimate the contribution from standard model processes

Look in data to see whether your prediction matches the
observation within uncertainties

_ 200OCMS 137 b (13 TeV)
Interpret the I’eSU|tS in VariOUS E 1800 pp_—>c£~;b§,§%qdﬁz?‘lf\pproxNNLO+NNLLechusion =F
. . —_ — served = ctheory E
SUSY models as limits on the £¥1600| :iiExpected £ 1,£ 20,
107

allowed masses 1400 |
(or discover something!) 1200F _

1000

This search 800}
excludes gluinos e:

400F

up to a mass of
2 TeV

200F

0_.1.1

=
i\

gy I P IR I I I L L IE .l .: IE. JCurgesy .—
1000 1500 2000 2500

95% CL upper limit on cross section [pb]



How to read an exclusion plot

CMS 137 fb' (13 TeV)

— 2000 -
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How to read an exclusion plot

CMS 137 b (13 TeV)

Approx NNLO+NNLL exclusion 1

— bserved + 1 o)

theory

----- experiment

95% CL upper limit on cross section [pb]
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How to read an exclusion plot
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How to read an exclusion plot

CMS 137 fb' (13 TeV)
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How to read an exclusion plot

CMS 137 b (13 TeV)
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How to read an exclusion plot

CMS 137 fb' (13 TeV)
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Many results!

No discoveries yet :-(
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Many results!
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Summary

Many theories have been proposed to explain open questions

Supersymmetry is one of the more prominent ones
e Supersymmetry doubles the particle content of the SM
e MSSM with R-parity means:

e Sparticles always produced in pairs

e Lightest SUSY particle is stable and escapes the detector,
leading to missing transverse momentum

e Neutralino LSP is dark matter candidate

Many searches have been perfomed
e So far, no direct evidence for any of these particles
e A few hints are present and will be followed up

Further reading: Supersymmetry Primer by Stephen Martin:
https://arxiv.org/abs/hep-ph/9709356
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