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Oliver Gutsche

e Staff scientist at Fermilab =» Particle Physicist

o0 Searching for Physics Beyond the Standard Model

o Involved in Computing since the beginning of LHC
s Managed Operations of Computing in the lead-up to the Higgs

discovery
= Then moved into managing the U.S. contribution to CMS Software an«

Computing: U.S. CMS Software & Computing Operations Program

o Getting involved in Computing for future colliders
s FCC, ILC, etc.

o More of an infrastructure person, but | know a lot about
everything

o~

® After work, | explore Asia, Europe, America and all
other parts of the world with my wife (btw., she is an
astro-particle physicist looking at Galaxy Clusters)
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The challenge!
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Note 95% of the total LHC data still to come (and be studied)!

From Tulika’s Physics Overview talk in this talk series from June 5th.
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Energy consumption

Emissions from computing

e Data centers and computing contribute 2-4% of global GHG emissions, only
expected to grow.

* Up-front considerations: where do we place computing facilities and how are
they powered? Electricity emissions vary significantly across regions.

* But if electric grid is decarbonized, electricity supply might be biggest concern.

—
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From Ken'’s “How to do Particle Physics in a Climate Emergency?” talk in this talk series from June 9th
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¢ High Luminosity LHC (HL-LHC)
ngh L uminosity LHC (HL-LHC)

50000 'n

o Next phase of the science harvest @ CERN: 2029-2042 T | omert
o 95% of the Integrated Luminosity of the LHC U At V|
O Higher Intensity Proton-proton collisions -
0 New CMS detector components with higher granularity and §zoooo
more channels «ggmooo
e Unprecedented Computing Needs compared to today - e

| ! 1
2021 2023 2025 2027 2029 2031 2033 2035 2037

o Number of events to be processed each year larger by x3: 150 Year
Billion events

o Size per event larger by x5: disk storage needs reaches 5

| | | | | | I | | | | | | &

exabyte by 2030 0 ems pubic y :
o Most data is active: needs to be held on quasi-randomly 'a'i:: oo s ,/’ =
accessible storage systems to be processed by hundreds of S| T ereememeeha f O
simultaneous processing pipelines 2
o Physics software: more than 4 million lines of highly specialized &
code with high algorithmic complexity and low computational
intensity =¥ providing unique challenges to use accelerators. ) S S S S S R S S S SR |

Year
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2% A (high level) Computing Model for HL-LHGC

® |t has to be technically viable (use technologies which will be available at the proper
moment)
® |t has to be financially viable (today, it is mostly translated with “cannot exceed current

yearly budget from FAs” — a better translation is "asking for a budget in excess of today's
needs VERY STRONG motivations”)

® |t needs to be operationally viable, with the manpower we think we can dedicate to it;
where does the effort come from (research (grad students and postdocs) or
professionals)?

® |t has to allow for the core physics program of CMS, and possibly for “less core but
iInteresting” programs

e (it has to match with trends and directions in the relevant venues, for example not be
orthogonal to existing national / global roadmaps for scientific computing)




' The current computing model

® Tiered computing center structure;
o Worldwide LHC Computing Grid (WLCG)
o Tier-0 + Tier-1s: CPU+Disk+Tape
o Tier-2s: CPU+Disk
o Pledges augmented by opportunistic (HPC, cloud, ... )

e CPU: x86_64 (latest developments: PowerPC CPUs and NVidia GPUs in HLT )
® Disk: Spinning
® Network capacity is infinite (== the cost of data movement is not modelled)

® Central Operations

o Central data processing and MC production

o Central data placement on disk for processing input and analysis, on tape for long term storage (RAW
stored on tape, 2 copies at Tier-O and one Tier-1

o No central ML training workflows
® Analysis
o Grid jobs to access data

o Produce user defined formats (NTuples) and use slimming/skimming (in some cases use directly nanos)
© End-user analysis on interactive machines




Market trends (famous set of plot by B.Panzer on CERN procurement)

CHF/HS06 Price/performance evolution of installed CPU servers (CERN) CHF/GB Price/performance evolution of installed disk server storage (CERN)
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Last 5 year average improvement factor = 1.28 Last 5 year average improvement factor = 1.22

® \What these plots hide is the “large increase” In

2021/2 due tO the pandemlc. MOStIy solved by General message from CERN: pandemic was a hiccup and

delaying procu rement. For example, for CPUs not a long term change =¥ it “just” introduced a 1-2 years

delay in price performance
o 2020: 3.6 CHF/HS06
2021: no tender DAQ TDR was expecting 1 CHF/HS06 in 2027-8, now it is 2029

. — and HL-LHC schedule is now delayed
o 2022 (Q1 survey): 6.55 CHF/HS06
o 2022 (actual tender): 3.6 CHF/HS06




The model

All the work Trnggu rates l
we want todo Map resources into offlme Ana (:‘-"ls
mode
tO actuivities

Actwmes
Resource; (t) = Resource; [t, LHC (¢), HLT(t), PM(t),AM(t), TE(¢t), policies, ..
1 \
Resourc
Machine plans + management
Total need for performance
resource type |
Productaon Technology
model evolutaon

e CMS is building a model of needed computing resources with many inputs
o Externally set (LHC # of live seconds, PU, Energy, ...)
o Set by our detectors (RAW data sizes, trigger capabilities, ...)

o (Physics Driven) CMS decisions (trigger rates, reprocessing steps, # of MC events, data tiers, parking / not
parking, copies of distributed data ...)

o Externally set - again (money to execute all of this)
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-~ How to reduce costs (if not viable)?
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Initially (circa 2018) the predicted costs of HL LHC

computing were O(10x) larger than the "allowed flat
budget”

® Handles to reduce costs:

© Reduce needs

m (fewer replicas, fewer reprocessing, less MC, smaller data formats, ...,
ML, ...)

o Use better $/performance solutions
s (columnar analysis, GPUs, FPGA, ...)

O ... wait more time, hardware gets cheaper ....

® Jo cut the long story short ...

o Last model iteration (2022) is compatible with Flat Budget via a
“realistic” R&D scenario
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' Current assumptions in HL-LHC Computing Model

® No parking/scouting
O Current HLT rates match DAQ TDR: 5kHz in Run 4, 7.5kHz in Run 5

® The Run 2/3 practices for data processing continue

o Prompt reco that keeps up with data taking, end-of-year rerecos, startup Monte Carlo, large Monte Carlo

productions corresponding to the rerecos, miniAOD productions, and nanoAOD productions
s Each year end-of-year rereco, a complete rereco of Run-4 in LS4
s« MC: 1-2 small productions (~4B events) and one large production (for end-of-year rereco pass) per year

® Heterogeneous compute (GPUs, FPGAs, .. ) not explicitly modeled
o For now, these resources enter as a cost reduction per unit compute

® Each data tier has a model of #replicas on disk vs time

o NanoAOD(Sim) is small enough that we can afford many replicas

o “Legacy” (eg, last good) versions kept on disk. Older versions are quickly migrated off of disk

s AOD(Sim): 0.5 disk copies when produced, reduced further by 50% each year
x MinlAOD(Sim): 2 disk copies when produces, stays at 2 as long as it is “legacy”, reduced after being replaced

o Small data tiers have more replicas than larger ones

® [ape:
o All raw and all data from legacy data tiers kept indefinitely
o Other data cleaned from tape after time for migration
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/ CMSOfflineComputingResults

RECOSim: 26%

Total CPU HL-LHC (2031/No R&D Improvements) fractions

Other: 2%
GEN: 9%

DIGI: 9%

SIM: 15%
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— _~ What keeps me up at night?

— —

® Run-3 data taking: ~5 kHz data taking rate (prompt+parked) already at HL-LHC
planning level

® More realistic planning scenario for HL-LHC

A total trigger rate of 20 kHz;

A prompt fraction of 20\%, processed after 48 hours;

The MC scaling factor with luminosity increased to 0.4;

1.5 average copies of RAW on tape.

A 200 kHz HLT scouting rate (event size at 4 kB/event), with no need for an additional MC
production;

© An end of year processing of the full 20 kHz rate.

® And variations of that:

o The total rate and prompt fraction are varied;

The MC scaling factor with luminosity is varied;
The average number of RAW tape copies is varied;
Different scouting settings (rates and event sizes);

The length of the prompt processing delay is changed and we change the end-of-year processing
strategies (longer prompt processing delay and no end-of-year processing)

O O O O O

O O O O




Some topics to consider for
R&D




'~ Heterogeneous Hardware

e x86-only hardware era comes to an end Number of Running CPU Cores on HPC - Monthly Average
e Heterogeneous hardware has to be used
o GPUs, FPGAs, ARM, RISC-V, ... e | —
O Industry is leading the way with demanding more capable Al |
hardware at less and less power consumption g m e
o We will need to follow industry trends - A LE R |
e SuperComputers will be part of the resource mix

K & 19K
150 BB % EK o« el lEEEREN: 02 0E
n n n 850 o bod & » 18k G 2 e 180 FH 11 o K
LE LT 55 B TR ey 25
o Grid will not be able to provide for all of our needs Ty
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o SuperComputers (High Performance Computing (HPC)) optimized = ¢ aaaiamaiimardransasioess
for large applications spanning multiple nodes/cpus and utilize

GPUs extensively to minimize power consumption

s Our application is HTC (High Throughput Computing) where applications
easily fit on a fraction of a CPU

® Ve need to write software for a heterogeneous
hardware architecture world!




= Software for heterogeneous architectures

® CMS reconstruction: Over 4 Million lines of C++ code
o Optimized for x86 CPU architecture

e Algorithms need to be re-architected and ported so that they can
run on GPUs and other massively vectorized hardware
architectures

® Currently, every vendor of GPUs (NVidia, AMD, Intel) has their own

programming interfaces =¥ write the same algorithm several times

o Portability solutions will help writing an algorithm once and re-compiling it for
different GPUs

o Not standardized yet unfortunately, CMS decided to go with Alpaka

® The switch from CPU to GPU is as big as the switch from Fortran
to C++, if not bigger

o0 Sociological problem: domain experts (physicists building detectors) will not be
able anymore to develop efficient reconstruction algorithms for their detector
components

0 Need GPU programming experts to support them




‘1 # Evolution of Offline Software

.CMS Full and Fast Simulation Preliminary 13 TeV, 14 TeV

® Core software "architecture” Ll L LT T
o Address the high number of functionalities/architectures/microarchitectures/ML engines P .
supported. i3 =

o Better usage of HPC is an open point. How to improve here? el |

o All this flexibility may bring some costs: "backward" compatibility (especially for MC), validation, " e e T T
reproducibility. RN e WY

® (Generation
o Negative weights have been the main concern. This may need an effort beyond software : [ s
iImprovements and that touches analyses strategies and demands. : -

o GPU offload is touching also generators and it's involving both CMS and cross-experiment T
efforts. £ Bmonm X

e Simulation IR s

ep/2022 Dec/2022 Mar/2023
CMSSW version

o Full Sim on GPU will be a challenge. How to address it?

o FastSim and FullSim are complementary but for HL-LHC. Do we need a paradigm shift (only
"sociological")?

o ML methods are showing promising results. How do we see them in the picture?

® Reconstruction

o A steady CPU usage reduction. We are now in the era of fine tuning but still every year delivering
~8-10% improvement

o GPU readiness is moving from online reco to offline reco (with portability and validation).

o ML methods are showing promising results. How do we see them in the picture?
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'~ Analysis Facilities

® New concepts are needed to analyze even more events in a reasonable time

o LHC will (mostly) transition from discovery machine to high statistics analysis machine in HL-LHC
o Industry toolkits are well advanced (different than at the beginning of LHC where ROOT was all there is)

® Analysis Facility concepts
o Try to bridge HEP specifics to the industry toolkit
o Try to provide integrated solution with data handling and optimized processing
o Try to be columnar and declarative to be able to optimize the backend independently

e \What we still need to solve

© Running on one analysis facility with hundreds of users

o Providing access to lower level event information (MINIAOD, AOD) without having people recreate the
analysis format (NANOAOD) =*» columnar service and object stores (CEPH)

Oliver Gutsche, July 5, 2023 U.S. CMS Undergraduate Summer Internship 2023 - HL-LHC Computing
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Dedicated

LHC

Optical

Private

Network
between TO and

e all T1 sites
e LHCOPN

® The Grid has served us well

o It was developed when nobody else was do
o These days, many more science disciplines

® National infrastructures are developing to support all sciences simultaneously
o U.S.: Openscience Grid (OSG), National Research Platform (NSF), Integrated Research

Initiative (DOE-ASCR)

® Do we need to rethink how we provision resources?

~ | Infrastructure: Grid vs. Lake?

& |
wice ¥ OFTS

S

S’Q @Do&a Lake

wa {oF

Data Stream Data Cache Data Processing

s

71\
S #  OFTS
Data Storage Data Manager Data Mover
ing scientific computing at scale °

are having massive computing requirements

consolidate to less regional/national entry points,
Often referred to as "Data Lakes"

Data/workflow management by experiment
becomes

more high level

More fine-grained data and job flux within a data
lake

Required major changes/enhancements of
middleware

Different operations model

Oliver Gutsche, July 5, 2023
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'~ Storage

® Users' Perspective

Unlimited storage quota
No I/O limitations - fast access
Endless network capacity

O O O O

Find data when needed at wanted location

e Computing Model Perspective

o Resources are limited
s [rade access speed (IO ops) vs. capacity

o Trade number of replicas vs. network capacity
o Optimizing the parameters is a complex process

e Current state of affairs

o Site storage organized around two quality of service (QoS) tiers

s [ape: primary archival storage

e Inexpensive (per byte) and durable o High latency (requires staging)
s Disk: primary access medium

e More expensive but lower latency




— Storage: Needed R&D

® Archival storage

o Modeling expected tape recall rates

s Even with an incremental chain model, bandwidth needs are large
m [ape capacities increasing much faster than drive rates

o Can tape software in use today cope with these demands?
s CERN Tape Archive (CTA) is designed for Run 4 requirements

e Caches
o Establishing common Quality of Service (QoS) tiers
o Developing/deploying caching infrastructure
o Role of high-speed (IOPS) storage in

= Analysis facilities
s HPC computing

o0 Role of object stores and other non-block storage
= Analysis-specific storage

® Networks: Software Defined Networks (SDNs)

0 Networks expected to become increasingly dynamic
o Bandwidth as a scheduled resource: Technology: Software Defined Networks (SDNs)

o Middleware needs to take advantage of SDNs

s Packet marking and flow labeling for monitoring
s Network orchestration via projects such as SENSE and NOTED

Oliver Gutsche, July 5, 2023 U.S. CMS Undergraduate Summer Internship 2023 - HL-LHC Computing
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="/ U.S. CMS HL-LHC R&D Strategic Plan

o

® Jo do physics in HL-LHC, we need to

o Archive multiple-hnundreds of PB of RAW data on tape

o Process all the events and produce even more simulations

o Utilize accelerators and advanced computing architectures efficiently

o Integrate AI/ML on unprecedented scale

o Provide access for analysis: more events analyzed in less time =» high statistics analyses

® The U.S. CMS S&C Operations Program defined 4 “Grand Challenges” (GC) that are
tackling high priority areas and are embedded in the overall CMS effort:

(1) Modernize physics software and improve algorithms
(2) Build infrastructure for exabyte-scale datasets

(3) Transform the scientific data analysis process

(4) Transition from R&D to operations




'~ U.S. and International Partners

e U.S. CMS is part of the community’'s ecosystem for computing and software related

research and developments.

O Research partnerships
s Host National Lab: Fermilab
m / U.S. Tier-2 institutes and additional U.S. institutes
s Other National Labs
s CERN

o National and international consortia

s Open Science Grid (OSG)
= HEP Software Foundation (HSF)

o Joint and collaborative projects

s IRIS-HEP
s HEP-CCE

o Community efforts
» Joint Blueprint activities with U.S. ATLAS, OSG, ESnet, and IRIS-HEP Snowmass Computational Frontier




'~ Summary & Conclusions

e HL-LHC is an unprecedented challenge for Software & Computing (and many other
parts!)
o We heard that before: before the LHC start, Software & Computing was an unprecedented challenge

® | am confident that we're going to make it (somehow).
o But we need you to contribute and think about solutions for these hard problems

® \\Ve are not alone

o This is different than before the start of LHC
O Big data sciences have emerged from Genomics to Astro Physics to Light Sources to Nuclear Physics to

o All will have to share computing infrastructures and will have to use common software solutions

e And don't forget, software & computing are good examples for transferable skills to
industry




