

Searches for Longlived Particles at CMS

Todd Adams Florida State University

June 28, 2023

What are long-lived particles?

For our purposes today:

- Long-lived particles:
 - live long enough to travel measurable distance within detector
 - lifetime longer than b-quark
 - (generally) unstable
 - can detect particle or decay products within detector
- We exclude neutral particles that escape completely without being directly observed
 - generally part of missing transverse energy searches

Searches for New Physics

- We know the standard model (SM) of particle physics does not answer all of our questions
 - it does an amazing job
- Theorists have come up with MANY ideas that extend the standard model
- But what matches reality?
 - data must point the way
- In my <u>opinion</u>, discovery of new physics not described by the standard model is the most important physics result particle physics can achieve

We have searched many, many times

Why Long-lived Particles?

- Standard model has many long-lived particles
 - muon, pion, kaon, neutron, etc.
- Why not?

- We haven't found evidence in the obvious places
 - we started with the easy searches

Assumptions

- Most physicists expected new particles would:
 - decay immediately into standard model particles

Muon $p_{\tau}=54.1 \text{ GeV/c}$ $\eta = 0.70$ M(eμ): 86.5 GeV/c² Missing E_⊤: 80.2 GeV Electron p₊=50.1 GeV/c $p_{T} = 55.3 \text{ GeV/c}$ CMS n=2.22 163385

or

be stable and neutral
→ escape undetected

long-lived particle searches

From "Searching for long-lived particles at the Large Hadron Collider and beyond, Volume: 377, Issue: 2161, DOI: (10.1098/rsta.2019.0047)"

Unique Signatures

- Displaced decays particles that decay far from where they were produced
 - observe decay products
 - displaced reconstructed vertex
 - observed particles don't point back to center of detector
- Slow moving particles
 - delayed signature in detector
- Unique detector interactions
 - bend in a different direction in magnetic field
 - too much/too little ionization

Detector Capabilities

- LHC experiments were designed with assumptions in mind
- But sometimes detector capabilities can be used in new ways
- ECAL timing
 - electromagnetic calorimeter measures the arrival time
 - Possible scenario
 - massive, long-lived particle slow moving
 - decay involves a photon
- Silicon tracker energy deposit
 - can look for anomalous energy deposition
 - Possible scenarios
 - charge >1e (or <1e)
 - slow moving means higher ionization

Software Capabilities

Sometimes software can be re-engineered to do more than

originally planned

Displaced tracks

- expand range of tracks that can be found
 - break assumption that track comes from interaction region

Some Example Searches

Displaced Vertices - Jets

Phys. Rev. D 104 (2021) 052011

- Search for neutral, long-lived particle (LLP) decaying to jets
- Produce them in pairs
- Signature:
 - jets arises from two vertices well away from collision point

V → jets

- Each cone represents a jet from the decay
- Note, most particles don't point back to the origin

Results

- Require ≥2 jets with
 ≥5 tracks
- Predict background and signal in d_{VV} regions

No events observed in signal region

	Predicted multijet signal yields				
$d_{ m VV}$ range	Predicted background yield	$0.3\mathrm{mm}$	$1.0\mathrm{mm}$	10 mm	Observed
0–0.4 mm	$0.243 \pm 0.003 (\mathrm{stat}) \pm 0.061 (\mathrm{syst})$	4.4 ± 0.5	1.5 ± 0.1	0.26 ± 0.02	0
0.4–0.7 mm	$0.097 \pm 0.003 (\mathrm{stat}) \pm 0.032 (\mathrm{syst})$	4.1 ± 0.5	2.1 ± 0.2	0.14 ± 0.01	0
0.7–40 mm	$0.012 \pm 0.001 (\mathrm{stat}) \pm 0.006 (\mathrm{syst})$	3.0 ± 0.3	7.6 ± 0.7	12 ± 1	0

Limits

as function of mass

as function of lifetime

Heavy Stable Charged Particles (HSCPs)

Heavy: mass > 100 GeV/c²

"Stable": lifetime long enough to pass through detector before

decaying

• Charged: Q ≠ 0e

 like a muon (sometimes)

Slow Moving -> Unique Signatures

HSCP Models

- Lepton-like
 - interacts electromagnetically
 - acts like a muon traversing detector
 - ex. supersymmetry stau
- R-hadron
 - interacts electromagnetically and strongly
 - binds together with quarks and gluons (R-hadron)
 - ex. supersymmetry stop or gluino
 - complication R-hadrons can exchange quarks with detector material
 - charge exchange charged ⇔ neutral

HSCP Analysis Channels

- Tracker + time-of-flight
 - use dE/dx in silicon + time-of-flight to muon system
- Tracker-only
 - use dE/dx in silicon (no requirement on muon system)
- Muon-only
 - use time-of-flight to muon system (no track required)
- Fractionally-charged (|Q| < 1e)
 - use small dE/dx in silicon + muon track
- Multiply-charged (|Q| > 1e)
 - use very large dE/dx in silicon + muon track

Ionization

Mass Extraction

 Use dE/dx and momentum to calculate mass

$$\langle \frac{dE}{dx} \rangle = K \frac{m^2}{p^2} + C$$

- "Loose" selection
 - verify technique
- "Tight" selection
 - signal region

Cross-section Limits

Overview of CMS long-lived particle searches

New Dedicated Experiments

- MoEDAL
- FASER
- SHiP
- MATHUSLA
- FACET
- millaQan
- FORMOSA
- ANUBIS
- SND@LHC
- · CODEX-b

Review

- Many reasons to look for long-lived particles
- Challenges
 - need to adapt detectors and software to different signatures
- Many searches done and ongoing
- Dedicated experiments proposed and running
- There is a lot of interest in LLPs at the LHC
 - may be the window on new physics

Backup Slides