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Me

■ Physics interests:
■ Direct searches for new particles (especially

dark matter), Higgs measurements, calorimetry,
remote shifts at the LPC

■ Eyes on:
■ Phase-II upgrade detectors, especially HGCAL
■ The Next Collider (muon collider?)

■ Outside of work:
■ Running, cycling, photography
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What is a calorimeter?

dryu@fnal.gov July 19, 2023 8

https://www.nature.com/scitable/content/ice-calorimeter-developed-by-lavoisier-and-laplace-14898943/


What is a *particle physics* calorimeter?
It converts the energy of incident particles into a detector response, in a
destructive way

■ Electromagnetic CALorimeter: electrons and photons
■ Hadronic CALorimeter: charged and neutral hadrons
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Particle interaction with matter (oversimplifiedn)

■ Electrons and photons, a simple story:
■ above 1GeV: bremsstrahlung (1e± → 1γ)

and
pair production (1γ → 1e+ + 1e−)

■ below 1GeV: ionization, photoelectric,
Compton

■ critical energy, Ec ≈ 610 MeV/(Z + 1.24): energy at which the

average energy losses by radiations equal those by ionization

A cascade process (“shower”) develops until the
energy of charged secondaries is degraded to the
regime dominated by ionization loss
(i.e. no production of new particles)

e.m. shower
example
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Electrons vs. photons vs. muons
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Particle interaction with matter (oversimplifiedn)
■ Hadrons, a complex story:

■ multi-particle production, typically mesons (π±, π0, K, …)
■ Important: ∼ 1

3 of secondaries are π0s, which decay immediately
via π0 → γγ. ⇒ EM shower inside hadronic shower!

■ This happens every interaction ⇒ EM fraction increases w/energy
■ Nuclei breakup leading to spallation neutrons/protons

had. shower
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Compensation (oversimplifiedn)

■ The response of a calorimeter to electromagnetic objects and to
hadrons is generally not the same, because of undetected energy:

■ energy to release nucleons from nuclei
■ + smaller contributions from ν and µ from π and K decay in flight

⇒ hadrons have lower response than e/γ

■ Compensation: selectively increase the hadron energy deposition, or
decrease the e.m. one, to eliminate differences in the average response

■ not an easy task at all
■ can be attempted by a suitable choice of the hardware
■ and/or by being clever at analysis level
■ fluctuations in the average e.m. component of an hadronic

shower makes it challenging to keep a good resolution

■ many ingredients come into play at this stage: design strategies,
costs, physics goals, collision type, etc.

CMS approach: clearly separate e.m. and hadron calorimeters, and be clever at analysis level

(Global Event Description, i.e. team spirit, keep this in mind for later)
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Showers: minimal quantities and names

dE
dx

= − E
X0

longitudinal development

dE
dt

∝ E0tαeβt

e.m case, E. Longo (active CMS member! Rome
group), I. Sestili, NIM 128 (1975)

Radiation length (X0): thickness of material that reduces the mean
energy of a beam of high energy electrons by a factor e, X0 ∼ A/Z2

Photon mean distance = 9
7
X0

Molière radius (RM): average lateral deflection of electrons of critical
energy Ec after traversing 1X0; 90% E0 within 1RM, 95% within 3RM

Interaction length (λint): average distance a high energy hadron has to
travel inside a medium before a nuclear interaction occurs,
λint = A/NAσint ∝ A1/3 ≫ X0

LAr Fe Pb U C
λint [cm] 83.7 16.8 17.1 10.5 38.1
X0 [cm] 14.0 1.76 0.56 0.32 18.8
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What are we aiming at?
Best possible energy resolution σcalo (compatible with the LHC environment).

Signal S = constant
Background B ∝ σγγ

⇓
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But also:

■ jet resolution (analogous reasons)

■ small fluctuations in the
transverse missing energy: large
MET sign of new physics!

Done!
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Designing a calorimeter - a HOW TO guide

Design goals:

■ Detection of both charged and neutral particles
■ only muons escape (and ν)

■ Detection based on stochastic processes
■ precision increases with energy

■ Dimensions necessary to containment scale with log E
■ allow compactness

■ Granularity plays a fundamental role
■ transverse: impact position measurement, particle ID on

topological basis
■ longitudinal: direction measurement

■ Fast response
■ high rate capability, trigger
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Designing a calorimeter - a HOW TO guide

Two main possibilities (oversimplified1):

Homogeneous calorimeters: all
the energy is deposited in the
active medium

Sampling calorimeters: the
shower is sampled by layers of
active medium (low-Z) alternated
with dense radiator (high-Z)

■ Excellent energy resolution

■ No information on
longitudinal shower shape

■ Cost

■ Limited energy resolution

■ Longitudinal segmentation:
detailed shower shape
information

■ Cost
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Designing a calorimeter - a HOW TO guide
Two main possibilities (oversimplified1):

Homogeneous calorimeters: all
the energy is deposited in the
active medium

Sampling calorimeters: the
shower is sampled by layers of
active medium (low-Z) alternated
with dense radiator (high-Z)

CMS ECAL choice

■ Excellent energy resolution

ATLAS ECAL choice

■ Longitudinally segmented
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Designing a calorimeter - a HOW TO guide
Two main possibilities (oversimplified1):

Homogeneous calorimeters: all
the energy is deposited in the
active medium

Sampling calorimeters: the
shower is sampled by layers of
active medium (low-Z) alternated
with dense radiator (high-Z)

CMS ECAL choice CMS HCAL choice
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Building a calorimeter - a HOW TO guide

■ Particle interaction with matter
→ depends on the impinging particle and on the kind of material

■ Energy loss transferred to a detectable signal
→ depends on the material, typically light (or charges, e.g. ATLAS)

■ Signal collection
→ depends on the signal, many techniques of collection

■ Conversion to electrical signal and digitization
→ depends on the signal and granularity, also many techniques

■ Do it for a unit of detector, then repeat to cover as much solid angle
as possible
→ build a hermetic system
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The CMS calorimeters
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The CMS calorimeters
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The CMS ECAL
■ Homogeneous, hermetic, high granularity PbWO4 crystal calorimeter

■ density of 8.3 g/cm3, radiation length 0.89 cm, Molière radius 2.2 cm,
≈ 80% of scintillating light in ≈ 25 ns, refractive index 2.2, light yield
spread among crystals ≈ 10%

■ Barrel: 61200 crystals in 36 super-modules, |η| < 1.48,
Avalanche Photo-Diode (APD) readout

■ Endcaps: 14648 crystals in 4-Dees, 1.48 < |η| < 3.0,
Vacuum Photo-Triode (VPT) readout

■ Preshower (endcaps only): 3X0 of Pb/Si strips, 1.65 < |η| < 2.6

■ Solenoidal magnetic field: 3.8 T
ECAL fully contained in the coil

■ CMS tracker coverage: |η| < 2.5
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Production of the ECAL crystals (75848)
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The CMS HCAL
Barrel (HB)

■ 36 brass/scintillator wedges

■ 17 longitudinal layers, 5 cm
brass, 3.7 mm scintillator

■ |η| < 1.3

Fun fact: much of the brass came from old

WWII shells from the Russian Navy!

Endcap (HE)

■ Two brass/scintillator discs

■ 19 longitudinal layers, 8 cm
brass, 3.7 mm scintillator

■ 1.3 < |η| < 3.0
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The CMS HCAL
Outer (HO)

■ Scintillator tiles (outside magnet
yoke)

■ 1 or 2 longitudinal layers, 10
mm scintillator

■ |η| < 1.3

Forward (HF)

■ Steel absorber/quartz fiber

■ 20 deg wedges, ≈ 1000 km
fibers

■ 3 < |η| < 5
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Assembly of HCAL barrel (wedges + megatiles)
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Detector parts (modules) produced. Then? Happy?
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Performance at Test Beams: text book
■ Perfect calibration, no magnetic field, no material upstream, negligible

irradiation, controlled environment

Energy resolution

e±, central impact, 3×3 barrel crystals:

σ(E)
E

=
2.8%√

E
⊕ 0.128

E(GeV)
⊕ 0.3%

■ constant term to be kept ≪ 1%
■ stochastic term also affected by the

material upstream

π± w/ECAL+HCAL:

σ(E)
E

=
84.7%√

E
⊕ 7.6%

E(GeV)
Time resolution: constant term ≈ 20 ps

■ from time difference of crystals in the same e.m. shower

A success of 20 years of R&D
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In situ operations: from ideal to real

Light yield variations:
■ ECAL scintillation light → temperature dependence: ∆S/S ∼ −2%/◦C @ 18 ◦C

■ ECAL crystal transparency → radiation dose-rate dependence

■ HCAL scintillator response → radiation dose dependence

Photo-detector response:

■ APD →
gain temperature dependence: ∆G/G ∼ −2%/◦C
gain High-Voltage dependence: ∆G/G ∼ 3%/V
direct ionization effects, a.k.a. “spikes”

■ VPT, HPD, PMT → response dependence on the incremental charge at the
cathode

■ HPD → discharges, noise effects, radiation damage

■ SiPM → dark current, temperature/voltage dependence

→ Excellent environmental stability (×2 to ×3 better than required) [?]
→ Dedicated monitoring system and calibration techniques [?, ?]
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A glimpse of the challenges
ECAL response: dose-rate variation… …over 6+ years
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HCAL: selected features

ECAL APD spikes analogous to HPD discharges
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Not only calorimetry-induced fun

Tracker material in front of ECAL:
■ photon conversions

■ bremsstrahlung losses for electrons

3.8 T solenoidal magnetic field:
■ spread of the e, γ energy along φ, at

≈ constant η

→ Specific energy reconstruction
algorithms and corrections
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Ingredients for precision physics (ECAL example)

Electrons and photons deposit energy over several
crystals (70% in one, 97% in a 3×3 array), spread in φ,
collected by “clustering” algorithms

Ee,γ = G Fe,γ

∑
i

cisi(t)Ai

Ai: single channel amplitude, pulse fit in the time domain

si(t): single-channel time-dependent response corrections, via a dedicated laser
monitoring system

ci: inter-calibration of the single channel response, using physics: φ- and
time-invariance of the energy flow in minimum-bias events, π0, η → γγ and Z → ee
invariant mass peak, electron E/p

Fe,γ : particle energy correction (geometry, clustering, …)

G : global scale calibration, with Z → ee events

Resolution, efficiency and particle ID: Z → ee
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Amplitude reconstruction
Ee,γ = G Fe,γ

∑
i cisi(t)Ai

ECAL algorithm HCAL algorithm
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cialibration
Ee,γ = G Fe,γ

∑
i cisi(t)Ai

Main principle: use well know physics as reference signal (e.g. a
resonance, exploit symmetry features, etc.)

ECAL

■ Light monitoring system

■ azimuthal symmetry of the
energy flow

■ π0, η → γγ

■ Electron E over tracker p
■ Z→ ee invariant mass

HCAL

■ Light monitoring system

■ azimuthal symmetry of the
energy flow

■ m.i.p. deposits (HE)

■ π+ (HCAL E - ECAL E) over
tracker p

■ Z→ ee invariant mass for HF

Many more subleties and challenges, calibrating a detector is an art ;-)
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Gift: time resolution performance (ECAL)

■ Better than O(1 ns) stability required for precise
energy determination → regular calibrations

■ Fast scintillation response (≈ 80% of light within 25 ns),
shaping time (≈ 40 ns), and sampling rate (40 MHz)
allows for excellent time-resolution

■ From the time difference between the
highest energy crystal of each of the two
electrons from a Z → ee

■ Noise term consistent with Test-Beam

■ Constant term of ≈ 150 ps, much better
than design, uniform and stable in time

■ residual differences with Test-Beam
qualifications ascribed to the clock
distribution system
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Energy resolution performance (ECAL)
With electrons from Z

→ Fit to Z → ee of a Breit-Wigner
convolved with a Gaussian function
[?]

→ Simulation tuned to match
performance observed in situ
with Z → ee events

■ scale: data → simulation
■ resolution: sim. → data
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Team spirit: combine information

Particle Flow, or Global Event Description, in pictures
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Final results: energy resolution

(a) e± , γ (b) Jets
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Satisfied? Can improve further…
…with multivariate techniques (MVA, BDT, NN, etc.)

■ Reconstructed Z mass
in data with differ-
ent levels of energy
reconstruction and
corrections (regres-
sion)

■ From Z→ µµ events:
missing distribution
for PF MET and res-
olution for PF MET
and regression-treated
MET for PU mitiga-
tion (PUPPI)
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But remember: Spe melioris amittitur bonum
i.e. With the hope for the better, the good is lost
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Trigger: another combined effort…

…which I leave to the data taking talk (speaker’s team spirit ;-) )

■ At L1 custom hardware processors 40 MHz → 100 kHz
■ from calorimetry and muons only, no pixel, no tracker
■ with coarse granularity (oversimplifiedn: O(10) less)

■ At HLT the whole detector information is used 100 kHz → 1 kHz

■ Low rate AND high efficiency
■ Sharpest possible turnon, i.e.

best possible agreement
“online” (HLT) and “offline”
(full reco)

■ implies correcting both at L1 and
HLT for detector changes (e.g.
ECAL response)

■ and remove fake triggers from
e.g. APD direct ionization, HPD
discharges
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General modus operandi (oversimplified3)

ECAL
HCAL

Detector
Performance
Group (DPG)

Run Coord.
(RC) +

DAQ/Trigger

Technical
Coord. (TC)

Meetings

Hypernews

+ 2 experts on call 24/7

+ a team of prompt feedback and data certification

■ both “+” get central shift points and are an excellent starting activity
to be involved and feel the group
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And Mattermost!

https://mattermost.web.cern.ch/


Main suspects for ECAL

■ Organigram + DoC & DGL (2020; see twiki)
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https://twiki.cern.ch/twiki/bin/view/CMS/ECALWikiHome


Main suspects for HCAL
To give you the feeling of the organization (2020; see twiki).

■ Organigram + DoC & DGL
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https://twiki.cern.ch/twiki/bin/view/CMS/HCALWikiHome


Already convicted
ECAL HCAL

Project manager

Stefano Argirò
(Torino U.)

Deputy

Toyoko Orimoto
(Northeastern)

Project manager

Alberto Belloni
(U. Maryland)

Deputy

David Yu
(Nebraska/LPC)

CE (or HGCAL)
Project manager

Karl Gill
(CERN)

Deputy

Marcello Mannelli
(CERN)

Deputy

Jim Strait
(Fermilab)
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The future…

Maintain the current Phase 1 performance in
High-Luminosity LHC

■ ×5 higher instantaneous luminosity w.r.t. Phase 1

■ 150-200 PU events per BX

■ new regime for detectors, trigger, DAQ…
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Radiation levels
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Upgrades of the central calorimetry (mostly)

ECAL: extract and refurbish the 36 EB supermodules during LS3

■ retain crystals + APDs

■ replace Front-End (FE) and Very-Front-End (VFE) readout (12.5 µs trigger
latency): shorter shaping and full ECAL granularity at L1

■ run colder to mitigate increase in radiation-induced APD dark current (noise)

■ new off-detector electronics to cope with higher output bandwidth from FE

HCAL: mandatory replacement of the HB off-detector electronics

■ already in 2016-17 year-end stop: replace PMTs of HF

■ already in 2017-18 year-end stop: refurbish HE readout, HPD → SiPM

■ transition HB in LS2

MTD: m.i.p. timing detector - not a calorimeter, but worth mentioning

■ new device between the tracker and the calorimetry, both in barrel and
endcap, providing the arrival time of charged particles with a ≈ 30 ps
resolution
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Longitudinal segmentation in the readout
Phase 0 vs. Phase 1

■ Occurs with the photodetector transition HPD → SiPM
■ Phase 1 done (winter stop 2017/18): endcap segmentation fully exploited
■ Phase 2 during LS2 (just done!): barrel segmentation fully exploited
■ new opportunities to improve the offline reconstruction!

■ and with an improved front-end electronics (from 7 bits to 8 bits) and µTCA
technology for the electronic backhand
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Forward calorimetry (for Phase 2)

EC (Endcap Calorimeter), a.k.a. High Granularity CALorimetry (HGCAL)
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Forward calorimetry (for Phase 2)

EC (Endcap Calorimeter), a.k.a. High Granularity CALorimetry (HGCAL)

■ Complete replacement for EE and
HE in LS3

■ Sampling calorimeter with fine
transverse granunlarity

■ Silicon sensors in EE + FE and inner
BH region: intrinsically rad-hard

■ Hexagonal Si-sensors built-in into
modules

■ Modules with a W/Cu backing plate
and PCB readout board

593 m3 of silicon, 6 M channels (0.5 or 1 cm2 cells size), 21660 modules, 92000
Front-End ASICS, a new paradigm for calorimetry (3D-4D shower
reconstruction)
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CE: not just designing!

Quite some activity ongoing to test the different parts of the future detector

■ Test beams in 2018
(CERN, DESY)

■ 28 layers CE-E, 12
layers CE-H-Si

■ Testing noise, mip
calibration, electron
and pion
reconstruction

Electron(s? ;) ) Pion
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Wrapup

■ ECAL and HCAL are fundamental ingredients to achieve new
physics discoveries as well as excellent measurement

■ While electrons and photon reconstruction is dominated by the ECAL,
the intrinsic challenging nature of jets (and missing energy) requires a
combined effort of HCAL, ECAL, and tracking to achieve the best
performance

■ Techniques for maintaining and improving the current detector
performance are continuously being developed, new ideas from new
people are the fuel for this

■ This was a fast and practical introduction to calorimetry at CMS.
Many other, more in-depth resources are available!

■ E.g., R. Rusack’s ongoing detector lectures at the FNAL LPC,
review by Fabiola (CERN director general!)
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Welcome to CMS!

■ Each year, CMS members have about 3-4 months, 6 when starting, to
invest in “Experimental Physics Responsibilities” (EPR). Our advice:

■ working on and understanding detectors is what makes us do
better analyses

■ choose something you would really like to learn and you feel
comfortable working with for several months

■ do not be afraid of the unknown: in few weeks anyone well
motivated can give significant contributions

■ CMS is a wonderful detector that keeps producing excellent results
and offers golden opportunities for involvement!
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