

The search for Di-Higgs production in bbWW

Mentee: Zehua Liang (Rochester institute of technology) Mentor: Chris Palmer, Agni Bethani (University of Maryland)

Overview

- Theory and experimental overview
- Event structure
- Event extraction
- Results

Theory - Intro

Electroweak spontaneous symmetry breaking

 $(x) \rightarrow v + h(x)$

 $V_{SM}(h) = \ldots + \lambda v h^3 + \frac{\lambda}{4} h^4$

Experimental - Goal

Signal topology

Methods

RIT

ROOT data analysis framework

- TLorentz Vector
- Four vector
- 3 space like and 1 time like component
- 3 momentum and Energy or Mass
 - <Pt, Eta, Phi, E>
 - <Pt, Eta, Phi, M>
- Lorentz invariant under dot product with each other
- Invariant Mass:

$$m \, = \, rac{1}{c^2} \sqrt{E^2 - p^2 c^2}$$

$$\sqrt{P\cdot P}=\sqrt{E^2-p^2c^2}=\ mc^2$$

Event Selection(DiLeptonChannel)

Good Lepton Selection

Observable	Electron	Muon	
р _т	> 15 GeV	> 15 GeV	
η	< 2.5	< 2.4	
Identification WP ¹	loose	medium	
PF relative isolation (Particle Flow)	Included in ID	≤ 0.15 (at ∆R = 0.4)	

1:The identification of electrons (muons) is developed by the EGamma (Muon) POG and follows an MVA based (cut-based) strategy for the electrons (muons). The respective WPs for electrons (muons) are also defined by the EGamma (Muon) POG.

Event requirement to match tigger

Event Requirement

Event need to have exactly one good lepton pairs(two electrons, two muons, or one electron and one muon). The "leading" (higher p_{τ}) lepton is required to satisfy the condition $p_{\tau} > 25 \text{ GeV}$ and the "sub-leading" (lower p_{τ}) lepton the condition $p_{\tau} > 15$ GeV. The two leptons are required to be of opposite charge.

Leading Lepton	Subleading Lepton			
р _т > 25 GeV	р _т > 15 GeV			
$\sum q_{\ell} = 0$				

Event Selection(DiLeptonChannel)

Event Requirement

Must contain\Must Pass	р _т	ŋ	Other condition (working point)
≥AK8-Jet	> 200 GeV	< 2.4	Medium WP
≥AK4-Jet	> 25 Gev	< 2.4	Medium WP of the Deep Jet b-tagging algorithm

Event Selection(DiLeptonChannel)

Event Requirement

Interesting kinematics

- Signal Main Peak: ~50GeV
- Signal Sub Peak:
 ~90GeV
- Background Peak at ~90Gev: Z boson
- ~30GeV offset
 - Limited energy
 - W mass wide spectrum
 - Neutrinos

Interesting kinematics

- Peak around Higgs Mass (~125GeV)
 - SM cross sections are
 small but large
 enhancements can occur
 with BSM-sized
 couplings (If trilinear
 Higgs self coupling is
 larger than the standard
 model prediction)

Future work

- Complete reproduction of public result
- Optimize Selection
 - Catagorize selection for different processes, background and control region.
- Improve bJet resolution
- Use differential way to give arbitrary weight of kappa lambda(higgs self-coupling strength) and produce different signal weights
- Conduct statistical analysis
 - HH inference tool
 - https://gitlab.cern.ch/hh/tools/inference
 - Asimov significance

Some Funny Code

lepPairPt = (LeptonPairs[pairs].first + LeptonPairs[pairs].second).Pt();

References

https://cms-results.web.cern.ch/cms-results/public-results/prelimin ary-results/HIG-21-005/

https://cds.cern.ch/record/2802427/files/ATL-PHYS-SLIDE-2022-0 13.pdf#page=20

https://cds.cern.ch/record/922757/files/lhcc-2006-001.pdf

https://physics.aps.org/articles/v11/91

Acknowledgements

Thank you to:

- Mentor:
 - Chris Palmer, Agni Bethani
- Technical assistance:
 - Braden Scott Kronheim, YiHui Lai
- PURSUE Program
- University of Maryland Physics Department
- Fermilab Staff
- DOE RENEW HEP Grant