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Introduction

e Signal event (a) in which a Higgs boson
decays into a pair of W bosons and a pair of
bottom quarks.

e Background event (b) in which a pair of top
guarks each decays into a W boson and a
bottom quark.

e \We can use low-level and high-level features

to distinguish between signal and
background events.
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Higgs Dataset

e The data can be found on the UC Irvine ML repository:

https://archive.ics.uci.edu/dataset/280/higgs
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-ural Network Design

Dataset features 5 300-neurons dense layers Predicition
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Final Architecture and Benchmark

Leaky RelLU activation function

LR 0.05 decaying by 0.5 with a patience of 5 epochs.
2,500,000 events

Dropout in every layer of 0.15

Momentum of 0.9 and Nesterov True

High and low-level features: ROC-AUC of 0.857

Low-level features only: ROC-AUC of 0.828
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Motivation for Dimensionality Reduction

e CMS experiment produces a huge amount of data.
« The more we can reduce it, the better.
o Faster to perform analysis on events with less features.

e We do not want to lose information.



B PCA

e Unsupervised ML technique that transforms high-dimension data into
lower-dimensions while retaining as much information as possible.
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Animation and image from: https://setosa.io/ev/principal-component-analysis/
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AutoEncoder

e Unsupervised neural network that encodes data by reducing dimensionality
while retaining as much information as possible.
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28 features: 0.857

N= 250,000

1 AutoEncoder

/1 PCA
B Low-level AutoEncoder
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-Comparing Performance
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-paring Performance

21 features: 0.828

N= 250,000

[ Low-level AutoEncoder
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Selected Features Removal

e No missing energy features (19 features) : 0.815
e No b-tags from the four jets (17 features) : 0.775
e No b-tags from jets 1 and 2 (19 features) : 0.798
e« No b-tags from jets 1 and 3 (19 features) : 0.801
e No b-tags from jets 1 and 4 (19 features) : 0.805
e No b-tags from jets 2 and 3 (19 features) : 0.802
e No b-tags from jets 2 and 4 (19 features) : 0.810
e No b-tags from jets 3 and 4 (19 features) : 0.814
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Summary of Results

Benchmark | Benchmark 20 17 14 11
28 features | 21 features | features features features features
Best Method N/A N/A PCA PCA AutoEncoder PCA
Best ROC-AUC 0.857 0.828 0.828 0.810 0.780 0.737

PCA takes less time to implement than an AutoEncoder
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Conclusions and Possible Future Steps

PCA and AutoEncoders can be used to reduce dimensionality of the dataset.

It is possible to handpick select features without losing too much
information.

Missing energy features are less important for classification.
Higher transverse momentum jets are more important for classification.

Possible future steps

- Fine tune networks trained on reduced dataset.
- Explore transformer autoencoder.



Thank you!
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Considered parameters

5 layers of 256 neurons
Dropout in every layer of 0.2
First-layer only dropout of 0.5

Learning rate decay scheduler
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