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● Signal event (a) in which a Higgs boson

decays into a pair of W bosons and a pair of

bottom quarks.

● Background event (b) in which a pair of top 

quarks each decays into a W boson and a 

bottom quark.

● We can use low-level and high-level features

to distinguish between signal and 

background events.

Introduction
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● The data can be found on the UC Irvine ML repository: 

https://archive.ics.uci.edu/dataset/280/higgs

Higgs Dataset
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Neural Network Design

Dataset features 5 300-neurons dense layers Predicition
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● Leaky ReLU activation function

● LR 0.05 decaying by 0.5 with a patience of 5 epochs.

● 2,500,000 events

● Dropout in every layer of 0.15

● Momentum of 0.9 and Nesterov True

● High and low-level features: ROC-AUC of 0.857 

● Low-level features only: ROC-AUC of 0.828

Final Architecture and Benchmark
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● CMS experiment produces a huge amount of data.

● The more we can reduce it, the better.

● Faster to perform analysis on events with less features.

● We do not want to lose information.

Motivation for Dimensionality Reduction
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● Unsupervised ML technique that transforms high-dimension data  into 
lower-dimensions while retaining as much information as possible.

PCA

Animation and image from: https://setosa.io/ev/principal-component-analysis/ 8



● Unsupervised neural network that encodes data by reducing dimensionality 
while retaining as much information as possible.

AutoEncoder

Original dimension Encoder layers Desired dimension Decoder layers Original dimension
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28 features: 0.857

Comparing Performance
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21 features: 0.828

Comparing Performance
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● No missing energy features (19 features) : 0.815       

● No b-tags from the four jets (17 features) : 0.775

● No b-tags from jets 1 and 2 (19 features) : 0.798

● No b-tags from jets 1 and 3 (19 features) : 0.801

● No b-tags from jets 1 and 4 (19 features) : 0.805

● No b-tags from jets 2 and 3 (19 features) : 0.802

● No b-tags from jets 2 and 4 (19 features) : 0.810

● No b-tags from jets 3 and 4 (19 features) : 0.814

Selected Features Removal
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● PCA takes less time to implement than an AutoEncoder

Summary of Results

Benchmark
28 features

Benchmark
21 features

20 
features

17 
features

14 
features

11
features

Best Method N/A N/A PCA PCA AutoEncoder PCA

Best ROC-AUC 0.857 0.828 0.828 0.810 0.780 0.737
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• PCA and AutoEncoders can be used to reduce dimensionality of the dataset.

• It is possible to handpick select features without losing too much 
information.

• Missing energy features are less important for classification.

• Higher transverse momentum jets are more important for classification.

• Possible future steps

- Fine tune networks trained on reduced dataset.
- Explore transformer autoencoder.

Conclusions and Possible Future Steps
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Thank you!
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● 5 layers of 256 neurons

● Dropout in every layer of 0.2

● First-layer only dropout of 0.5

● Learning rate decay scheduler

Considered parameters
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