

Testing the Efficiency of Machine Learning at Classifying Higgs Boson Decays and Testing the Efficiency of New Triggers in Run 3 data

Mentee: Parveen Narula (Beloit College) Mentors: Cristina Mantilla Suarez (Fermilab), Raghav Kansal (UCSD & Fermilab)

- LHC needs machine learning algorithms/Neural Networks to identify signal events vs QCD (background)
- Testing a machine learning (ML) algorithm on simulation data shows how well it can classify an event.
- Most common Higgs decay: H to bb
- My project used Monte Carlo simulation data of H to bb decay to test a ML algorithm.

- The simulated data has labels classifying each jet in each event as a H to bb decay event or QCD
- The simulated data without the labels was run through a ML algorithm.
- For each jet the ML algorithm outputted a probability that the jet had a H to bb decay in it.
- Probability of jet containing H to bb decay: P(Xbb).
- Probability of a jet being QCD: P(QCD)
- P(Txbb) = P(Xbb) / (P(Xbb) + P(QCD))

Method: Organizing the data

- Given multiple QCD and Signal parquet files.
- File type (signal or QCD) corresponded with true classification of data.
- In my file for each event I was only given the jet with the highest Xbb.
- Each row corresponds to a jet and each column has particular information about the jet.
- Concatenated all the signal files into one pandas dataframe and all the QCD files into another. This is the signal dataframe.

	ak8FatJetEta	ak8FatJetPhi	ak8FatJetMass	ak8FatJetPt	ak8FatJetMsd	ak8FatJetParticleNetMD_QCD	ak8FatJetParticleNetMD_Xbb	ak8FatJetParticleNetMass	ak8FatJetParticleNetMD_Txbb	GenHiggsEta	GenHiggsPhi	GenHiggsMass	GenHiggsPt	GenHiggs_decay	ak8FatJetdRHqq	weight
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0.316711	-1.669189	31.921875	251.125	6.687500	0.065125	0.934570	35.781250	0.934856	0.378906	-1.515625	125.0	243.0	1	0.165681	0.523666
1	-0.809937	0.872925	48.218750	250.250	9.804688	0.905273	0.000150	12.210938	0.000166	0.174805	-2.570312	125.0	193.5	1	3.005831	0.523666
2	1.638428	0.419678	31.468750	278.250	17.531250	0.988281	0.000034	5.171875	0.000034	0.906250	-2.835938	125.0	192.5	1	3.114846	0.523666
3	-0.023029	-1.786865	50.156250	264.500	3.177734	0.867676	0.000652	28.671875	0.000751	-0.489258	1.105469	125.0	223.0	1	2.929670	0.523666
4	-1.108154	-2.511230	38.250000	502.250	4.460938	0.668457	0.139038	17.812500	0.172184	-1.144531	-2.500000	125.0	473.0	1	0.038071	0.523666
128675	0.901001	0.098938	123.375000	428.000	124.625000	0.005669	0.994141	134.125000	0.994330	0.910156	0.100830	125.0	454.0	1	0.009349	0.525195
128676	1.050537	-1.359619	57.000000	281.500	2.681641	0.166016	0.832520	54.906250	0.833741	1.042969	-1.542969	125.0	280.0	1	0.183506	0.525195
128677	0.651733	0.376709	124.125000	313.000	126.437500	0.008072	0.988281	131.375000	0.991899	0.671875	0.369141	125.0	321.0	1	0.021517	0.525195
128678	0.124741	-2.375488	61.312500	258.500	61.562500	0.233276	0.003538	54.500000	0.014941	0.087646	0.677734	125.0	242.0	1	3.053448	0.525195
128679	-1.190186	-1.547363	81.000000	300.750	81.375000	0.006447	0.954102	94.500000	0.993288	-1.195312	-1.632812	125.0	321.0	1	0.085603	0.525195

Method: Organizing the data

- I took the P(Txbb) column from the signal dataframe and put it in its own dataframe with a column name Probability.
- I added another column called Signal Marker where all the values were 1.
- I repeated this process for QCD data but made the column Signal Marker be filled with 0's.
- I took these two data frames and concatenated them with each other to get one data frame. The signal marker column is there to identify whether that data came from a signal or QCD file.

	Probability	Signal Marker
0	0.934856	1
1	0.172184	1
2	0.983000	1
3	0.464225	1
4	0.559822	1
3708415	0.763717	0
3708416	0.000772	0
3708417	0.003312	0
3708418	0.052866	0
3708419	0.006005	0

Method - Making a ROC curve

- I made a roc curve using the probability dataframe to show how effective our ML algorithm was at identifying H to bb deacy events.

Method - Selections to get a better result

- I applied multiple selections on my dataframe to only select certain jets.
- Selections used:
 - pt > 200
 - Distance between Jet and Higgs
 Boson < 0.8 (only applied to signal since this is a column only signal dataframe has)
- Different way to make a ROC curve

Conclusion and Future Work

Conclusion:

- Classifier is performing well but not at the level we expected

Future Work: H to bs decay

- Can use this technique to estimate if H to bs decay is sensitive enough to warrant looking for it in real LHC data.
- H to bs decay does not exist according to the Standard Model because of flavour violation.
- Some other theories predict H to bs decay
- This is beyond standard model research because if we find H to bs dec we know the standard model in its current state is incomplete or wrong.

Introduction - Triggers

- A trigger is the program that makes split second decisions on what to keep and what do discard while the LHC is running.
- LHC doesn't have the storage capacity to keep all the data it is creating so a trigger is necessary.
- I tested efficiency of the triggers currently being used in run 3 on real run 3 data to see if these triggers were more efficient than the triggers used in run 2.

Method - Testing Efficiency vs Pt

Hist with triggers:

Hist without triggers:

Trigger efficiency found by: Hist with triggers applied/Hist without Triggers

Method - Testing Efficiency vs Soft Drop Mass

Hist with triggers:

Triggers: AK8PFJet2*_SoftDropMass40_PFAK8ParticleNetBB0p35, Cuts: MSD > 40 & Xbb > 0.98

Hist without triggers:

Trigger efficiency found by: Hist with triggers applied/Hist without Triggers

Comparing 2D plots of Run 2 and Run 3 Triggers

Run 2 Triggers:

Run 3 triggers:

Run 3 triggers have close to 100% efficiency starting at pt ~300 GeV but Run 2 ~400 GeV.

Conclusion and Future Work

Conclusion:

 Run 3 triggers are performing very well, improving the efficiency for pt 300-400 GeV jets

Future Work:

- Compare overall sensitivity with new triggers vs Run 2 triggers
- Create more efficient triggers to use in future runs

THANK YOU