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Introduction

What is a Vector-Like Lepton?
The SM has room for fermions that are non-chiral i.e fermions with right-handed and left handed 

components that are identical (or nearly identical). 

VLLs main characteristics

● VLLs are a hypothesized particle.
● VLLs have no distinct left-handed and right handed 

components. 
● Unlike SM leptons, VLLs electroweak interaction is indistinct 

for left-handed and right handed components.  
● Their mass is not directly related to the Higgs mechanism.



Theoretical Motivation

Why should we search for Vector-Like Leptons?
VLLs are a extension of the SM that contemplates a new generation of Leptons, and could explain certain  
discrepancies that have been observed in the SM including: 

● Electron and Muon anomalous magnetic, the discrepancy between the experimental and theoretical value is:

     VLLs as an extension of the SM introduces new contributions to the muon’s magnetic 
     Moment. Similarly for the electron’s magnetic moment. 

● Lepton flavor non-universality, VLLs introduce new interactions and couplings beyond the SM. Lepton flavor 
non-universality says that weak interactions involving different flavors of leptons may not be ruled by the same 
set of coupling constants. In the SM these couplings are the same for all leptons, i.e. the strength of the weak 
interaction is the same for all leptons. VLLs introduces a new interaction mediator Leptoquark U as the source of 
Lepton Flavor Universality Violations. 

                   LFV Processes



VLL production and decays 

- VLLs are pairs produced through Electroweak 
interactions. 

- We consider leptonic final states with 1st and
          2nd Generation leptons .
- Decay is mediated by a vector leptoquark (U).

Neutral (N) and charged (E) VLL production.



 The LHC and the CMS detector

The CMS detector plays a crucial role in 
identifying and reconstructing the decay 
products of our particles (VLLs). The 
tracker, ECAL, HCAL, and muon system 
measure the properties of charged leptons 
and other particles resulting from VLLs 
decays.

In this search, we consider Vector-Like 
Leptons at a Mass of 600 GeV. The search 
uses LHC simulated data.



 Final states VLLs pairs

Full chain decay of the event signature
In our study we consider final states with two leptons (muons or electrons) 
coming from top quarks and Tau decays.   



SM processes with the same final state

Background process are those with similar final states (Jets/bJets and 2 Leptons), that can mimic the 
VLL signal. In our analysis, we specifically consider the ttbar background, as it constitutes the most 
dominant background in our two leptons final state signal region.

Main backgrounds:
● tt-bar 
● DY+jets  
● Di-boson production  (ZZ,WW,ZW)
● Tri-boson production (www, zzz, wwz) 
● tt(V/H)+jets (ttZ, ttZ, ttH) 
● tt+VV ttHH, ttZZ
● 4-top (tttt)



Procedures

● Goal: We want to optimize our signal to background ratio.
In order to achieve our goal we train a neural network so that we can optimize signal/background classification.

Steps pre/post ML:
● Prepare data: this includes writing python scripts for obtaining and formatting data for analysis.

● “Clean” our data by applying basic cuts: we apply cuts that guarantee a high S/B ratio.

● Identify and calculate kinematic variables: variables are calculated in root data analysis framework. 

● Choose best variables for ML input: Plot superimposed normalized distributions for the calculated variables and 

analyze variables correlations for variable selection optimization.

● Train model.

● Evaluate model: apply tests to evaluate classification.



Making Cuts

Signal vs Background HT

Nsignal       Number of signal events 
passing a cut value 

Nbackground       Number of 
background events passing a cut 
value 



Selection Criteria

In our data we encounter thousands of events. The number of 
signal events compared to the background from SM process is 
very low. Therefore we apply cuts to our data. 

Selection Criteria 

Objects Selection

MET  > 40 GeV

 Lepton Leading,e/μ pT  > 30 GeV

Number Leptons  = 2

Number of Jets  >3 

 Leading Jet pT > 100 GeV

These basic cuts are applied to our 
simulated data NanoAODv9 
samples in the analysis code.
● VLL: EE, EN, NN
● TTbarPowheg_Dilepton



Calculated Variables

Variable Name Variables Description

1.MET Missing transverse energy 
 2.HT pT sum of all jets in the event
 3.bHT  pT sum of all b-tagged jets 
4.LeadingLeptonpT Leading Lepton pT in the event
5.LeadingBjetpT Leading b-tagged jet pT in the event
6.SubLeadingBJetpT Sub-leading lepton pT in the event 
7.ClossestBJetsLepMass Invariant mass between the two closest b-tagged and the leading lepton 
8.DeltaRLeptonBJet DeltaR between leading lepton and leading b-tagged jet
9.MassDilepton Invariant mass between leading lepton and subleading lepton
10.MinDeltaRLeptonBJet Min DeltaR between b-tagged jet and leading lepton 
11.SubleadingLeptonpT Sub-leading lepton pT

12.ClosestBJetsMass Invariant mass between closets b-tagged jets 

13.LT pT sum of all the leptons in the event
14.MaxDeltaRBJetLep Max DeltaR between b-tagged jet and leading lepton 
15.MinDeltaRBJetLep Min DeltaR between b-tagged jet and leading lepton 
16.DeltaRLeptonPair DeltaR between leading and subleading lepton
17.DeltaRLeptonJet DeltaR between lepton and leading jet
18.DeltaRBJetsPair DeltaR between leading and subleading b-tagged jets pairs
19.LeptonPairpTratio Leading to subleading lepton pT ratio 

● Variables were calculated 
based on the topology of the 
final state signature of our 
signal event.

● A better understanding on 
4-vectors and root analysis 
calculations was gained by 
calculating variables 
“manually” first and then using 
the methods included in root .



Comparing Signal vs Background Variables

In this project we train a neural network that takes distributions of variables as input and classifies events as 
either signal or background in a supervised training procedure. Therefore, we choose variables that yield a 
better separation between signal and background.
Input Variables



ML Parameters Correlations

● In the analysis, we started with 
19 variables.

●  We selected the best 12 variables by removing 
highly correlated and similar distributions 
between signal and background. 



ML Hyperparameters

Number of input variables 12
Hidden Layers 2
Nodes per Hidden Layer [249, 24]
Batch Size 1000
Number of Epochs 200
Trainable Parameters 8990
Training set size 80%
Evaluation size 20%

First Hidden Layer:
Number of trainable parameters = input_dim * num_nodes + num_nodes
Second Hidden Layer:
Number of trainable parameters = input_nodes_previous_layer * num_nodes + 
num_nodes
Output Layer:
Number of trainable parameters = input_nodes_previous_layer * num_nodes + 
num_nodes
Total:
Total = input_layer + first_hidden_layer + second_hidden_layer + output_layer

Trainable parameters
12 x 249 +249 = 2988
249 x 24 + 24 = 5976
24 x 1 + 1 = 25 
Total = 8990



Results

Initial Input Variables: 19      Input Variables: 12

● Despite removing highly correlated variables and variables with very similar signal and 
background distributions, there was no observable improvement in the neural network's 
performance.

● However, it was observed that keeping variables with very similar signal vs background we 
can slightly improve the performance of the model.



Results

Final number of variables: 12  

KS prob. Signal: 0.88
Suggests a better generalization for the 
signal distribution.

KS prob. Background: 0.26
Suggests the model may not generalize well 
unseen data.



ROC curve

The ROC curve for our ML model
shows significant trade-offs when 
choosing a threshold value. In this 
case we have a low background 
rejection.



Limit Plot

This Limit plot shows the expected limit values 
for different mass points. We see upper bounds on 
the signal strength that the experiment would be 
able to exclude or include with a certain level of 
confidence (68% and 95%), assuming the 
background-only hypothesis.

● Produced data cards for each mass point and channels.

● Used combine to produce the limit plot

● The goal is to see the expected signal strength for each 

mass point.



Summary

The project aimed to enhance the signal-to-background ratio in the search for vector-like leptons. This was 

performed by training a neural network using calculated kinematic variables. The variables demonstrating 

distinct distributions between signal and background were selected. The model achieved an AUC score of 0.8, 

indicating relatively good classification ability. Additionally, the Kolmogorov-Smirnov (KS) test demonstrated 

high discrimination with a KS probability of 0.88 for signal and 0.26 for background suggesting that the 

model does a better job in identifying signal events, as revealed by the confusion matrix. These results suggest 

that the model effectively separates signal and background, making it a promising tool for identifying 

vector-like leptons in the dataset.



Backup



Elementary Particles

The SM accounts for two types of fundamental particles: Bosons and Fermions. While Gauge bosons are 
“carriers” of fundamental forces, the Higgs boson generates mass. Fermions are matter particles and interact 
by exchanging gauge bosons. Elementary particles in the SM posses anti-particles with opposite charge and 
parity.

Bosons:
- Integer spin
quantum number.
- Gauge Bosons are
carriers of 
fundamental forces.

Fermions:
- Half-integer spin
Quantum number.
-Fermions are 
categorized into 
quarks and leptons 



Fermions

Fermions are described as Dirac spinors, which represents their quantum state. A Dirac spinor 
consists of four components representing two different chiralities:

Right-handed or right chiral particle

Spin is aligned in 
the same direction  
to the particle’s 
momentum 

Left-handed or left chiral particle

Spin is aligned 
opposite to the 

particle’s 
momentum



Data

Object Collection Selection

Jets Jet_* pT>30 GeV & |η|<2.4 & mediumJetIDbit & ΔRe,μ > 0.4

Electrons Electron_* pT>10 GeV |η|< 2.4 & CutBasedIdTight & eleEtaGapVeto

Muons Muon_* pT>10 GeV |η|< 2.4 & tightId & pfRelIso04_all < 0.25

MET MET_* > 40 GeV

Event Selection criteria :
● =2 #lepton, pT

lead,e/μ > 30 GeV
● mll>20 GeV & Z peak veto mll < 76 GeV & mll > 106 GeV if OS
● #jets>3 & pT

jet,lead > 100 GeV & pT
jet,sub-lead > 50 GeV

● HT >300 GeV
Using RunIISummer20UL18NanoAODv2 samples







           Background Processes Description

DY+jets (Drell-Yan production): This background arises from the production of a lepton-antilepton pair 
(such as electron-positron or muon-antimuon) via the exchange of a virtual photon or Z boson. While this 
process can lead to two leptons in the final state, it usually has fewer jets than the signal.

Di-boson production (ZZ, WW, ZW): Di-boson production involves the production of pairs of weak 
bosons (W, Z, or gamma) which can decay into leptons and jets. These processes can mimic the signal, but 
they often have lower cross-sections and different kinematic properties.

Tri-boson production (WWW, ZZZ, WWZ): Similarly to di-boson production, tri-boson production 
involves the production of three weak bosons. These processes are rarer and can lead to complex final 
states with multiple leptons and jets, but their low cross-sections make them less dominant.

tt(V/H)+jets (ttZ, ttW, ttH): These are processes where top quark pairs are produced in association with 
other vector bosons (Z, W) or the Higgs boson (H). They can produce final states with multiple leptons 
and jets similar to your signal, but again, their cross-sections are generally lower.

tt+VV (ttHH, ttZZ): These processes involve top quark pairs produced in association with pairs of vector 
bosons. They lead to final states with multiple leptons and jets, but their cross-sections are often smaller 
than that of tt-bar.

4-top (tttt): This process involves the production of four top quarks and can result in final states with 
multiple leptons and jets. However, due to its higher order in the strong coupling constant, its 
cross-section is much smaller than that of tt-bar.



Optimizer Adagrad
Number of input variables 12
Hidden Layers 2
Nodes per Hidden Layer [249, 24]
Node Activation LeakyReLu
Output Node Activation Sigmoid
Regularization L1 1e-5
Regularization L2 7*1e-4
Dropout Percentage 0.09
Loss Function Binary cross-entropy
Batch Size 1000
Number of Epochs 200
Early Stopping 12
Training/Evaluation  python 
packages 

Keras and Tensorflow

Trainable Parameters 8990


