
Exploring Geant4 Performance in Optical
Processes

Mentee: Felipe De Figueiredo (Long Island University)
Mentors: James Hirschauer, Hans-Joachim Wenzel (Fermilab)

Abstract

Abstract: Simulations of particle interactions with matter is one of the main tools
used by particle physicists. Geant4 is a toolset used to perform these
simulations, yielding much needed information regarding how particles interact
with materials in detectors. One of the processes that occur when particles
interact with materials is the generation of scintillation and Ĉerenkov light,
resulting in optical photons with distinct properties. The amount of optical
photons generated by these processes can be immense when performing these
simulations. In this project, we explore the performance measurements between
Multithreaded and Multiprocessed Geant4.

1- What I’ve Learned:
● Geant4

● What is it?
● Build Geometry, Physics Lists
● User Actions, Sensitive Detectors
● Optical Physics
● Analysis

Table of Contents
2- Setting up Experiment:

● Geometry is given in the form a
GDML(Geometry Detector Modeling
Language (XML)) setup.

● Performance Measurements

3- Experiment Results:
● Experimental Validation
● Performance Results
● Acknowledgements

- Geant4 is a toolkit for the simulation of the
passage of particles through matter.
- Geant4 is a very flexible toolkit, allowing the creation

of very simple to extremely complex applications.

Geant4: Introduction

- CaTS(Calorimetry and Tracker Simulation) is a
framework based on Geant4. Used for example:
Calorimetry and Tracking detectors.
- Developed by Hans Wenzel

How to use it

- Geant4 is written in C++, to build applications you
need to use CMake to create the makefiles and
configure settings for the project

- You can build the project, and then run it like any
other executable.

Build Geometry and Physics Lists

- To simulate particles going through materials, you’ll need to construct the geometry
and set up the physics lists

For the physics lists, you might use
G4VModularPhysicsList class:

Then implement the specific physics lists
desired:

Building Geometry: GDML Files

- You can build geometry by implementing
the G4VUserDetectorConstruction class:

- GDML(Geometry Detector
Modeling Language(XML))
Files are useful, allows you to
change the geometry at
runtime without having
re-compile the projectC++

GDML

- In the applications written so far, I’ve used mostly a stacking Action:

User Actions

Stacking Action

- Implemented using the
G4VUserStackingAction

- Whenever a new
particle(Track) is created, the
stacking action is called.

- Optical properties are part of the material properties in the GDML file. They have
to be provided by the user before Scintillation and Ĉerenkov processes can
work.

Optical Physics

Sellmeier Equation for LAr
Generate
indices

Into GDML
file

- Indices of refraction

- Refraction index
- Absorption Lengths
- Rayleigh Scattering Lengths
- Reflectivity of Optical Surfaces
- Reflection Efficiency
- Emission Spectrum of Scintillating Material
- Scintillation Time Constants(Rise and Fall Time)
- Scintillation Yield (Optical Photons produced per MeV of deposited

ionization energy)

Additional Optical Properties That Have to be Provided

-When charged particles travel through a medium faster than the speed of light in that
medium, they emit prompt radiation. This radiation is emitted in the shape of a cone,
described by the equation:

Ĉerenkov Radiation

-In Geant4, we see expected wavelength
spectrums of photons emitted by
scintillation:

Scintillation

-Since scintillation is an isotropic process,
we expect it to be released from all
different directions equally.
-Compared to Ĉerenkov light, it is not
prompt

-Scintillation light is emitted by certain materials when transversed by charged
ionizing particles.

-Liquid Argon has scintillation yields of
50,000 photons emitted per 1 MeV of
energy deposited in the material. An ionizing
particle deposits 2 MeV per cm in LAr

Scintillation Challenges
-With high scintillation yields, each single
event can take minutes to simulate.

Scintillation Off Scintillation On

- Using G4AnalysisManager, you can make ROOT histograms and ntuples off of
information registered at the various user actions:

Analysis

- Here we see the geometry of the
experiment, a box filled with Liquid
Argon and three photodetectors inside
the calorimeter cell(10x10x20mm):

Experiment: Setting Up GDML File

SD1
SD2

SD3

- Using LAr sellmeier coefficients, we
can generate the necessary indices of
refraction:

- With single threaded programs, one can use
multiple processes to utilize more of its
computing cores
- Simply running multiple instances of the program at

the same time, for example.

Performance Measurement

Program 1

Program 2

Program 3

- With multithreaded programs,
one can use multiple threads:

Program

Thread 1 Process

Thread 2 Process

Thread 3 Process

Master
Thread

Worker
Threads

- We will measure the number of events done per second.
- Single threaded application
- CaTS for multithreaded, with same GDML file

- We will also measure the amount of memory used by single threaded and
multithreaded Geant4

- All this run in this machine:
- 12Gb RAM
- Intel(R) Core(TM) i5-2540M CPU @ 2.60GHz

Performance Measurement Continued

-To ensure the optical properties for the
material are correct, data from the
photons are recorded:

Experimental Validation

Wavelength of scintillation photons in
LAr. Photons are generated in the
spectrum expected by LAr optical
properties.

-Same with Ĉerenkov:

Wavelength of Ĉerenkov photons in
PbF2. Photons are generated in the
spectrum defined by the refractive indices
of PbF2.

Performance Results

 Multithreaded

 Single threaded

- In addition, we observe the memory increase in the multithreaded case is
much lower than running multiple single threaded processes.

- Allowing you to use all CPU Cores when memory is sparse.

- CPU Usage scales in the same
way.

- What did I learn?
- Learned how to build and run Geant4 applications, a program used by particle physics and

many other domains.
- Learned about the Optical Processes in Geant4.
- Learned how to analyze data generated by Geant4.
- Would be able to apply this knowledge in a future projects requiring simulations.

Conclusion

- Thanks for my mentors: Dr. James Hirschauer and Dr. Hans-Joachim Wenzel

- Thanks for the Geant4 collaboration for making documentation very accessible!

- Thanks for Hans for making CaTS!

- Thanks for all PURSUE interns for helping me along the way!

Acknowledgements

1- The Geant 4 Collaboration (Official Webpage) https://geant4.web.cern.ch/
2- CaTS Framework, Hans-Joachim Wenzel
https://github.com/hanswenzel/CaTS
3- Peculiarities in the Simulation of Optical Physics in Geant4, Erik Dietz-Laursonn,
arXiv:1612.05162v1
4- Index of refraction, Rayleigh scattering length, and Sellmeier coefficients in solid and
liquid argon and xenon, Emily Grace, arXiv:1502.04213v4
5- Scintillating properties of today available lead tungstate crystals, M. Follin,V. Sharyy,
J-P. Bard, M. Korzhik, D. Yvon, arXiv:2103.13106v2

Bibliography

https://geant4.web.cern.ch/

