
Michael J Miranda, CUNY City College of New York
Mentors: Dr. Daniel Diaz, University of California San Diego

Dr. Javier Duarte, University of California San Diego
USCMS PURSUE 2023

LLP Tagging at CMS
L1 Trigger on Run 4

Abstract

2

Abstract: Trigger efficiency and rate studies are presented. The selection of events containing long-lived particles

(LLPs) at the compact muon solenoid (CMS) detector has been historically difficult due to a lack of LLP aware triggers.
To counter this issue, we are developing a machine learning based trigger to select events containing jets produced by
LLPs, to be used in the CMS Level-1 trigger (L1). LLPs appear in a number of extensions to the standard model (SM),
so-called beyond the standard model (BSM) theories and yet they have been less studied at the large hadron collider
due to the inability to explicitly select the events containing these particles. Trigger performances can be evaluated by
expected signal efficiency and event rate calculations using simulated events generated by Monte Carlo which are then
processed through an L1 emulator. For signal we are using a BSM sample of long-lived stop squarks decaying to
bottom quarks, while we use SM QCD as our background. Jets were constructed using a seeded clustering algorithm
based on the definition of a cone with radius R = 0.4, where R is defined as the difference in pseudorapidity (φ) and
azimuthal angle (η). The quality of these clustered jets were assessed with plots of the transverse momentum (pT), η ,
φ , and mass of the jets in terms of all jets, the jet with the largest value of pT; described here as the lead jet, and the jet
with the second largest value of pT; described as the sublead jet. Based on a recent technical design report discussing
the phase-2 upgrade of the CMS L1 trigger, requirements for hadronic seeds using PUPPI jets as well as missing
transverse energy seeds were defined. In addition to the calculations of signal efficiency and event rate for these
triggers, an efficiency curve for a Single PuppiJet trigger graphed against generator-level LLP pT is created.

What is a Long-Lived Particle (LLP)?

3

• Most particles produced at CMS are called prompt in that they decay
immediately and are not directly observed by the detectors

• An LLP is simply a particle that is not prompt
• That is, they live long enough to
travel a measurable distance within
the detector

• And while the LLPs shown here are all
standard model particles, the objects of
interest in this project are beyond the
standard model LLPs

What is Needed to Define a Trigger?

4

• LLP Jet Trigger
• What is a tagger?

• An algorithm whose output indicates the probability of identifying particles of
interest

• What is a trigger?
• A more complex algorithm defined by a set of requirements at object level for

୘, , etc. on each event whose output contributes to whether or not the event
is saved

• What is needed to define this LLP Jet Trigger?
• ML-LLP Jet Tagger  machine learning algorithm to tag these LLP jets
• A trigger definition that incorporates this tagger and a set of requirements for

LLP jet

• My part in this larger project
• Developing the machinery to comparing trigger performances via:

• Signal efficiency using simulated signal samples
• Event rate using simulated background samples

What We’ll Cover…

5

• LLP Jet Trigger and Trigger Comparisons

• Ntuples and Jet Construction

• Jet Feature Plots

• L1 Trigger

• Trigger Seeds

• Signal Efficiencies

• Trigger Efficiency Turn-On Curve

• JetConstructTriggerAnalysis.py

• Sharing the Code

Ntuples & Jet Construction

6

• Events simulated by Monte Carlo, processed via L1 Emulator, stored as ntuples
• pfTuple_DisplacedSUSY_stopToBottom_M_800_500mm.root (50,000 events)

• LLP Signal sample containing stop squark with
mass of 800 GeV and decay length of 500 mm

• pfTuple_QCD.root (99,676 events)
• Background sample

• Seeded Jet Clustering Algorithm
1. Identify highest available ୘ PF or PUPPI particle as seed
2. Sum over the TLorentzVectors of all particles defined in

a cone within ଶ ଶ

3. Remove jet constituent particles from further event processing
4. Repeat these for a maximum of 12 jets per event in the ntuple

Jet Feature Plots –

7

• Jets constructed from background PF
particles with a 2 𝐓 cut on jet
constituents

• Sharp peak of low ୘ jets

• Jets constructed from background PF
particles with no cut on jet constituents

• Characteristic “jet horns” observed
• Large number of low-quality jets in

data for a certain range

Jet Plots – Full, Lead, Sublead Jets

8

• Jets constructed from signal PF particles with no cut on jet constituents

• Lead Jets  first jet of each event; Sub-Lead Jets  second jet of each event

• Effect is observably less prominent in the leading jet and more so in the sub-leading jet

L1 Trigger – CMS Trigger System and Data Flow

9

• For each collision at CMS (1 per 25 nanoseconds), the detector processes 40 million events
per second
• As each event is ~1 MegaByte, data on the order of TeraBytes is produced each

second
• It is physically impossible to reconstruct and store all 40 million events per second

• To address this, a system of triggers is employed to select only the most “interesting”
events

• For the purposes of my project, the most important number is: 100 kHz
• That is, the maximum event output rate passed by L1

• This means the sum of each L1 seed rate in this menu must output less than 100
kHz

L1 Trigger Seeds and their Requirements

10

• In general, the ideal trigger has a low event rate and a high signal efficiency
• Lower Event Rate Less Space Used in L1 Trigger Menu
• Higher Signal Efficiency Higher Probability of Correct Event Classification

CMS-TDR-021

L1 Trigger Seeds and their Requirements

11

• In general, the ideal trigger has a low event rate and a high signal efficiency
• Lower Event Rate Less Space Used in L1 Trigger Menu
• Higher Signal Efficiency Higher Probability of Correct Event Classification

CMS-TDR-021

How to Count the Number of Triggered Events

12

• Consider the Single PuppiJet and Double PuppiJet seeds with the following trigger requirements
• Single: at least one jet with ୘ and
• Double: at least two jets each with ୘ and as well as a

• If we had an event containing 2 jets with the following values:
• Jet 1: ୘ ,
• Jet 2: ୘ ,

• Only Single PuppiJet trigger would fire for this event

How to Count the Number of Triggered Events

13

• Consider the Single PuppiJet and Double PuppiJet seeds with the following trigger requirements
• Single: at least one jet with ୘ and
• Double: at least two jets each with ୘ and as well as a

• If we had another event containing 3 jets with the following values:
• Jet 1: ୘ ,
• Jet 2: ୘ ,
• Jet 3: ୘ ,

• Both Single and Double PuppiJet triggers would fire for this event
• NOTE: despite Jets 1, 2, and 3 all passing the Single PuppiJet requirements, this event is

only counted once

Trigger Seed Signal Efficiencies

14

• High efficiency of single and
double jet triggers

• Low efficiency of quad jet-Ht
trigger

• Due to stricter requirements on
quad jet-Ht trigger

Trigger Seed Signal Efficiencies

15

• High efficiency of single and
double jet triggers

• Low efficiency of quad jet-Ht
trigger

• Due to stricter requirements on
quad jet-Ht trigger

Trigger Efficiency Turn-On Curve

16

• Using signal PF particles
with 10 𝑻 cut jets

• Efficiency of single jet
trigger of PF jets as a
function of gen-level LLP

𝐓

• High efficiency uncertainty
at high LLP ୘

• Further ntuple samples will
give more sensitive turn-on

JetConstructTriggerAnalysis.py

17

• What the code does:
• Jet Construction + Jet Feature Plots + Trigger Efficiency + Trigger Rate + Efficiency Curves

• How to run the code:
• In the LPC terminal, the code can be run from the command line:

python JetConstructTriggerAnalysis.py "ntuple.root" 1 0 0 0 0
• Argparse – Command Line Interface

• Allows user to pass different ntuple files for jet construction and analysis
• Give user the option to enable or disable features specific to their task

• How it will be used:
• To compare efficiencies and rates for trigger seeds with the LLP tagger input and the same

seeds without
• To investigate the quality of PF or PUPPI jets from a given ntuple

JetConstructTriggerAnalysis.py

18

• What the code does:
• Jet Construction + Jet Feature Plots + Trigger Efficiency + Trigger Rate + Efficiency Curves

• How to run the code:
• In the LPC terminal, the code can be run from the command line:

python JetConstructTriggerAnalysis.py "ntuple.root" 1 0 0 0 0
• Argparse – Command Line Interface

• Allows user to pass different ntuple files for jet construction and analysis
• Give user the option to enable or disable features specific to their task

• How it will be used:
• To compare efficiencies and rates for trigger seeds with the LLP tagger input and the same

seeds without
• To investigate the quality of PF or PUPPI jets from a given ntuple

Sharing the Code with Lab Group

19

• Where does your code live?
• A branched repository of this L1 Jet Tag repository on GitHub

• And how will other people in the lab group be able to use it or edit it?
• README.md – a document for the person who’s never seen your code before

• Virtual environment
• Updating trigger
definitions
• Editing the plots

What Did I Do? What’s Next?

20

• Produced JetConstructTriggerAnalysis.py with an accompanying README that implements:
• Jet Construction

• Seeded Clustering Algorithm
• Jet Feature Plots

• Plotting p୘, 𝜂, 𝜙, and mass to investigate quality of constructed jets
• Trigger Signal Efficiency and Event Rate

• Calculating expected signal efficiency and expected event rate for a defined trigger seed
• Trigger Efficiency Curve

• Graphing trigger efficiency over a particular parameter to determine “turn-on” behavior
• All with the option to turn these ON/OFF depending on the task and to change the input ntuple

sample all from the command line

• What’s next
• Defining new trigger path that factors tagger output with specific jet properties which would

require:
• Comparing trigger performance with and without LLP tagger implemented
• Varying accepted tagger outputs with trigger parameters such as jet p୘ or 𝜂

Acknowledgements

21

• First, I would like to thank my mentors from University of California – San Diego:
• Prof. Javier Duarte
• Dr. Daniel Diaz
• Tony Aportela

• And of course, the PURSUE program PIs, Fermilab LPC Staff, all the tutorial instructors, and all
the speakers who kindly gave of their time
• Prof. Sudhir Malik, Prof. Santanu Banerejee, Prof. Tulika Bose
• Dr. Marguerite Tonjes
• Maggie Slusarczyk, Guillermo Fidalgo

• Finally, I would like to thank the institutions that made this summer possible
• Fermilab
• US Department of Energy
• UC San Diego
• And every US CMS collaborating institution

Backup Slides

22

Phase 2 Upgrades of CMS L1 Trigger

23

• Upgrades will enable previously unsupported LLP tagging at L1 via:
• Global Track Trigger (GTT)

• Reconstruct charged particle tracks within full outer silicon tracker volume at 40
MHz collision rate to ultimately build high-level objects out of these tracks

• Correlator Trigger (CT)
• Aggregate inputs from all upstream systems:

• Track Finder (TF), High Granularity Calorimeter (HGCal),
Global Calorimeter Trigger (GCT),
Muons, Global Track Trigger (GTT))

• Optimally combine information from the
various sub-systems to achieve the best
possible trigger performance

• FPGA arrays
• Hardware implementation of these systems

Events with 0 or 1 jet constructed – Signal Sample
• Why are the lead and sublead jets plots missing entries from the total 50,000 event

dataset?
• Of the dataset, 15 events have only 1 jet and 1 event has 0 jets from this clustering

algorithm
• I believe this is due to candidate constituent particles having a large value

(compared to a of 0.4) with the seed particles as well as low ் candidates

24

Efficiency/Rate Calculations – Pseudocode
Jet Triggers
•FUNC input: list of jets and any 𝑝், 𝜂, 𝜙, 𝑀 threshold values

• INITIALIZE a counting variable
•FOR each jet in an event loop

• IF trigger requirements are met, increment the count variable
•Add on successive FOR loops for each jet in an event for multi-jet triggers
•Jets may not be re-used for the same event

•OUTPUT effic = (count #) / (# of events) OR rate = (count #) / (# of events) * 40 MHz

Energy Sums Triggers
•FUNC input: list of jets and any 𝑝், 𝜂, 𝜙, 𝑀 threshold values

• INITIALIZE a counting variable
•FOR each jet in an event loop

• INTIALIZE a variable to hold scalar or vector sum of 𝑝் or 𝐸
• IF trigger requirements are met, add 𝑝் value on to sum variable

•Jets may not be re-used for the same event
• IF sum meets requirements, increment counting variable
•OUTPUT effic = (count #) / (# of events) OR rate = (count #) / (# of events) * 40 MHz

25

