New Calabi-Yau manifolds from Genetic Algorithms

Andre Lukas
University of Oxford

StringPheno 2023, Daejeon, South Korea, July, 2023
in collaboration with: Per Berglund, Yang-Hui He, Elli Heyes, Edward Hirst, Vishnu Jejjala

Outline

- Introduction
- Genetic algorithms
- Reflexive polytopes
- Methodology for polytope search
- Results
- Conclusion

Introduction

Numbers in string theory

Set $h:=h^{1,1}(X)$ for a CY manifold X.
CY 3-folds

- \# of 4d reflexive polytopes: 473,800,776, where $1 \leq h \leq 491$ (M. Kreuzer, H. Skarke, hep-th/0002240)
- \# of triangulation for each 4d reflexive polytopes: $\sim 10^{h}$
(R. Altman, J. Gray, Y.-H. He, V. Jejjala, B. D. Nelson, JHEP 02 (2015) 158)
this talk
CY 4-folds
- \# of 5d reflexive polytopes: perhaps $\sim 10^{18}$
heterotic line bundle models
- \# of line bundle sums on CY 3-fold: $\sim 10^{4 h}$
- \# of heterotic CY models with SM spectrum: $\sim 10^{h-3}$
(A. Constantin, Y.-H. He, A. Lukas, 1810.00444)

Andrei Constantin Thomas Harvey, in parallel session

Exploration requires efficient and targeted search methods!

Search algorithms

- MCMC with schedules annealing ("classical annealing")
- Quantum annealing
- Reinforcement learning (RL)
- Genetic algorithms (GAs) \longleftarrow this talk

GA in particle/string theory pioneered by:
(S. Abel, J. Rizzos, 1404.7359, search for free fermionic models)

O(10) papers applying GA to various classes of models since.
-> GA is impressively efficient searching classes of physics models
Recent proposal to combine GA and quantum annealing (GQAA).
(S. Abel, L. Nutricati, M. Spannowsky, 2209.07455)

Questions

- Can GAs find reflexive polytopes?
- Can GAs find complete lists of reflexive polytopes, for $\mathrm{d}<5$?
- Can GAs be used to find new $d=5$ reflexive polytopes?
- Do GAs facilitate a targeted search of reflexive polytopes with specific properties?

Genetic Algorithms

Basic ingredients of GAs

(1) Sample with $p_{\text {in }}$ to get initial population $P_{0} \subset \mathbb{F}_{2}^{n_{\text {bits }}}$ with size $n_{\text {pop }}=\left|P_{0}\right|$.
(2) Evolve P_{0} by combining (i) selection, (ii) cross-over and (iii) mutation:

$$
P_{0} \longrightarrow P_{1} \longrightarrow P_{2} \longrightarrow \cdots \longrightarrow P_{n_{\mathrm{gen}}}
$$

(3) Select all $b \in \bigcup_{i} P_{i}$ with $f \circ \varphi(b) \geq f_{\text {term }}$.

These are the terminal states b which lead to "good models" $\varphi(b)$.

Evolving $P_{k} \rightarrow P_{k+1}$

(i) selection:

- define probability distribution $p_{k}: \mathbb{F}_{2}^{n_{\text {bits }}} \rightarrow[0,1]$ by (roulette selection)

$$
p_{k}(b)=\frac{1}{n_{\mathrm{pop}}} \frac{(\alpha-1)(f(\varphi(b))-\bar{f})+f_{\max }-\bar{f}}{f_{\max }-\bar{f}} \quad \alpha \in[2,5]
$$

- based on p_{k}, select $n_{\text {pop }} / 2$ pairs of individuals from P_{k}
(ii) cross-over:
- for each pair from (i), pick a random position $k \in\left\{1, \ldots, n_{\text {bits }}\right\}$
- swap tails of two individuals:

- the $n_{\text {pop }}$ new individuals obtained in the way form a population \tilde{P}_{k+1}
(iii) mutation:
- randomly flip a small fraction $r \sim 0.01$ of bits in \tilde{P}_{k+1} to obtain P_{k+1}

Reflexive Polytopes

Lattice polytopes

lattice polytope Δ in n dimensions:
convex hull in \mathbb{R}^{n} of lattice points $x_{1}, \ldots, x_{m} \in \mathbb{Z}^{n}$
represented by $n \times m$ matrix $\mathcal{X}=\left(x_{1}, \ldots, x_{m}\right)$ of generators

Example

generators x_{i} :
$\mathcal{X}=\left(\begin{array}{cccccc}4 & 1 & -3 & 0 & -1 & 1 \\ 4 & 2 & 2 & 2 & -3 & -3\end{array}\right)$
red points: vertices v_{i}
$V=\left(\begin{array}{cccc}-3 & -1 & 1 & 4 \\ 2 & -3 & -3 & 4\end{array}\right)$

Vertices

minimal subset, $V=\left(v_{1}, \ldots, v_{N_{v}}\right)$, of generators whose convex hull is Δ.
$N_{\mathrm{v}}, N_{\mathrm{p}}$: number of vertices and lattice points of Δ

Faces and facets

face: intersection of Δ with a hyperplane whose negative half-space contains Δ
facets $F(\Delta)$: dimension n -1 faces of Δ <-> supporting hyperplanes $u \cdot x=d$

equations for supporting hyperplanes:
$\begin{aligned} &-2 x_{1}+7 x_{2}= \\ & 7 x_{1}-3 x_{2}= \\ &-x_{2}= \\ & 16 \\ & 3 \\ &-5 x_{1}-2 x_{2}=11 \\ &=d_{\Delta}(\varphi)\end{aligned}$

Lattice distance
Facet $\varphi \in F(\Delta)$, supporting hyperplane $u \cdot x=d$.
Then $d_{\Delta}(\varphi)=d$ is called the lattice distance of φ.

Reflexive polytopes

A lattice polytope Δ is reflexive iff
(i) the origin is the only interior lattice point of Δ (IP property)
(ii) all facets $\varphi \in F(\Delta)$ are at lattice distance 1 , so $d_{\Delta}(\varphi)=1$

equations for supporting hyperplanes:

$$
\begin{aligned}
& x_{1}+x_{2}= \\
& x_{1}-2 x_{2}= 1 \\
&-2 x_{1}+x_{2}=\begin{array}{l}
1 \\
\\
\end{array} \\
&=d_{\Delta}(\varphi)
\end{aligned}
$$

Equivalence

Two polytopes $\Delta, \tilde{\Delta}$ with vertex matrices V, \tilde{V} (same number N_{v} of vertices) are equivalent iff

$$
\tilde{V}=G V P
$$

for a permutation matrix P and $G \in \mathrm{GL}(n, \mathbb{Z})$.
Eliminate by computing normal form of V.

$$
V=\left(\begin{array}{rrr}
-2 & 1 & 1 \\
1 & -2 & 1
\end{array}\right) \quad \tilde{V}=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
-3 & 0 & 3
\end{array}\right)
$$

CY manifolds
A pair $\left(\Delta, \Delta^{\circ}\right)$ of an n-dim reflexive polytope Δ and its dual Δ° (plus triangulation) defines a mirror pair of $C Y(n-1)$ - folds.

Number of reflexive polytopes

After modding out equivalence, number is finite in any dimension. $n=2: 16$ reflexive polytopes

$n=4: 473,800,776$ reflexive polytopes
(M. Kreuzer, H. Skarke, hep-th/0002240)
$n=5$: partial classification
-> 185,269,499,015 reflexive polytopes, obtained from maximal polytopes, estimate: $\sim 10^{18}$ reflexive polytopes (F. Schoeller, H. Skarke, CMP 372 (2019) 657)

Methodology for polytope search

Basic set-up

Fix dimension n and (maximal) number of generators m.
Describe polytope by $\mathrm{n} \times \mathrm{m}$ integer matrix $\mathcal{X}=\left(x_{a}^{i}\right)$
Constrain $x_{a}^{i} \in\left\{x_{\min }, x_{\text {min }}+1, \ldots, x_{\text {min }}+2^{\nu}-1\right\} \rightarrow \nu$ bits per integer

Genotype-phenotype map

Matrix \mathcal{X} described by $n_{\text {bits }}=n m \nu$ bits.

Size of environment
Say, $m=n+1$ (minimal choice) and $\nu=3$:

$$
2^{n_{\text {bits }}} \simeq\left\{\begin{array}{lll}
10^{7} & , & n=2 \\
10^{14} & , & n=3 \\
10^{24} & , & n=4 \\
10^{36} & , & n=5
\end{array}\right.
$$

Initial probability distribution

$p_{\text {in }}$ either flat or with bias towards small $\left|x_{a}^{i}\right|$

Fitness

Δ reflexive $\Longleftrightarrow f(\Delta)=0$

Fitness for targeted searches

Search for polytopes Δ with target numbers $N_{\mathrm{v}, 0}, N_{\mathrm{p}, 0}$ of points and vertices: Modify fitness function to:

$$
\widetilde{f}(\Delta)=f(\Delta)-w_{3}\left|N_{\mathrm{p}}(\Delta)-N_{\mathrm{p}, 0}\right|-w_{4}\left|N_{\mathrm{v}}(\Delta)-N_{\mathrm{v}, 0}\right|
$$

Realisation

GA code, realised in c: https://github.com/harveyThomas4692/GA-C polytope environment, PALP plus c code:
https://github.com/elliheyes/Polytope-Generation

r plus code:

Compute all relevant properties of Δ from generator matrix \mathcal{X}
For ease of use, there is also a python interface . . .

Removing reduncancies

For all reflexive polytopes found by $G A$, compute normal form of V with PALP

Results

Common settings: $n_{\text {gen }}=500, r_{\text {mut }}=0.005, \alpha=3$.
Two-dimensional polytopes, $n=2$
Settings: $x_{a}^{i} \in[-3,4], \nu=3, m=6, n_{\text {pop }}=200 \quad \rightarrow$ \#states $\simeq 10^{11}$
Finds all 16 reflexive polytopes in a single GA run (few seconds on single CPU)

Three-dimensional polytopes, $n=3$
Settings: $x_{a}^{i} \in[-7,8], \nu=4, m=14, n_{\text {pop }}=450 \rightarrow$ \#states $\simeq 10^{51}$
Finds all 4319 reflexive polytopes in 117251 GA runs.
Fraction of the environmental states visited $\sim 10^{-40}$

Evidence that GA can find (nearly) complete lists of reflexive polytopes

Four-dimensional polytopes, $n=4$

Have not attempted to reproduce the entire Kreuzer-Skarke list.
Instead, targeted searches for fixed number of vertices and points.
$\underline{N_{\mathrm{v}, 0}=5}$
Settings: $x_{a}^{i} \in[-15,16]:, \nu=5, m=5, n_{\text {pop }}=200, \quad$-> \#states $\simeq 10^{30}$

Figure 1: Log plot of total number of generated four-dimensional reflexive polytopes with five vertices against number of genetic algorithm evolutions. The total before and after removing redundancy are shown in orange and blue, respectively.

Find all but 6 of the 1561 reflexive polytopes with $N_{\mathrm{v}}=5$.
$\underline{N_{\mathrm{p}, 0}} \in\{6,7,8,9,10\}$
Settings: $x_{a}^{i} \in[-3,4], \nu=3, m=N_{\mathrm{p}, 0}-1$

Results:

\# points	\# states	$n_{\text {pop }}$	\# refl. poly.	\# GA runs	states visited
6	$\sim 10^{19}$	400	3	5	$\sim 10^{-13}$
7	$\sim 10^{22}$	300	25	30	$\sim 10^{-16}$
8	$\sim 10^{26}$	400	168	60	$\sim 10^{-19}$
9	$\sim 10^{29}$	300	892	9378	$\sim 10^{-20}$
10	$\sim 10^{33}$	350	3838	9593	$\sim 10^{-24}$

GA finds complete lists of 4 d reflexive polytopes with small N_{p}

Five-dimensional polytopes, $n=5$
Proceed in analogy with $n=4$ case: small number of vertices/points
$N_{\mathrm{v}, 0}=6$
Settings: $x_{a}^{i} \in\{-15, \ldots, 16\}, \nu=5, m=6, n_{\text {pop }}=500 . \rightarrow$ \#states $\simeq 10^{46}$

Figure 2: Total number of generated five-dimensional reflexive polytopes with six vertices against number of genetic algorithm evolutions.

Find $77470 \mathrm{n}=5$ reflexive polytopes with $N_{\mathrm{v}}=6$-> likely strong lower bound
$\underline{N_{\mathrm{p}, 0} \in\{7,8,9,10,11\}}$
Settings: $x_{a}^{i} \in\{-3, \ldots, 4\}, \nu=3, m=N_{\mathrm{p}, 0}-1$
Results:

\# points	\# states	$n_{\text {pop }}$	\# refl. poly.	\# GA runs	states visited
7	$\sim 10^{28}$	350	9	36	$\sim 10^{-22}$
8	$\sim 10^{32}$	350	115	1278	$\sim 10^{-24}$
9	$\sim 10^{37}$	450	1385	7520	$\sim 10^{-28}$
10	$\sim 10^{41}$	750	12661	31857	$\sim 10^{-31}$
11	$\sim 10^{46}$	650	87907	67382	$\sim 10^{-36}$

Likely strong lower bounds on numbers.
\#polytopes with $h^{1,1}(\Delta)=\left\{\begin{array}{lll}1 & : & 15 \\ 2 & : & 195\end{array}\right.$
Many of these not in Schoeller-Skarke list, even new Hodge numbers.

Conjecture 5.1 There are precisely 15 five-dimensional reflexive polytopes that give rise to four complex dimensional Calabi-Yau hypersurfaces with Hodge number $h^{1,1}=1$.

A search for specific Euler numbers
M-theory compactification on CY 4-fold with flux, $N=2 \rightarrow N=1$ breaking: Requires Euler number $\chi(\Delta)$ divisible by $\delta \in\{24,224,504\}$.
(M. Berg, M. Haack, H. Samtlebel, hep-th/0212225)

Modify fitness function to:

$$
\widetilde{f}(\Delta)=f(\Delta)-w_{5} \sum_{\delta} \chi(\Delta) \bmod \delta
$$

Settings: $x_{a}^{i} \in\{-3, \ldots, 4\}, \nu=3, m=10, n_{\text {pop }}=550$

After 10 GA runs, 21 new polytopes with such an Euler number are found.

Conclusions

- GAs are efficient in generating (nearly) complete lists of reflexive polytopes, as comparison with classifications in $n=2,3,4$ dimensions shows.
- We have used GAs to find (nearly) all five-dimensional reflexive polytopes with low numbers of vertices and points.
- From these we have extracted cases with $h^{1,1}(\Delta)=1,2$. There are many new ones, compared to the Schoeller-Skarke list.
There are even cases with new Hodge numbers.
- Conjecture: There are precisely 15 reflexive polytopes Δ in five dimensions with $h^{1,1}(\Delta)=1$.

Outlook:

- Triangulations with GAs?
- Targeted search of reflexive polytopes (and triangulations) for cases with prescribed properties.

감사합니다

