New Calabi-Yau manifolds from Genetic Algorithms

StringPheno 2023, Daejeon, South Korea, July, 2023

in collaboration with: Per Berglund, Yang-Hui He, Elli Heyes, Edward Hirst, Vishnu Jejjala

based on 2306.06159

<u>Outline</u>

- Introduction
- Genetic algorithms
- Reflexive polytopes
- Methodology for polytope search
- Results
- Conclusion

Introduction

Numbers in string theory

Set $h := h^{1,1}(X)$ for a CY manifold X.

CY 3-folds

• # of triangulation for each 4d reflexive polytopes: $\sim 10^h$ (R. Altman, J. Gray, Y.-H. He, V. Jejjala, B. D. Nelson, JHEP 02 (2015) 158)

CY 4-folds

• # of 5d reflexive polytopes: perhaps $\sim 10^{18}$

heterotic line bundle models

- # of line bundle sums on CY 3-fold: $\sim 10^{4h}$
- # of heterotic CY models with SM spectrum: $\sim 10^{h-3}$ (A. Constantin, Y.-H. He, A. Lukas, 1810.00444)

Andrei Constantin Thomas Harvey, in parallel session

this talk

Exploration requires efficient and targeted search methods!

Search algorithms

- MCMC with schedules annealing ("classical annealing")
- Quantum annealing
- Reinforcement learning (RL)
- Genetic algorithms (GAs)
 this talk

GA in particle/string theory pioneered by:

(S. Abel, J. Rizzos, 1404.7359, search for free fermionic models)

O(10) papers applying GA to various classes of models since. -> GA is impressively efficient searching classes of physics models

Recent proposal to combine GA and quantum annealing (GQAA). (S. Abel, L. Nutricati, M. Spannowsky, 2209.07455)

<u>Questions</u>

- Can GAs find reflexive polytopes?
- Can GAs find complete lists of reflexive polytopes, for d<5?
- Can GAs be used to find new d=5 reflexive polytopes?
- Do GAs facilitate a targeted search of reflexive polytopes with specific properties?

Genetic Algorithms

Basic ingredients of GAs

(1) Sample with p_{in} to get initial population $P_0 \subset \mathbb{F}_2^{n_{\text{bits}}}$ with size $n_{\text{pop}} = |P_0|$.

(2) Evolve P_0 by combining (i) selection, (ii) cross-over and (iii) mutation:

$$P_0 \longrightarrow P_1 \longrightarrow P_2 \longrightarrow \cdots \longrightarrow P_{n_{\text{gen}}}$$

(3) Select all $b \in \bigcup_i P_i$ with $f \circ \varphi(b) \ge f_{\text{term}}$. These are the terminal states b which lead to "good models" $\varphi(b)$. Evolving $P_k \to P_{k+1}$

(i) selection:

- define probability distribution $p_k: \mathbb{F}_2^{n_{\mathrm{bits}}} \to [0,1]$ by (roulette selection)

$$p_k(b) = \frac{1}{n_{\text{pop}}} \frac{(\alpha - 1)(f(\varphi(b)) - \bar{f}) + f_{\text{max}} - \bar{f}}{f_{\text{max}} - \bar{f}} \qquad \alpha \in [2, 5]$$

– based on p_k , select $n_{
m pop}/2$ pairs of individuals from P_k

(ii) cross-over:

– for each pair from (i), pick a random position $k \in \{1, \ldots, n_{ ext{bits}}\}$

- swap tails of two individuals:

$$b_1 = (1, 0, \dots, 1, 0, \underbrace{1, 1, 1, 0, \dots, 1, 1, 0, 0}_{\substack{k^{\text{th}}}}$$

 $b_2 = (0, 0, \dots, 0, 1, \underbrace{0, 0, 1, 0, \dots, 0, 1, 0, 1}_{\substack{k^{\text{th}}}}$
 $\tilde{b}_1 = (1, 0, \dots, 1, 0, \underbrace{0, 0, 1, 0, \dots, 0, 1, 0, 1}_{\substack{k^{\text{th}}}}$
 $\tilde{b}_2 = (0, 0, \dots, 0, 1, \underbrace{1, 1, 1, 0, \dots, 0, 1, 0, 1}_{\substack{k^{\text{th}}}}$

– the $n_{
m pop}$ new individuals obtained in the way form a population $ilde{P}_{k+1}$

(iii) mutation:

- randomly flip a small fraction $r \sim 0.01$ of bits in \tilde{P}_{k+1} to obtain P_{k+1}

Reflexive Polytopes

Lattice polytopes

lattice polytope Δ in n dimensions:

convex hull in \mathbb{R}^n of lattice points $x_1, \ldots, x_m \in \mathbb{Z}^n$

represented by $n \times m$ matrix $\mathcal{X} = (x_1, \ldots, x_m)$ of generators

Example

generators x_i :

$$\mathcal{X} = \left(\begin{array}{rrrrr} 4 & 1 & -3 & 0 & -1 & 1 \\ 4 & 2 & 2 & 2 & -3 & -3 \end{array}\right)$$

red points: vertices v_i

$$V = \left(\begin{array}{rrrr} -3 & -1 & 1 & 4\\ 2 & -3 & -3 & 4 \end{array}\right)$$

<u>Vertices</u>

minimal subset, $V = (v_1, \ldots, v_{N_v})$, of generators whose convex hull is Δ . N_v, N_p : number of vertices and lattice points of Δ

Faces and facets

face: intersection of Δ with a hyperplane whose negative half-space contains Δ

facets $F(\Delta)$: dimension n-1 faces of Δ <-> supporting hyperplanes $u \cdot x = d$

equations for supporting hyperplanes:

$$\begin{array}{rcl} -2x_1 + 7x_2 &=& 20\\ 7x_1 - 3x_2 &=& 16\\ &-x_2 &=& 3\\ -5x_1 - 2x_2 &=& 11\\ &=& d_{\Delta}(\varphi) \end{array}$$

Lattice distance

Facet $\varphi \in F(\Delta)$, supporting hyperplane $u \cdot x = d$.

Then $d_{\Delta}(\varphi) = d$ is called the lattice distance of φ .

Reflexive polytopes

A lattice polytope Δ is reflexive iff

(i) the origin is the only interior lattice point of Δ (IP property)

(ii) all facets $\varphi \in F(\Delta)$ are at lattice distance 1, so $d_{\Delta}(\varphi) = 1$

equations for supporting hyperplanes:

$$\begin{array}{rcl} x_1 + x_2 & = & 1\\ x_1 - 2x_2 & = & 1\\ -2x_1 + x_2 & = & 1\\ & = d_{\Delta}(\varphi) \end{array}$$

Equivalence

Two polytopes Δ , $\tilde{\Delta}$ with vertex matrices V, \tilde{V} (same number $N_{\rm v}$ of vertices) are equivalent iff

$$\widetilde{V} = G V P$$

for a permutation matrix P and $G\in \mathrm{GL}(n,\mathbb{Z})$. Eliminate by computing normal form of $V\!.$

<u>CY manifolds</u>

A pair (Δ, Δ°) of an *n*-dim reflexive polytope Δ and its dual Δ° (plus triangulation) defines a mirror pair of CY (n-1) – folds.

Number of reflexive polytopes

After modding out equivalence, number is finite in any dimension.

n=2: 16 reflexive polytopes

(as found by GA)

Methodology for polytope search

Basic set-up

Fix dimension n and (maximal) number of generators m.

Describe polytope by n x m integer matrix $\mathcal{X} = (x_a^i)$

Constrain $x_a^i \in \{x_{\min}, x_{\min}+1, \ldots, x_{\min}+2^{\nu}-1\}$ -> ν bits per integer

Genotype-phenotype map

Matrix \mathcal{X} described by $n_{\rm bits} = n \, m \, \nu$ bits.

$$\mathbb{F}_2^{n_{\text{bits}}} \xrightarrow{\varphi} \{\mathcal{X}\} = E$$

Size of environment

Say, m = n + 1 (minimal choice) and $\nu = 3$:

$$2^{n_{\text{bits}}} \simeq \begin{cases} 10^7 & , \quad n=2\\ 10^{14} & , \quad n=3\\ 10^{24} & , \quad n=4\\ 10^{36} & , \quad n=5 \end{cases}$$

Initial probability distribution

 p_{in} either flat or with bias towards small $|x_a^i|$

$$\Delta$$
 reflexive $\iff f(\Delta) = 0$

Fitness for targeted searches

Search for polytopes Δ with target numbers $N_{v,0}$, $N_{p,0}$ of points and vertices: Modify fitness function to:

$$\widetilde{f}(\Delta) = f(\Delta) - w_3 \left| N_{\mathrm{p}}(\Delta) - N_{\mathrm{p},0} \right| - w_4 \left| N_{\mathrm{v}}(\Delta) - N_{\mathrm{v},0} \right|$$

<u>Realisation</u>

GA code, realised in c: <u>https://github.com/harveyThomas4692/GA-C</u> polytope environment, PALP plus c code: <u>https://github.com/elliheyes/Polytope-Generation</u> Compute all relevant properties of Δ from generator matrix X

For ease of use, there is also a python interface . . .

Removing reduncancies

For all reflexive polytopes found by GA, compute normal form of V with PALP

<u>Results</u>

Common settings: $n_{\rm gen} = 500$, $r_{\rm mut} = 0.005$, $\alpha = 3$.

<u>Two-dimensional polytopes, n=2</u>

Settings: $x_a^i \in [-3,4]$, $\nu = 3$, m = 6 , $n_{
m pop} = 200$ -> #states $\simeq 10^{11}$

Finds all 16 reflexive polytopes in a single GA run (few seconds on single CPU)

Three-dimensional polytopes, n=3

Settings: $x_a^i \in [-7, 8]$, $\nu = 4$, m = 14, $n_{pop} = 450$ -> #states $\simeq 10^{51}$

Finds all 4319 reflexive polytopes in 117251 GA runs.

Fraction of the environmental states visited $\sim 10^{-40}$

Evidence that GA can find (nearly) complete lists of reflexive polytopes

Four-dimensional polytopes, n=4

Have not attempted to reproduce the entire Kreuzer-Skarke list.

Instead, targeted searches for fixed number of vertices and points.

 $N_{\rm v,0} = 5$

Settings: $x_a^i \in [-15, 16]$, $\nu = 5$, m = 5, $n_{pop} = 200$ -> #states $\simeq 10^{30}$

Figure 1: Log plot of total number of generated four-dimensional reflexive polytopes with five vertices against number of genetic algorithm evolutions. The total before and after removing redundancy are shown in orange and blue, respectively.

Find all but 6 of the 1561 reflexive polytopes with $N_{\rm v} = 5$.

 $N_{\rm p,0} \in \{6, 7, 8, 9, 10\}$

Settings: $x_a^i \in [-3,4]$, $\nu = 3$, $m = N_{\mathrm{p},0} - 1$

Results:

# points	# states	$n_{\rm pop}$	# refl. poly.	# GA runs	states visited
6	$\sim 10^{19}$	400	3	5	$\sim 10^{-13}$
7	$\sim 10^{22}$	300	25	30	$\sim 10^{-16}$
8	$\sim 10^{26}$	400	168	60	$\sim 10^{-19}$
9	$\sim 10^{29}$	300	892	9378	$\sim 10^{-20}$
10	$\sim 10^{33}$	350	3838	9593	$\sim 10^{-24}$

GA finds complete lists of 4d reflexive polytopes with small $N_{
m p}$

Five-dimensional polytopes, n=5

Proceed in analogy with n=4 case: small number of vertices/points

 $N_{\rm v,0} = 6$

Settings: $x_a^i \in \{-15, \dots, 16\}, \nu = 5, m = 6$, $n_{pop} = 500$. -> #states $\simeq 10^{46}$

Figure 2: Total number of generated five-dimensional reflexive polytopes with six vertices against number of genetic algorithm evolutions.

Find 77470 n=5 reflexive polytopes with $N_v = 6$ -> likely strong lower bound

 $N_{\rm p,0} \in \{7, 8, 9, 10, 11\}$

Settings:
$$x_a^i \in \{-3,\ldots,4\}$$
 , $u=3$, $m=N_{\mathrm{p},0}-1$

Results:

# points	# states	$n_{\rm pop}$	# refl. poly.	# GA runs	states visited
7	$\sim 10^{28}$	350	9	36	$\sim 10^{-22}$
8	$\sim 10^{32}$	350	115	1278	$\sim 10^{-24}$
9	$\sim 10^{37}$	450	1385	7520	$\sim 10^{-28}$
10	$\sim 10^{41}$	750	12661	31857	$\sim 10^{-31}$
11	$\sim 10^{46}$	650	87907	67382	$\sim 10^{-36}$

Likely strong lower bounds on numbers.

#polytopes with
$$h^{1,1}(\Delta) = \begin{cases} 1 & : & 15 \\ 2 & : & 195 \end{cases}$$

Many of these not in Schoeller-Skarke list, even new Hodge numbers.

Conjecture 5.1 There are precisely 15 five-dimensional reflexive polytopes that give rise to four complex dimensional Calabi–Yau hypersurfaces with Hodge number $h^{1,1} = 1$.

A search for specific Euler numbers

M-theory compactification on CY 4-fold with flux, N=2 -> N=1 breaking: Requires Euler number $\chi(\Delta)$ divisible by $\delta \in \{24, 224, 504\}$. (M. Berg, M. Haack, H. Samtlebel, hep-th/0212225)

Modify fitness function to:

$$\widetilde{f}(\Delta) = f(\Delta) - w_5 \sum_{\delta} \chi(\Delta) \mod \delta$$

Settings:
$$x_a^i \in \{-3,\ldots,4\}$$
 , $u=3$, $m=10$, $n_{
m pop}=550$

After 10 GA runs, 21 new polytopes with such an Euler number are found.

Conclusions

- GAs are efficient in generating (nearly) complete lists of reflexive polytopes, as comparison with classifications in n=2,3,4 dimensions shows.
- We have used GAs to find (nearly) all five-dimensional reflexive polytopes with low numbers of vertices and points.
- From these we have extracted cases with $h^{1,1}(\Delta) = 1, 2$. There are many new ones, compared to the Schoeller-Skarke list. There are even cases with new Hodge numbers.
- Conjecture: There are precisely 15 reflexive polytopes Δ in five dimensions with $h^{1,1}(\Delta)=1$.

Outlook:

- Triangulations with GAs?
- Targeted search of reflexive polytopes (and triangulations) for cases with prescribed properties.

감사합니다