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Goal: Classify infinite distance limits in
moduli space

1. What towers become light?

2. How quickly?

3. How do various infinite-distance limits
fit together in one moduli space?
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Reminder:

Distance Conjecture (DC): in each infinite distance
limit, an infinite tower of particles becomes light
exponentially quickly:

(qb) 5 e ¢ d(¢,po)  (inPlanck units,

kg = 1)

for some O(1)
constant &

(Ooguri, Vafa ‘06)
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1. What towers become light?

Emergent String Conjecture (ESC): every infinite
distance limit is either

1. A decompactification limit
(in which the lightest tower is a KK tower)
OR
2. An “emergent string limit”
(in which the lightest tower consists of
the oscillator modes of a fundamental string)

(Lee, Lerche, Weigand "19)
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2. How quickly?
Sharpened Distance Conjecture: The DC holds with

1
d—2

a2

(i.e., in every infinite distance limit, the mass of
the lightest tower decreases at least this quickly)

(Etheredge, BH, Kaya, Qiu, Rudelius '22)
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2. How quickly?
Sharpened Distance Conjecture: The DC holds with

1
d—2

a2

(i.e., in every infinite distance limit, the mass of
the lightest tower decreases at least this quickly)

Related to Emergent String Conjecture, because

typically dose = ——— and axk > ——
ypicailly Qosc = ) an KK ek

(Etheredge, BH, Kaya, Qiu, Rudelius '22)
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3. How do various infinite-distance limits
fit together in one moduli space?

Sharpened Scalar Weak Gravity Conjecture:
For each modulus ¢ there is a particle satisfying
1 Om 1

- m

JCop 06 ~ N2

(Etheredge, BH, Kaya, Qiu, Rudelius ’22,
building on Palti ’17; Calderon-Infante, Uranga, Valenzuela "20) 05



3. How do various infinite-distance limits
fit together in one moduli space?

Sharpened Scalar Weak Gravity Conjecture:
For each modulus ¢ there is a particle satisfying

1 Om S 1
- > m
z\/ G¢¢ aQb iV, d—2 \
mass
T

scala scalar sharpened
coupling charge O(1) factor
(metric on

moduli space)
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3. How do various infinite-distance limits
fit together in one moduli space?

Sharpened Scalar Weak Gravity Conjecture:
For each modulus ¢ there is a particle satisfying

1 Om 1 \
> \ax 6\
V G¢> a¢ \)(\(G N
P A 6(,\‘0 \I mass
scalrflr ,‘9@ sharpened
coupling o ige 0(1) factor
\0®

(metri e
moduli sg Py
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3. How do various infinite-distance limits
fit together in one moduli space?

Sharpened Scalar Weak Gravity Conjecture:

With n > 1 moduli, same as convex hull condition:

Define:
G = _ Odlogm
ICI17 = GV ¢

C.H.C.

—

C2 .
f A,_par‘tltcle
// ~ species
1
—' ||C|| ﬁ : G

(Etheredge, BH, Kaya, Qiu, Rudelius ’22,
building on Palti ’17; Calderon-Infante, Uranga, Valenzuela "20)
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3. How do various infinite-distance limits
fit together in one moduli space?

Example: Type IIB string theory on S
Cp

Co

F1 wind

‘ D1 wind
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~
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3. How do various infinite-distance limits
fit together in one moduli space?

Example: Type IIB string theory on S

Cp
—oT 4— geodesic
Mtower X € distance
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~. 7/;7/ — R
i (IFll=1)
Co
dlogm -
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3. How do various infinite-distance limits
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Example: Type IIB string theory on S

—aT 4— geodesic

Miower X € .
distance

. d¢’b tangent to geodesic
T __

i (I7l=1)

dlogm
dr

7’;
Co
=7

o =

D1 wind

F1 wind

Convex hull determines a.(6)! 07




3. How do various infinite-distance limits
fit together in one moduli space?

Example: Type IIB string theory on S

D1 wind

F1 wind

Convex hull determines a.(6)!




3. How do various infinite-distance limits
fit together in one moduli space?

Tower hull related to dualities!

G

F1 wind

‘ D1 wind
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3. How do various infinite-distance limits

fit together in one moduli space?

Tower hull related to dualities!

Type 1IB
decompact.
(9s fixed) 4Kk

Co
Type lIA
decompact.

Dual T A
(gs fixed) ual "ype

decompact.

08



3. How do various infinite-distance limits
fit together in one moduli space?

Tower hull related to dualities!

Cp
Emergent Dual emergent
string limit string limit
(i e
R/V ' fixed

D1 wind

F1 wind ¢
M theory ¥ decompact.
(7 fixed) 08



3. How do various infinite-distance limits
fit together in one moduli space?

Tower hull related to dualities!

KK dual
Type lIB

Type lIB

Type lIA dual
Type IIA

1 wind

M-theory

08



3. How do various infinite-distance limits
fit together in one moduli space?

In general, assuming that

i. The moduli space M is flat

ii. The tower convex hull is same for all ¢ € M
(the generating towers do not move)

iii. Sharpened SWGC is satisfied by infinite towers
(the “tower SWGC”)

...then the sharpened Distance Conjecture follows.

In such cases, the tower convex hull concisely
summarizes all infinite-distance limits.
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i. The moduli space is flat?
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Xi. The moduli space is flat? =

SL(2,R)

SL(2,Z)xS0(2)

xR
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Xi. The moduli space is flat? M= J220 R

Ignored axions so far. Actual tower hull is:

e
1-BPS Towers

4 dense on cone

v

1
§-BPS Towers
dense on circle

(Etheredge, BH, Kaya,
Cﬁ Qiu, Rudelius '22)

Connecting the (sharpened) SWGC and DC becomes

more subtle, see Etheredge 2307.xxxxx 10



Xi. The moduli space is flat? M= J220 R

We recover previous result upon taking a flat slice:

Flat slice |
(Co = 0),

v

_______________ Cri

Every geodesic (straight line) in slice goes to infinite dist.

and every infinite dist. limit is dual to one in slice
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Xi. The moduli space is flat? M= J220 R

Different flat slices are related by dualities
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ii. Towers generating hull don’t move?

11



X ii. Towers generating hull don’t move?

In many examples, they do!

G

(Etheredge, BH, McNamara, Rudelius,
Ruiz, Valenzuela, 2306.16440)

Co

\V See Irene & Ignacio’s talks
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X ii. Towers generating hull don’t move?

In many examples, they do!

G

(Etheredge, BH, McNamara, Rudelius,
Ruiz, Valenzuela, 2306.16440)

Co

\V See Irene & Ignacio’s talks

This talk: focus on exs where this doesn’t happen
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iii. Sharpened (tower) SWGC satisfied?
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v iii. Sharpened (tower) SWGC satisfied?

e Etheredge, BH, Kaya, Qiu, Rudelius '22:

- True in maximal SUGRA (at least d > 4)

- Highly non-trivial bottom-up evidence in vector
multiplet moduli space in d > 5 (related to TWGC)

e Etheredge, BH, McNamara, Rudelius, Ruiz,
Valenzuela ’22:

- True in 9d V. = 1 theories (in highly nontrivial way)
See Irene’s and Ignacio’s talks
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SWGC in maximal SUGRA

M

Etheredge, BH, Kaya,
Qiu, Rudelius ’22

U duality plays essential role

G
_G2XH

=9

= Ot Oy N1 0 ©

G H Riw R
SL(2,R) x SO(1, 1) SO(2) oel o
SL(3,R) x SL(2,R) SO(3) xSO(2) (oo (@1)

SL(5,R) SO(5) = o

Spin(5, 5) Spin(5) x Spin(5) S O
Egs) USp(8) 27 27
Er) SU(8) 56 Adj =133
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SWGC in maximal SUGRA

Etheredge, BH, Kaya,
Qiu, Rudelius ’22

U duality plays essential role

G

MZGzXH

branching to
stabilizer H

d G H RS, R
9|SL(2,R) x SO(1,1) SO(2) ol O
8|SL(3,R) x SL(2,R) SO(3) x SO(2) (o,0) (T,1)
71 SL(5,R) SO(5) = o

6 Spin(5, 5) Spin(5) x Spin(5) S O

5 Egs) USp(8) 27 27
4 Er) SU(8) 56 Adj =133
d H Rinod Ryart R

9 SO(2) Mol miGH m|

8| SO(3) x SO(2) (m,1) @ (1,m) (O,0) (O,1)

7 SO(5) [ H O
6|Spin(5) x Spin(5) (O,o) (S,9) O1)+ (1,00
5| USp(s) E q A

4 suE) E 0. Adj @E
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. . Etheredge, BH, Kaya,
SWGC in maximal SUGRA Q. Rudelive 22
Use rep. thy. to fix form of %-BPS bound, shortening
condition, and scalar charge, e.g.,ind =7

H=80() ¢(€m ZeH shortcond.€ O

14
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. . Etheredge, BH, Kaya,
SWGC in maximal SUGRA Q. Rudelive 22
Use rep. thy. to fix form of %-BPS bound, shortening
condition, and scalar charge, e.g.,ind =7

H=80() ¢(€m ZeH shortcond.€ O
M2=1lgdz, v e, 7, =0

Cap = Z‘wzb 25ab <_normallzed by KK modes

¢* = CanC® =
Dual to tower hull is set P € o s.t. P - C%_Bps <1
= largest two eigenvals satisfy \{ + Ay <1

Find (P?)ax = 5
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. . Etheredge, BH, Kaya,
SWGC in maximal SUGRA Q. Rudelive 22
Use rep. thy. to fix form of %-BPS bound, shortening
condition, and scalar charge, e.g.,ind =7

H=80() ¢(€m ZeH shortcond.€ O
M2=1lgdz, v e, 7, =0

Cap = Z‘wzb 25ab <_normallzed by KK modes

¢? = Ca(™ =

Dual to tower hull is set P € o s.t. P - C%_Bps <1

= largest two eigenvals satisfy \{ + Ay <1

. 1 1
Find (P?)max =5 = (()min = =T v
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SWGC in maximal SUGRA Etheredge, BH, Kaya,

Qiu, Rudelius ’22
Continue to lower dimensions...

d H Rmod Rpart Rstr

9 SO(2) a1 o®1 O

8| SO(3) x SO(2) (o, 1) & (1,tm) (T,0) (0, 1)

7 SO(5) | H O
6/Spin(5) x Spin(5) (C.0) (S,8) @, 1)+ (1,0)
5 USp(s) E A A

4 su@) E 0. Adj @E
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SWGC in maximal SUGRA Etheredge, BH, Kaya,

Qiu, Rudelius ’22

Continue to lower dimensions...

d H Rmod Rpart Rstr

9 SO(2) a1 ool O

8 SO(3) x SO(2) (m,1)® (1,rm) (O,0) O,1)

7 SO(5) ma; H O
6|Spin(5) x Spin(5) (O,0) (S,9) (O,1) + (1,00
5/ USp(s) E A A

i suE) E A Adj @E

Calculations are highly non-trivial!

...but everything works out.
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(Etheredge, BH, McNamara,

Taxonomy Of tower h u I IS Rudelius, Ruiz, Valenzuela, to appear)

A. Consider a flat slice of the moduli space, within which
every line goes to infinite distance

B. Assume the generating towers remain fixed across
this slice

C. Assume the sharpened DC / Emergent String Conjecture

16
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B. Assume the generating towers remain fixed across
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C. Assume the sharpened DC / Emergent String Conjecture

Classify the possible tower hulls within each slice!*
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Taxonomy Of tower h u I IS (Etheredge, BH, McNamara,

Rudelius, Ruiz, Valenzuela, to appear)

A. Consider a flat slice of the moduli space, within which
every line goes to infinite distance

B. Assume the generating towers remain fixed across
this slice

C. Assume the sharpened DC / Emergent String Conjecture

Classify the possible tower hulls within each slice!*

*Technical assumption: tangent space of slice cuts orthogonally
through faces of SWGC hull as with, e.g., fixed plane of a symmetry
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Types of towers

Per Emergent String Conjecture, generating towers
should be either (a) KK towers or
(b) string oscillator towers

(k) d+k—2 (decompact.toad+ k
(@) [I<kll =/ 77—y
KK k(d—2) dimensional vacuum*)

1 (at least for perturbative
d—2 emergent string limits)

(b) HCOSCH =

(*See Irene and Ignacio’s talks for caveats)
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Angle between two KK towers

18



Angle between two KK towers

k + [ dimensions decompactify

18



Angle between two KK towers

[
- =
N |
N '
N
AN d+k+0—2
N - - =
NN (k+£0)(d—2)
<& \\ i /
X N H
> EONN by
AN 9 N ] /
NN i,

~

k)
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Angle between two KK towers

&«
- =
N '
N )
N
N d+k+0—2
N - v - =
NN (k+£0)(d—2)
4 \\ i /
X N H
> EONN by
\9/ 9 \\ : /
\\\ek,ﬁ/
N axd
]

) Kt
ORI T AN A vk —2)d+ 0 —2)
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Angle between KK, emergent string towers

k OSC
LN ]
AN |
\\ |
AN |
\\ |
AN |
\\ | 1
\\ |
Q)X \\\ : d_2
'5/@) ’{\ \\ |
AN N !
DN
N
®
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Angle between KK, emergent string towers

line between towers
must be tangent to circle

k osc to satisfy CHC
e & SO
N pr- | S
\\ // | \\\
N /7 | \
¢ | N
AR \
/N 1 \
// \\ | \
o N | d—2 \
/ % \\ | \
/ /5( '5\ N ] \
) < D) N | \
| \9/ N | {
| N |
| \‘ |
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Angle between KK, emergent string towers

line between towers
must be tangent to circle

k osc to satisfy CHC
“ —— — __
\\\ //// -q‘ \\\\
7 | N
N s
AN !
Y | \
o \
/ S : 1 \
/
/ \\ 1v/d—2 \\
/ Q)X \\ | \
I/ '5@ ’g\ \\ : \\
| \9/ 9 \\ Hkl \
I N
| ‘/\: ‘,

\/T (formally ¢ — oo
costy =/ ——F——= T
d+k—2 limit of prev result) 19



Classifying 2d slices — angle constraint

would need 291’2 —+ 29272 + 205 =27
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Classifying 2d slices — setup

Assume D = d + k < 11 for every decompact. limit
(due to supersymmetry)

Assume D < 10 for decompact. limits
adjacent to emergent string limits (no 11d strings)

(Implies flat slice has dimensionn < 11 — d)

Due to angle constraint and D bound, finitely many
n = 2 flat slices possible; tabulate with a computer

21



Classifying 2d slices — 9d results

Ind =9, only one option:

(1,1,00,1,00)

Same as maximal SUGRA! 5



Classifying 2d slices — 8d results

Ind = 8, two options:
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Classifying 2d slices — 8d results

Both are slices of the 8d maximal SUGRA tower hull
1
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Classifying 2d slices — 8d results

Both are slices of the 8d maximal SUGRA tower hull
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Classifying 2d slices — 7d results

In d = 7, two options:
1

(1,3, 0,3,00,3) (1,2,2,1,00) 24



Classifying 2d slices — 6d results

In d = 6, eleven options!




Assessment

In cases we’ve checked, these are all orthogonal
slices of maximal SUGRA hull (but could still be
realized by different theories)

Need to consider n > 2 slices; have some results
but not shown here.

There seems to be a unique answer forn = 11 — d
(except whend = 10), i.e., the maximal SUGRA hull

Trying to relax our assumptions and obtain more
comprehensive results...

Thank you for listening!

26
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