Scalar potentials from (classical) string theory

David Andriot

LAPTh, CNRS, Annecy, France

2208.14462 (with L. Horer) 2209.08015 (with P. Marconnet, M. Rajaguru, T. Wrase) 2212.04517 (with L. Horer, G. Tringas) 2305.07480 and more...

String Pheno 2023 - 03/07/23

IBS, Daejeon, South Korea

Consider 4d theory of scalar fields φ^i with scalar potential V:

$$\int \mathrm{d}^4 x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$$

minimally coupled to gravity.

 \longrightarrow if EFT of quantum gravity, what are the properties of V?

Consider 4d theory of scalar fields φ^i with scalar potential V:

$$\int \mathrm{d}^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$$

minimally coupled to gravity.

 \longrightarrow if EFT of quantum gravity, what are the properties of V?

Consider 4d theory of scalar fields φ^i with scalar potential V:

$$\int \mathrm{d}^4 x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$$

minimally coupled to gravity.

$$\longrightarrow$$
 if EFT of quantum gravity, what are the properties of V?

Properties:
$$V > 0, V < 0$$
 $\partial_{\varphi}V = 0, \partial_{\varphi}V \neq 0, \nabla V$ Critical points (dS, AdS), slope (steep/flat), single/multi-field $V'', g^{ij}\nabla_j\partial_k V, m^2$ Stability, mass spectrum

2 motivations:

- Swampland program (characterisation of Q.G. EFTs)
- String Pheno \longrightarrow cosmology (accelerated expansion phases, dark energy). dS solution \longleftrightarrow cosmo. constant $\Lambda = V > 0$, single-field flat $V \iff$ inflation

I. The bulk – critical point (dS solutions, AdS mass spectrum)

I. The bulk – critical point (dS solutions, AdS mass spectrum)

II. The asymptotics – tail: slope (dS conj., TCC, ATCC)

I. The bulk – critical point (dS solutions, AdS mass spectrum)

II. The asymptotics – tail: slope (dS conj., TCC, ATCC)

III. In between – interesting, transcient physics? (species scale, bump, multifield inflation?)

For $\varphi \sim e^{-\phi}$, r/l_s , **bulk** of field space: strong coupling, stringy regime asymptotics: weak coupling, low energy \longrightarrow classical

But classical regime starts away from asymptotics / grey zone in the bulk at $e^{\phi} \lesssim 1$, $r/l_s \gtrsim 1$

For φ~ e^{-φ}, r/l_s , bulk of field space: strong coupling, stringy regime asymptotics: weak coupling, low energy → classical
But classical regime starts away from asymptotics / grey zone in the bulk at e^φ ≤ 1, r/l_s ≥ 1
De Sitter critical points?
KKLT, LVS: include (non)-perturbative contributions → in the bulk Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 → debate on validity of approximations/regimes/control
Recent LVS example in grey zone: C. Crinò, F. Quevedo, R. Valandro '20 (see also Junghans '22 Bento et al '23)

For $\varphi \sim e^{-\phi}$, r/l_s , bulk of field space: strong coupling, stringy regime **asymptotics**: weak coupling, low energy \longrightarrow classical But classical regime starts away from asymptotics / grey zone in the bulk at $e^{\phi} \lesssim 1$, $r/l_s \gtrsim 1$ **De Sitter** critical points? **KKLT, LVS**: include (non)-perturbative contributions \longrightarrow in the bulk Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 → debate on validity of approximations/regimes/control Recent LVS example in grey zone: C. Crinò, F. Quevedo, R. Valandro '20 (see also Junghans '22 Bento et al '23) **Classical** de Sitter string backgrounds? Andriot '19

1. find solution in 10d supergravity: candidate solution

 \longrightarrow recent progress, many found (IIA/B), **database**: dS₄ × 6d group manifold

For $\varphi \sim e^{-\phi}$, r/l_s , bulk of field space: strong coupling, stringy regime **asymptotics**: weak coupling, low energy \longrightarrow classical But classical regime starts away from asymptotics / grey zone in the bulk at $e^{\phi} \lesssim 1$, $r/l_s \gtrsim 1$ **De Sitter** critical points? **KKLT, LVS**: include (non)-perturbative contributions \longrightarrow in the bulk Kachru, Kallosh, Linde, Trivedi '03, Conlon, Quevedo '05 → debate on validity of approximations/regimes/control Recent LVS example in grey zone: C. Crinò, F. Quevedo, R. Valandro '20 (see also Junghans '22 Bento et al '23) **Classical** de Sitter string backgrounds? Andriot '19 **1.** find solution in 10d supergravity: candidate solution \longrightarrow recent progress, many found (IIA/B), **database**: dS₄ × 6d group manifold

2. verify that solution obeys $e^{\phi} < 1, r > l_s, \dots$ Difficult to check

typically not well realised / boundary of validity /grey zone \longrightarrow in the bulk

(no parametric control)

From 10d supergravity solution (database IIA/B) $dS_4 \times 6d$ group manifold \rightarrow dimensional reduction / consistent truncation to 4d theory with V Automatized into code MSSV.nb : 10d solutions $\rightarrow g_{ij}(\varphi^k), V(\varphi^k)$

Andriot, Marconnet, Rajaguru, Wrase '22

From 10d supergravity solution (database IIA/B) $dS_4 \times 6d$ group manifold \longrightarrow dimensional reduction / consistent truncation to 4d theory with V Automatized into code MSSV.nb : 10d solutions $\longrightarrow g_{ij}(\varphi^k), V(\varphi^k)$

Ex.: m_{5577}^+4 (2 O_5 , 2 O_7)

Andriot, Marconnet, Rajaguru, Wrase '22

From 10d supergravity solution (database IIA/B) $dS_4 \times 6d$ group manifold \longrightarrow dimensional reduction / consistent truncation to 4d theory with V Automatized into code MSSV.nb : 10d solutions $\longrightarrow g_{ij}(\varphi^k), V(\varphi^k)$

Ex.: m_{5577}^+4 (2 O_5 , 2 O_7)

A whole region (towards asymptotics) where classical regime / **trustable** V

Andriot, Marconnet, Rajaguru, Wrase '22

From 10d supergravity solution (database IIA/B) $dS_4 \times 6d$ group manifold \longrightarrow dimensional reduction / consistent truncation to 4d theory with V Automatized into code MSSV.nb : 10d solutions $\longrightarrow g_{ij}(\varphi^k), V(\varphi^k)$

Ex.: m_{5577}^+4 (2 O_5 , 2 O_7)

A whole region (towards asymptotics) where classical regime / trustable V

$$V^{\text{IIB}}(\varphi^{i}) = \frac{M_{p}^{2}}{2} \frac{e^{2\phi}}{vol_{6}} \left(-R_{6} + \frac{1}{2} |H_{3}|_{\text{int}}^{2} - e^{\phi} \sum_{p=3,5,7,9} \frac{T_{10}^{(p)}}{p+1} + \frac{e^{2\phi}}{2} \left[|F_{1}|_{\text{int}}^{2} + |F_{3} - C_{0} \wedge H_{3} + F_{1} \wedge B_{2}|_{\text{int}}^{2} + |F_{5} - C_{2} \wedge H_{3} + F_{3} \wedge B_{2} - C_{0} \wedge H_{3} \wedge B_{2} + \frac{1}{2} F_{1} \wedge B_{2} \wedge B_{2} \Big|_{\text{int}}^{2} \right] \right)$$
(also for Mink., AdS sol.)

 $T^{(p)}$

 \longrightarrow check (in)stability

All dS solutions found are **perturbatively unstable**: at least one tachyonic field/maximum in 4d V

Very unstable: $\eta_V < -1$

not ok for single-field slow-roll inflation multi-field, non-geodesic inflation? (tuned) quintessence?

More dedicated searches of specific solutions?

Andriot '21

 \rightarrow check (in)stability

All dS solutions found are **perturbatively unstable**: at least one tachyonic field/maximum in 4d V

Very unstable: $\eta_V < -1$

not ok for single-field slow-roll inflation multi-field, non-geodesic inflation? (tuned) quintessence?

More dedicated searches of specific solutions?

Andriot '21

Summary: « classical » dS solutions: in the bulk, grey zone; unstable
At hand many examples of $g_{ij}(\varphi^k)$, $V(\varphi^k)$ away from dS critical point.Probably no dS_d solution with d > 4 (related to susy)Andriot, Horer '22

AdS solutions? Many. Critical points of V < 0 in consistent truncations

Study of V'', and mass spectrum (+ may involve KK modes)

 \rightarrow claim:

Andriot, Horer, Tringas '22

AdS solutions? Many. Critical points of V < 0 in consistent truncations

Study of V'', and mass spectrum (+ may involve KK modes) \rightarrow claim: Andriot, Horer, Tringas '22

Mass bound: in AdS_d , $(d \ge 4)$, radius l, one scalar with mass: $m^2 l^2 \le -2$ Some justification from asymptotics of V, V'' (ATCC) \longrightarrow See talk Ludwig Horer + comparison to data AdS solutions? Many. Critical points of V < 0 in consistent truncations

Study of V'', and mass spectrum (+ may involve KK modes) \rightarrow claim: Andriot, Horer, Tringas '22

Mass bound: in AdS_d , $(d \ge 4)$, radius l, one scalar with mass: $m^2 l^2 \le -2$ Some justification from asymptotics of V, V'' (ATCC) \longrightarrow See talk Ludwig Horer + comparison to data

BF bound:
$$d = 4: m^2 l^2 \ge -2.25$$

 $d = 5: m^2 l^2 \ge -4$ \longrightarrow Perturbatively unstable AdS \checkmark with our bound
 $d = 6: m^2 l^2 \ge -6.25$
 $d = 7: m^2 l^2 \ge -9$

AdS_d	N	Specification	Spectrum reference	$\frac{\text{Scalar lowest}}{m^2 l^2}$
	8 2 1 1 1	AdS ₄ , M-th., with: SO(8) $SU(3) \times U(1)$ G_2 $U(1) \times U(1)$ SO(3)	[47, Tab. 4] [48]	-9/4 -2.222 -2.242 -2.25 -2.245
d = 4	1 2 3 1 1 1 1	AdS ₄ × S ⁶ , IIA, with: G_2 $SU(3) \times U(1)$ $SO(3) \times SO(3)$ SU(3) U(1) \varnothing U(1)	[49, App. B] [50, App. A]	-2.24158 -20/9 -9/4 -20/9 -2.23969 -2.24943 -2.24908
	1 1	DGKT, IIA DGKT-like Branch A1-S1, IIA	[37,51] [52, Tab. 2]	$> 0 \\ -2$
	1 1	KKLT, IIB LVS, IIB	[35, 53] [54, Sec. 2]	≥ 0 ≥ 0
	1 2 4	S-fold, IIB, with: $U(1)^2$ $U(1)^2$ SO(4)	[55]	$^{-2}_{-2}_{-2}$
d = 5	8 2	AdS ₅ × S ⁵ , IIB, with: SO(6) $SU(2) \times U(1)$	[56] [57, Tab. D.4]	$^{-4}_{-4}$
d = 7	1	$AdS_7 \times S^3$, IIA	[58]	-8

Susy AdS_d (stable): $m^2 l^2 \leq -2$ in most examples

AdS_{d}	N	Specification	Spectrum reference	$\frac{\text{Scalar lowest}}{m^2 l^2}$
d = 4	8 2 1 1 1	AdS ₄ , M-th., with: SO(8) $SU(3) \times U(1)$ G_2 $U(1) \times U(1)$ SO(3)	[47, Tab. 4] [48]	-9/4 -2.222 -2.242 -2.25 -2.245
	1 2 3 1 1 1 1	AdS ₄ × S ⁶ , IIA, with: G_2 $SU(3) \times U(1)$ $SO(3) \times SO(3)$ SU(3) U(1) \varnothing U(1)	[49, App. B] [50, App. A]	-2.24158 -20/9 -9/4 -20/9 -2.23969 -2.24943 -2.24908
	1 1	DGKT, IIA DGKT-like Branch A1-S1, IIA	[37,51] [52, Tab. 2]	$> 0 \\ -2$
	1 1	KKLT, IIB LVS, IIB	[35, 53] [54, Sec. 2]	≥ 0 ≥ 0
	1 2 4	S-fold, IIB, with: $U(1)^2$ $U(1)^2$ SO(4)	[55]	$-2 \\ -2 \\ -2$
d = 5	8 2	AdS ₅ × S ⁵ , IIB, with: SO(6) $SU(2) \times U(1)$	[56] [57, Tab. D.4]	-4 -4
d = 7	1	$AdS_7 \times S^3$, IIA	[58]	-8

Susy AdS_d (stable): $m^2 l^2 \leq -2$ in most examples

Except: KKLT, LVS, DGKT (rigid, susy): $m^2 l^2 \ge 0$

- → already heavily debated in literature...
- \longrightarrow KKLT, LVS: maybe to far in the bulk w.r.t. asymptotic arg.
- → DGKT... Warping effect on mass spectrum?

Junghans '20, Marchesano, Palti, Quirant, Tomasiello '20

Work in progress with George Tringas

AdS_{d}	N	Specification	Spectrum reference	$\frac{\text{Scalar lowest}}{m^2 l^2}$
d = 4	8 2 1 1 1	AdS ₄ , M-th., with: SO(8) $SU(3) \times U(1)$ G_2 $U(1) \times U(1)$ SO(3)	[47, Tab. 4] [48]	-9/4 -2.222 -2.242 -2.25 -2.245
	1 2 3 1 1 1 1	AdS ₄ × S ⁶ , IIA, with: G_2 $SU(3) \times U(1)$ $SO(3) \times SO(3)$ SU(3) U(1) \varnothing U(1)	[49, App. B] [50, App. A]	-2.24158 -20/9 -9/4 -20/9 -2.23969 -2.24943 -2.24908
	1 1	DGKT, IIA DGKT-like Branch A1-S1, IIA	[37,51] [52, Tab. 2]	$> 0 \\ -2$
	1 1	KKLT, IIB LVS, IIB	[35, 53] [54, Sec. 2]	≥ 0 ≥ 0
	1 2 4	S-fold, IIB, with: $U(1)^2$ $U(1)^2$ SO(4)	[55]	$-2 \\ -2 \\ -2$
d = 5	8 2	AdS ₅ × S ⁵ , IIB, with: SO(6) $SU(2) \times U(1)$	[56] [57, Tab. D.4]	$^{-4}_{-4}$
d = 7	1	$AdS_7 \times S^3$, IIA	[58]	-8

Susy AdS_d (stable): $m^2 l^2 \leq -2$ in most examples

Except: KKLT, LVS, DGKT (rigid, susy): $m^2 l^2 \ge 0$

- → already heavily debated in literature...
- → KKLT, LVS: maybe to far in the bulk w.r.t. asymptotic arg.
- → DGKT... Warping effect on mass spectrum?

Junghans '20, Marchesano, Palti, Quirant, Tomasiello '20

Work in progress with George Tringas

 $\frac{|V'|}{V} > c$: de Sitter swampland conjecture: Obied, Ooguri, Spodyneiko, Vafa '18 V > 0Refinements — only true in the **asymptotics** of field space Trans-Planckian Censorship Conjecture (TCC): $\varphi \to \infty$, $\frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$ Bedroya, Vafa '19 $\left(d \ge 4: \frac{|V'|}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}}\right)$ $e^{-\sqrt{\frac{2}{3}}(\varphi-\varphi_i)}$ Asymptotics of field space ~ string classical regime $V(\varphi)$ Obstruction to dS _____ difficulties with in the asymptotics classical dS Link made precise with **supergravity no-go theorems**: no-gos against dS_d reformulated in the form $\frac{|V'|}{V} \ge c$ $c \geq \frac{2}{\sqrt{(d-1)(d-2)}}$ Andriot, Horer '22 Many supergravity compactif. potentials obey TCC bound Andriot, Cribiori, Erkinger '20

 $\frac{|V'|}{V} > c$: de Sitter swampland conjecture: V > 0Obied, Ooguri, Spodyneiko, Vafa '18 Refinements — only true in the **asymptotics** of field space Trans-Planckian Censorship Conjecture (TCC): $\varphi \to \infty$, $\frac{|V'|}{V} \ge \sqrt{\frac{2}{3}} \approx 0.82$ Bedroya, Vafa '19 $\left(d \ge 4: \frac{|V'|}{V} \ge \frac{2}{\sqrt{(d-1)(d-2)}}\right)$ $e^{-\sqrt{\frac{2}{3}}}(\varphi-\varphi_i)$ Asymptotics of field space ~ string classical regime $V(\varphi)$ Obstruction to dS _____ difficulties with in the asymptotics classical dS Link made precise with **supergravity no-go theorems**: no-gos against dS_d reformulated in the form $\frac{|V'|}{V} \ge c$ $c \geq \frac{2}{\sqrt{(d-1)(d-2)}}$ Andriot, Horer '22 Many supergravity compactif. potentials obey TCC bound Andriot, Cribiori, Erkinger '20 (Possible exception: $\frac{|V'|}{V} \ge \sqrt{\frac{2}{7}} \approx 0.53$ Calderon-Infante, Ruiz, Valenzuela '22) (Multifield: Strong de Sitter conjecture: $\frac{\nabla V}{V} \ge \sqrt{2}, \frac{2}{\sqrt{d-2}}$ Rudelius '21, '22)

→ Cosmology in the asymptotics of field space? Very difficult

No slow-roll single-field inflation Multi-field non-geodesic inflation? Quintessence: very tight/boundary of possibility

..., Rudelius '21, '22, Andriot, Horer '22, Calderon-Infante, Ruiz, Valenzuela '22, Shiu, Tonioni, Tran '23, Cremonini, Gonzalo, Rajaguru, Tang, Wrase '23, ...

III. In between – transcient physics?

One motivation: comparison of V to species scale Λ_s

Species scale: energy scale at which quantum gravity effects become relevant: $\Lambda_s < M_p$

Dvali, Gomez, Lüst, Redi '07-'10

.

Castellano, Herraez, Ibanez '21, '22, Long, Montero, Vafa, Valenzuela '21

Cribiori, Lüst, Staudt '22, van de Heisteeg, Vafa, Wiesner, Wu '22, '23

Typical EFT energy scale: $\frac{\sqrt{V}}{M_p}$ $\longrightarrow \Lambda_s \ge \frac{\sqrt{V}}{M_p}$ (see Hebecker, T. Wrase '18, M. Scalisi, I. Valenzuela '18) One motivation: comparison of V to species scale Λ_s

Species scale: energy scale at which quantum gravity effects become relevant: $\Lambda_s < M_p$

Dvali, Gomez, Lüst, Redi '07-'10

Castellano, Herraez, Ibanez '21, '22, Long, Montero, Vafa, Valenzuela '21

Cribiori, Lüst, Staudt '22, van de Heisteeg, Vafa, Wiesner, Wu '22, '23

Typical EFT energy scale: $\frac{\sqrt{V}}{M_p}$ $\longrightarrow \Lambda_s \ge \frac{\sqrt{V}}{M_p}$ (see Hebecker, T. Wrase '18, M. Scalisi, I. Valenzuela '18)

In addition: moduli dependence $\Lambda_s(\varphi) \longrightarrow$ Compare to such a V (dS max. in bulk, asympt. to 0) Behaviour: not so easy to find!

Use 10d supergravity dS solutions found + scalar potentials

Look at tachyonic direction (in classical regime direction): asymptotic behaviour?

Use 10d supergravity dS solutions found + scalar potentials

Look at tachyonic direction (in classical regime direction): asymptotic behaviour?

Use solution m_{5577}^+4

V: 14 fields \longrightarrow choose field trajectory

→ steepest descent path: starts with tachyonic direction, then deviates

Compare V and Λ_s

In between region

Bump due to linear dependence

Bump due to linear dependence

 $\begin{array}{c} & & \\ 0.0030 \\ 0.0025 \\ 0.0020 \\ 0.0015 \\ 0.0010 \\ 0.0005 \\ \hline \\ 2 \\ 2 \\ 4 \\ 6 \\ \hline \\ \end{array}$ Distance

Origin of the bump? Comparison: $\frac{|\nabla \Lambda_s|}{\Lambda_s} \leq \frac{|\nabla V|}{V}$ Same origin?

Show that not due to axion (linear dependence) but purely saxions (dilaton, radii, exponentials)

Show that not due to axion (linear dependence) but purely saxions (dilaton, radii, exponentials)

Show that purely exponential potential can generate bump: $\sum_{n=1}^{n} \frac{1}{n} = \sum_{n=1}^{n} \frac{1}{n}$

$$V(\hat{\varphi}) = \sum_{i=1}^{n} A_i \ e^{a_i \varphi} \ , \ a_1 < \dots < a_n < 0 \ , \ A_n > 0$$

a bump in $|V'|/V$ if $A_{n-1} > 0$

Show that not due to axion (linear dependence) but purely saxions (dilaton, radii, exponentials)

6 8 10 ¢

4

1.0

0.8

Show that purely exponential potential can generate bump:

 $V(\hat{\varphi}) = \sum_{i=1}^{n} A_i \ e^{a_i \hat{\varphi}} \ , \ a_1 < \dots < a_n < 0 \ , \ A_n > 0$

a bump in |V'|/V if $A_{n-1} > 0$

→ different origin

But... different compactification... Species scale on group manifold?

In between region and cosmology: realise valid transcient cosmological scenarios? Transcient: see e.g. Marconnet, Tsimpis '22

Enough e-folds?

Slow-roll inflation points? Difficult: IIA: $\epsilon_V = 0.38306$, $\eta_V = -0.16264$

Blaback, Danielsson, Dibitetto '13

In between region and cosmology: realise valid transcient cosmological scenarios? Transcient: see e.g. Marconnet, Tsimpis '22

Enough e-folds?

Slow-roll inflation points? Difficult: IIA: $\epsilon_V = 0.38306$, $\eta_V = -0.16264$

Blaback, Danielsson, Dibitetto '13

Transcient, multi-field non-geodesic scenarios? ----- Work in progress with Paul Marconnet

 \longrightarrow accelerated expansion is doomed to stop?!

Consider $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \partial_\mu \varphi^i \partial^\mu \varphi^j - V \right)$ as EFT of quantum gravity \longrightarrow properties of V ?

 \rightarrow suited for realistic cosmology?

I. The bulk

- dS critical points typically in the bulk \longrightarrow difficult to trust
- Database of dS solutions with V extending to classical regime

- Susy AdS_d , $(d \ge 4)$: one scalar with mass: $m^2 l^2 \le -2$

II. The asymptotics – tail

- TCC slope bound: well verified in supergravity compactif. $(d \ge 4)$
- Cosmology difficult in asymptotics
- ATCC: slope bound for V < 0

III. In between

- Comparison of V, Λ_s , rates $\frac{|\nabla \Lambda_s|}{\Lambda_s}$, $\frac{|\nabla V|}{V}$ and bumps
- Multifield transcient inflation?

Consider $\int d^4x \sqrt{|g_4|} \left(\frac{M_p^2}{2} \mathcal{R}_4 - \frac{1}{2} g_{ij} \overline{\partial_\mu \varphi^i} \partial^\mu \varphi^j - V \right)$ as EFT of quantum gravity \longrightarrow properties of V ?

 \rightarrow suited for realistic cosmology?

I. The bulk

- dS critical points typically in the bulk \longrightarrow difficult to trust
- Database of dS solutions with V extending to classical regime

- Susy AdS_d , $(d \ge 4)$: one scalar with mass: $m^2 l^2 \le -2$

II. The asymptotics – tail

- TCC slope bound: well verified in supergravity compactif. $(d \ge 4)$
- Cosmology difficult in asymptotics
- ATCC: slope bound for V < 0

Thank you for your attention!

III. In between

- Comparison of V, Λ_s , rates $\frac{|\nabla \Lambda_s|}{\Lambda_s}$, $\frac{|\nabla V|}{V}$ and bumps
- Multifield transcient inflation?

Good night, and good luck.

- Edward R. Murrow -

AZQUOTES