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Temperature map of the CMB

maximum likelihood posterior map 
Planck Collaboration



Polarization map of the CMB

Planck map smoothed with 5° filter



E-mode and B-mode
Even parity 

Can be generated from  
scalar (density),  
vector (vorticity),  
tensor (gravitational waves)

Odd parity 

Can be generated from  
vector (vorticity),  
tensor (gravitational waves)

Kamionkowski, Kovetz (2015)



The Cosmic Birefringence
E <-> B conversion by rotation of the linear polarization plane

• The intrinsic EE, BB, and EB power  
spectra 13.8 billion years ago would yield  
the observed EB as 
 
 
 

• One would find β by fitting ClEE,CMB – ClBB,CMB to the observed ClEB,obs 
using the best-fitting CMB model, and assuming the intrinsic EB 
to vanish, ClEB=0.
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Cosmic Birefringence in WMAP/Planck
Nearly full sky (fsky = 92%) analysis
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Stacked observed EB power spectrum
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• Mis-calibration angles make 
only small contributions 
thanks to the cancellation. 


• β = 0.34 ± 0.09 deg


• χ2 = 65.3 for DOF=72

3.6σ!!

Eskilt & Komatsu (2022)



No strong frequency dependence
Consistent with cosmic birefringence due to ℒ ∋ θFF̃

Sekilt (2022), Eskilt & Komatsu (2022)

• No evidence for frequency 
dependence:


• For β~(ν/150GHz)n, 
n = –0.20+0.41–0.39 (68% CL)


• Faraday rotation (n=–2) is 
disfavored. 



Parity-violation in galaxies?

• The 4pt correlation function 
is the lowest order statistics 
sensitive to parity.


• Hou+ (2022) [2206.03625] 
3.1σ (LOWZ), 7.1σ CMASS


• Philcox (2022) 
[2206.04227] 
2.9σ from CMASS sample



No parity-violation in the CMB
Measurement from the CMB Trispectrum

Philcox (2023)



Dirac delta and homogeneity
• Two-point correlation function ξ(r) = excess 

number of pairs beyond random at separation r  
 
 
 
where δ(x) is the density contrast, excess 
number density beyond mean:  
        δ(x) = density(x)/(mean density) - 1 

• Power spectrum is the Fourier transform of it: 
 
 

r

⇠(r) = h�(x)�(x+ r)i

h�(k)�(k0)i = (2⇡)3P (k)�D(k+ k0)

statistical homogeneity (translational invariance)



Parameterizing inhomogeneity
• Deviation from statistical homogeneity in the two-point 

functions will be evident in the off-diagonal correlation:


• Q: How does the inhomogeneity appear?


• A way to organize the off-diagonal correlations: K = -(k1+k2)


• The pattern of inhomogeneity is encoded in the function f!

h�(k1)�(k2)i = V P (k1)�
D
k1+k2

+
X

K

f(k1,k2,K)�Dk1+k2+K

h�(k1)�(k2)i|k1+k2 6=0 6= 0



cf. parameterizing anisotropy
• This is analogous to the BiPoSH (bipolar spherical harmonic) expansion to 

characterize the statistical anisotropy: 
 
 
 
 
 
 
 
 

ha`ma`0m0i = C`�``0�mm0 +
X

JM

(�1)m
0
h`,m; `0,�m0|J,MiAJM

``0

Example:  If we were to move with 
β~1 w.r.t. the CMB rest frame,


CMB would be statistically 
anisotropic (J=1, M=0) with

A10
``0 > 0

Jeong, Chluba, Dai, Kamionkowski, Wang (2014)



What makes ξ(r) inhomogeneous?
• Unknown systematics of the survey


• If something varies over the survey volume and that something modulates 
the amplitude of clustering


• Our Universe might be intrinsically inhomogeneous


• No compelling evidence so far, therefore, must be small!


• higher-order correlation functions


• Non-linaerities (e.g. position dependent power spectrum)


• Primordial three-point function → clustering fossil



Non-Gaussianity and homogeneity
Jeong & Kamionkowski (2012)

(local)

•  IF we have a non-linear coupling between primordial density fluctuations 
and a spectator field hp (JK coupling): 
 

•  THEN, density power spectrum we observe now has non-zero off-diagonal 
components: Fossil equation 
 

polarization basis (scalar, vector, tensor,…) 

power spectrum of new field

coupling amplitude

h�i(k1)�i(k2)i|hp(K) = V Pi(k1)�
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D
k1+k2+K



Why call clustering fossils?

• Inflaton(s) : a scalar field(s) responsible for inflation


• But, inflaton might not be alone. Many inflationary models need/introduce 
additional fields. But, direct detection of such fields turns out to be very hard:


• Additional Scalar: may not contribute seed fluctuations


• Vector: decays as 1/[scale factor] 


• Tensor: decays after coming inside of comoving horizon


• Clustering fossils may be the only way of detecting them!



SVT can be distinguished with εpij

• In a symmetric 3x3 tensor, we have 6 degrees of freedom, which are further 
decomposed by Scalar, Vector and Tensor polarization modes.


• They are orthogonal:


• Scalar (p=0,z): 


• Vector (p=x,y):                                                             where 


• Tensor [Gravitational Waves](p=x,+): transverse and traceless 
 

✏pij✏
p0,ij = 2�pp0

✏0ij / �ij ✏zij(K) / KiKj �K2/3

✏x,yij (K) / 1

2
(Kiej +Kjei) Kiei = 0

Ki✏
+,⇥
ij (K) = 0 �ij✏

+,⇥
ij (K) = 0



Effect of fossils on 2PCF

h�i(k1)�i(k2)i|hp(K) = V Pi(k1)�
D
k1+k2

+ h⇤
p(K)fp(k1,k2)"

p
ijk

i
1k

j
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D
k1+k2+K

• Statistical homogeneity is broken in the presence of the spectator field hp(K).


• Depending on the polarization, the way that the spectator affects clustering is 
different. How?


• I will show equi-correlation-function surfaces when hp(K) propagates 
upward.


• Without hp(K), we expect that it should be spherical.



ξ(r) with single scalar mode (p=0,z)

Jeong & Kamionkowski (2012)
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ξ(r) with single vector mode (p=x,y)

Jeong & Kamionkowski (2012)
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ξ(r) with single tensor mode (p=+,x)

Jeong & Kamionkowski (2012)
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Example: tensor clustering fossils
• For the single-field slow-roll inflation models (kt=k1+k2+k3), 

Maldacena (2003)

B⇣⇣hp(k1,k2,k3) =
1

2
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k32
+

P⇣(k2)

k31
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"pijk
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1

k21
⌘ �1

2

d lnP⇣(k)

d ln k
P⇣(k1)Php(k3)"

p
ij k̂
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1k̂

j
1

squeeze limit (k1≈k2≫k3)

• In the squeeze limit, long-wavelength tensor field rescales small scale wave-
vector: k2 → k2 - hijkikj (or length x2 → x2 + hijxixj)!


• Note: the local observer (use physical ruler, not the coordinate ruler) will not 
see the effect!



Interaction @ horizon crossing
Dai, Jeong & Kamionkowski (2013)

• After inflation, tensor (long) modes re-
enters horizon, and interact with density 
(small) modes:


• Note that the influence dies out as tensor 
mode itself decays after horizon re-entry.

�int.(k) = �2S(K)hp(K)"pij(K̂)k̂ik̂jT (k)⇣p(k)

S(K) ' 3

5


1� exp

✓
� 5

42
K2⌘2

◆�



Light deflection due to GW
ds2 = a2(⌘)

⇥
�d⌘2 + (�ij + hij)dx

idxj
⇤Jeong & Schmidt (2012)

• The light deflection changes the observed 
location of galaxies: the geodesic equation 
gives Δxμ


• The large scales (K→0) displacement field is 
 
 
which cancels the super-horizon 
contributions and (of course) we cannot 
observe the super horizon modes!

galaxy is here

galaxy is 
observed to be 

here

observer

x

x∼

�xi ! �1

2
hij
0 xj



Observable fossil amplitude
Dai, Jeong & Kamionkowski (2013)

Schmidt et al. (2013)

• Quadrupole power spectrum contribution 
(when K≪kF) from single-field slow-roll 
inflation


• large-scale (super-horizon) fossils cancel 
completely with projection


• small-scale fossil cancels partially with 
tensor-scalar interaction around horizon 
crossing

h�g(k1)�g(k2)i ' Pg(k1)�
D
k1+k2

+


1

2
(1� T�)

d lnP�(k1)

d ln k1
+ 2S(K)

�
Pg(k1)hp(K)"pijk

i
1k

j
1�

D
k1+k2+K



Fossils from other inflation models

• The large-scale cancelation happens only for the SFSR models


• With scalar-scalar-tensor correlation different from SFSR


• Power quadrupole can constrain kmin (beginning of inflation)


• clustering fossil signal can be big!


• e.g.  
Solid inflation  
 
Quasi-single field inflation

B /cc =
3

2

R
✏
P⇣(k)Ph(K)

B /cc = �⇡
2

2
w(⌫)

✓̇
2
0

H2
P⇣(k)Ph(K)

Dimastrogiovanni, Fasiello, Jeong & Kamionkowski (2014)

Dimastrogiovanni, Fasiello & Kamionkowski (2015)



LSS fossil estimator: naive
Jeong & Kamionkowski (2012)

• Let’s start from Fossil equation


• Rearranging it a bit, we get a naive estimator for the new field, which is far 
from optimal: 
 
 
 
 

h�(k1)�(k2)i|hp(K) = hp(k1 + k2)fp(k1,k2)✏
p
ijk

i
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j
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D
k1+k2+K
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k2
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K
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\hp(K) =
X

k1+k2=K

�(k1)�(k2)

fp(k1,k2)✏
p
ijk

i
1k

j
2

φ

Azimuthal(φ)-dependence, [cos(sφ)] s=spin, 
distinguishes scalar from vector from tensor 
geometrically! 



Optimal estimator (single mode)
Jeong & Kamionkowski (2012)

• Inverse-variance weighting gives an optimal estimator for a single mode


• With a noise power spectrum (Ptot = Pgalaxy + Pnoise) 
 
 
 

3

of K here) provides an estimator,
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for the Fourier-polarization amplitude hp(K). Since⌦
|�(k)|2

↵
= V P tot(k), where P tot(k) = P (k) + P n(k) is

the measured matter power spectrum, including the sig-
nal P (k) and noise P n(k), the variance of this estimator
is

2V P tot(k1)P
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ijk
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The minimum-variance estimator for hp(K) is then ob-
tained by summing over all these individual (k1,k2) pairs
with inverse-variance weighting:

\hp(K) =Pn
p (K)

X

k

f⇤
p (k,K� k)✏pijk

i(K � k)j

2V P tot(k)P tot(|K� k|)
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where the noise power spectrum,
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is the variance with which \hp(K) is measured. This
Pn
p (K) is a function only of the magnitude K (not its

orientation) as a consequence of global SI, and for the
same reason, P⇥(K) = P+(K) ⌘ Pt(K), for both the
signal and noise power spectra, and similarly Px(K) =
Py(K) ⌘ Pv(K).

In general, the amplitudes hp(K) arise as realizations

of random fields with power spectra Ph(K) = AhP
f
h (K),

for h = {s, v, t}, which we write in terms of amplitudes
Ah and fiducial power spectra P f

h (K). We now proceed
to write the optimal estimator for the amplitudes Ah.

Each Fourier-mode estimator \hp(K) for the appropri-
ate polarizations (s for scalar, x and y for vector, and +
and ⇥ for tensor) provides an estimator,
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h
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for the appropriate power-spectrum amplitude. Here we
have subtracted out the noise contribution to unbias the
estimator. If \hp(K) is estimated from a large number
of �(k1)-�(k2) pairs, then it is close to being a Gaus-
sian variable. If so, then the variance of the estimator in
Eq. (6) is, under the null hypothesis,
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Adding the estimators from each Fourier mode with
inverse-variance weighting leads us to the optimal esti-
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For the vector-power-spectrum amplitude cAv we sum
over p = {x, y} and for the tensor-power-spectrum am-

plitude cAt over p = {+,⇥}. Following the discussion

above, the sum on p is only for p = s for cAs.
The estimator in Eq. (8), along with the quadratic

minimum-variance estimator in Eq. (4), demonstrates
that the correlation of density perturbations with an un-
seen scalar, vector, or tensor perturbation appears in the
density field as a nontrivial four-point correlation func-
tion, or trispectrum. The dependence of the trispectrum
on the azimuthal angle about the diagonal of the Fourier-
space quadrilateral distinguishes the shape dependences
of the trispectra for scalar, vector, and tensor modes. To
specify this trispectrum more precisely, though, requires
inclusion of the additional contribution induced by modes
K that involve the other two diagonals of the quadrilat-
eral. Likewise, if a signal is detected—i.e., if the null-
hypothesis estimators above are found to depart at > 3�
from the null hypothesis—then the optimal measurement
and characterization of the trispectrum requires modifi-
cation of the null-hypothesis estimators in a manner anal-
ogous to weak-lensing estimators [13].
We now evaluate the smallest amplitudes As, Av, and

At that can be detected with a given survey. To do
so, we take for our fiducial models nearly scale-invariant
spectra Ph(K) = AhKnh�3, with |nh| ⌧ 1. We more-
over take the density-density–new-field bispectrum to be
of the form in Ref. [7]. We then find that the inte-
grand (using

P
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P (k)/P tot(k) ' 1 for k < kmax, where kmax is the largest
wavenumber for which the power spectrum can be mea-
sured with high signal to noise, and P (k)/P tot(k) ' 0
for k > kmax. This then yields a noise power spectrum
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{v,t}(K) ' 20⇡2/k3max and Pn

s (K) ' 8⇡2/k3max. Evalu-

ating the integral in Eq. (9), we find the scalar, vector,
and tensor amplitudes detectable at & 3� (for nh ' 0)
to be
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where C{t,v} = 1 and Cs = 2/5. The smallest detectable
power-spectra amplitudes are thus inversely proportional
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i�1
, (2)

for the Fourier-polarization amplitude hp(K). Since⌦
|�(k)|2

↵
= V P tot(k), where P tot(k) = P (k) + P n(k) is

the measured matter power spectrum, including the sig-
nal P (k) and noise P n(k), the variance of this estimator
is

2V P tot(k1)P
tot(k2)

���fp(k1,k2)✏
p
ijk

i
1k

j
2

���
�2

. (3)

The minimum-variance estimator for hp(K) is then ob-
tained by summing over all these individual (k1,k2) pairs
with inverse-variance weighting:

\hp(K) =Pn
p (K)

X

k

f⇤
p (k,K� k)✏pijk

i(K � k)j

2V P tot(k)P tot(|K� k|)

⇥ �(k)�(K� k), (4)

where the noise power spectrum,

Pn
p (K) =

"
X

k

��fp(k,K� k)✏pijk
i(K � k)j

��2

2V P tot(k)P tot(|K� k|)

#�1

, (5)

is the variance with which \hp(K) is measured. This
Pn
p (K) is a function only of the magnitude K (not its

orientation) as a consequence of global SI, and for the
same reason, P⇥(K) = P+(K) ⌘ Pt(K), for both the
signal and noise power spectra, and similarly Px(K) =
Py(K) ⌘ Pv(K).

In general, the amplitudes hp(K) arise as realizations

of random fields with power spectra Ph(K) = AhP
f
h (K),

for h = {s, v, t}, which we write in terms of amplitudes
Ah and fiducial power spectra P f

h (K). We now proceed
to write the optimal estimator for the amplitudes Ah.

Each Fourier-mode estimator \hp(K) for the appropri-
ate polarizations (s for scalar, x and y for vector, and +
and ⇥ for tensor) provides an estimator,

[AK,p
h =

h
P f
h (K)

i�1

V �1

���\hp(K)
���
2
� Pn

p (K)

�
, (6)

for the appropriate power-spectrum amplitude. Here we
have subtracted out the noise contribution to unbias the
estimator. If \hp(K) is estimated from a large number
of �(k1)-�(k2) pairs, then it is close to being a Gaus-
sian variable. If so, then the variance of the estimator in
Eq. (6) is, under the null hypothesis,

2
h
P f
h (K)

i�2 ⇥
Pn
p (K)

⇤2
. (7)

Adding the estimators from each Fourier mode with
inverse-variance weighting leads us to the optimal esti-

mator,
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h
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where

��2
h =

X

K,p

h
P f
h (K)

i2
/2

⇥
Pn
p (K)

⇤2
. (9)

For the vector-power-spectrum amplitude cAv we sum
over p = {x, y} and for the tensor-power-spectrum am-

plitude cAt over p = {+,⇥}. Following the discussion

above, the sum on p is only for p = s for cAs.
The estimator in Eq. (8), along with the quadratic

minimum-variance estimator in Eq. (4), demonstrates
that the correlation of density perturbations with an un-
seen scalar, vector, or tensor perturbation appears in the
density field as a nontrivial four-point correlation func-
tion, or trispectrum. The dependence of the trispectrum
on the azimuthal angle about the diagonal of the Fourier-
space quadrilateral distinguishes the shape dependences
of the trispectra for scalar, vector, and tensor modes. To
specify this trispectrum more precisely, though, requires
inclusion of the additional contribution induced by modes
K that involve the other two diagonals of the quadrilat-
eral. Likewise, if a signal is detected—i.e., if the null-
hypothesis estimators above are found to depart at > 3�
from the null hypothesis—then the optimal measurement
and characterization of the trispectrum requires modifi-
cation of the null-hypothesis estimators in a manner anal-
ogous to weak-lensing estimators [13].
We now evaluate the smallest amplitudes As, Av, and

At that can be detected with a given survey. To do
so, we take for our fiducial models nearly scale-invariant
spectra Ph(K) = AhKnh�3, with |nh| ⌧ 1. We more-
over take the density-density–new-field bispectrum to be
of the form in Ref. [7]. We then find that the inte-
grand (using

P
k ! V

R
d3k/(2⇡)3) in Eq. (5) is dom-

inated by the squeezed limit (K ⌧ k1 ' k2) where
fp(k1,k2) ' �(3/2)P (k1)/k21. We then approximate
P (k)/P tot(k) ' 1 for k < kmax, where kmax is the largest
wavenumber for which the power spectrum can be mea-
sured with high signal to noise, and P (k)/P tot(k) ' 0
for k > kmax. This then yields a noise power spectrum
Pn
{v,t}(K) ' 20⇡2/k3max and Pn

s (K) ' 8⇡2/k3max. Evalu-

ating the integral in Eq. (9), we find the scalar, vector,
and tensor amplitudes detectable at & 3� (for nh ' 0)
to be

3�h ' 30⇡
p
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✓
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' 288Ch
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,
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where C{t,v} = 1 and Cs = 2/5. The smallest detectable
power-spectra amplitudes are thus inversely proportional



Optimal estimator for the amplitude Ah

• For a stochastic background of new fields with power spectrum 
Pp(K)=AhPhf(K), we optimally summed over different K-modes to estimate the 
amplitude by (w/ NULL hypothesis): 
 

• Here, the minimum uncertainty of measuring amplitude is 
 

cAh = �2
h

X

K,p

h
P f
h (K)

i2

2
⇥
Pn
p (K)

⇤2

0

B@

��� \hp(K)
���
2

V
� Pn

p (K)

1

CA

��2
h =

X

K,p

h
P f
h (K)

i2
/2

⇥
Pn
p (K)

⇤2

Jeong & Kamionkowski (2012)



Order-of-magnitude calculation
Jeong & Kamionkowski (2012)

• For the SFSR inflation models (Maldacena, 2003) 
       

         
 
 
 
 
 
 
 

4

FIG. 2: The smallest scalar, vector, and tensor power-
sepctrum amplitudes As, Av and At, respectively, detectable
at the 3� level as a function of the maximum wavenumber
kmax of the survey. Shown are results for survey volumes
of 10 [Gpc/h]3 and 200 [Gpc/h]3, or minimum wavenumbers
kmin ' 0.001 [h/Mpc] and kmin ' 0.003 [h/Mpc], respectively.

to the number of Fourier modes in the survey. We show
the projected detection sensitivities for surveys with vol-
umes of 200 [Gpc/h]3 and 10 [Gpc/h]3 in Fig. 2.

For example, if we apply this estimate to a tensor field
and assume this tensor field to be primordial gravita-
tional waves, then a sensitivity to a tensor amplitude
At ' 2 ⇥ 10�9 near the current upper limit requires
kmax/kmin & 5200. Such a dynamic range is probably
beyond the reach of galaxy surveys, but it may be within
reach of the 21-cm probes of neutral hydrogen during the
dark ages envisioned in Refs. [10, 14]. Of course, the sig-
nal could be larger if the inflaton is correlated with a
scalar, vector, or tensor field that leaves no other trace.

Finally, several new tests for parity-violating early-
Universe physics can be developed from simple modifi-
cation of the estimators above. To do so, we substitute
the x and y polarizations, and + and ⇥ polarizations,
with circular-polarization tensors ✏±v

ij = ✏xij ± i✏yij and

✏±t
ij = ✏+ij ± i✏⇥ij . The two right-most patterns shown in
Fig. 1 are the circular polarization patterns for tensor
and vector modes. It may then be tested whether the
power spectra for right- and left-circular polarizations are
equal. For example, chiral-gravity models [15] may pre-
dict such parity-violating signatures in primordial gravi-
tational waves, and similar models with parity-violating
vector perturbations are easily imaginable.

Of course, “real-world” e↵ects like redshift-space dis-
tortions, biasing, and nonlinear evolution, must be taken
into account before the estimators written above can be
implemented, but there are well-developed techniques to
deal with these issues [16].

In summary, we have shown that the most general
two-point correlation functions for the cosmological mass

distribution can be decomposed into scalar, vector, and
tensor distortions. We have presented straightforward
recipes for measuring these distortions. Such e↵ects may
arise if the inflaton is coupled to some new field during
inflation. We have avoided discussion of specific models,
but the introduction of new fields during inflation is quite
generic to inflationary models. We therefore advocate
measurement of these correlations with galaxy surveys,
and in the future with 21-cm surveys, as a simple and
general probe of new inflationary physics.

This work was supported by DoE DE-FG03-92-
ER40701 and NASA NNX12AE86G.
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• projected 3-sigma (99% C.L.) detection 
limit with galaxy survey parameters


• To detect the gravitational wave, we 
need a large dynamical range


• Current and future survey should set a 
limit on primordial V and T (and 
higher-spin fields)!r=1



Summary & Conclusion
• Some hints from recent measurements of the parity violation


• Off-diagonal correlators are the place to look at the signature for spatial 
inhomogeneity.


• “Clustering fossil” is a way to look at primordial spectator fields that existed 
during the early time.


• requirement: large dynamical range to beat the small signal (e.g. 21cm). 
We can distinguish scalar/vector/tensor fossils.


• An interesting probe of higher spin field and parity violation.


• Systematics: survey systematics, non-linearities, non-Gaussianities


