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Questions:

» WWhy do some
modes become

heavier and

others lighter?

» IS there something

speclal about the
Crossing points

54 [Ashmore

5 5 5 5 5
20 + 21 + 25 + 25 + 2 —dzpr1222324 = 0 C

, Ruehle 21]



Outline

1 Toroidal compactifications 3 Generalizations

300 44.00
250 43.75
200 43.50
s 43,25 [
= 150 x :
= : : 43.00
100 : :
42.75
50
42.50
0 : : 5.30 5.35 5.40 5.45 5.50 5.55 5.60
-25 -2.0 -15 -1.0 —0.5 0.0 P

-06 -04 -02 0.0 0.2 0.4 0.6

4 Conclusions

vl 0.010;
@ o o o o 0.005/
T e o o o fag ) (\ 0000,
i 5 ~0.005|
® o o o y=o o ~0.010!

1 T iy O 540 545 550 555 560 5.6

z=1




Toroidal Compactifications




One parameter families

We want to study CY n - folds X ¢ P™**! of the form

(20)" 2 4+ (2)" " 4 o ()T = (R 2)Y 2021 2ng1 = 0



One parameter families

We want to study CY n - folds X ¢ P™ ! of the form

(20)" 2 4+ (2)" " 4 o ()T = (R 2)Y 2021 2ng1 = 0

n =1

3 . .3, .3
20 + 21 + 25 — 3Yzpz122 =0



One parameter families

We want to study CY n - folds X ¢ P™ ! of the form

(20)" 2 4+ (2)" " 4 o ()T = (R 2)Y 2021 2ng1 = 0

n =1

3 . .3, .3
20 + 21 + 25 — 3Yzpz122 =0

vz =2 + go(V)zz” + g3()z®  wi (5) =M~ (Z)) = (g/(&)))



lorus parametrization

» Given @(w) , we know the exact CY metric: g ~dw®dw , we C/T




Moduli Space
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Spectrum on the torus

» Next, we compute the Eigenspectrum of the scalar Laplacian w.r.t. the
(flat) CY metric as a function of 7(v)
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Spectrum on the torus

» Next, we compute the Eigenspectrum of the scalar Laplacian w.r.t. the
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Spectrum on the torus
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Spectrum on the torus
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What Is special
about these points?



Crossing Points - Defining Egn
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20 + 27 + 25 — 3Wzpz129 = 0

No obvious symmetry enhancement in defining egn at these values of



Crossing Points - Moduli Space
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Nothing obvious In moduli space either
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Attractors and CM points




Crossing Points - Moduli Dependence

» Let us study the values of 7 where eigenmodes E,,, n,and E,,, m,Cross:
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Crossing Points - Moduli Dependence

» Let us study the values of 7 where eigenmodes E,,, n,and E,,, m,Cross:
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» Such 7 are special! The torus lattice has a special (number-theoretic)
oroperty known as complex multiplication:

e Usually A=C/T'=4{a+br |0<a,b<1}hasonlyscaling: aACcA,a€Z

* Atthese special points, there exists an additional symmetry: «'A C A, o = D +2\@ c C
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Complex Multiplication and attractors

» [N two absolutely remarkable papers, Moore pointed out a relation
between CM points and solutions to BH attractor equations  Moore "98]

» Roughly, this goes as follows:

 Look at supersymmetric dyonic BH. The vector multiplets follow a gradient tlow to
fixed points In their target space, so-called attractors [Ferrara, Kallosh, Strominger "95]

* [n the context of IIB, the vector multiplet moduli space is the CS moduli space, and

attractor points are special CS moduli points

[, 2@w)]
o Z Q 2 p— } B —
he central charge of the BH, [Z(Q(v),) i TOW) A QW) decreases along the flow

» Moore showed that for 7° and K3 x T? | the solution to the attractor
equations are CM points
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» The notion of CM can be generalized to any CY 3-fold (where it
becomes a condition on the middle cohomology lattice)



Crossing Points - Generalizations

Beyond T or K3 x T? there is Ikely no relation between attractors and CM points:

 Gukov and Vata argued that attractors are dense, while CM points are rare (based on a
relation of (dense) RCFTs and the (recently proven) Andre-Oort conjecture [Gukov, Vafa "98]

» Attractors are not algebraic (# Moore’s conjecture) for higher-dim CYs (they construct
counter-examples for CY 2n + 1 folds for 2n 4+ 1 > 7)[Lam, Tripathy "20]

e (Candelas et.al. related attractors to L functions, which are believed to be transcendental
[Candelas et.al. 19 - 20]
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Crossing Points - Generalizations

» Beyond T or K3 x T? there is Ikely no relation between attractors and CM points:

 Gukov and Vata argued that attractors are dense, while CM points are rare (based on a
relation of (dense) RCFTs and the (recently proven) Andre-Oort conjecture [Gukov, Vafa "98]

» Attractors are not algebraic (# Moore’s conjecture) for higher-dim CYs (they construct
counter-examples for CY 2n + 1 folds for 2n 4+ 1 > 7)[Lam, Tripathy 20]

e (Candelas et.al. related attractors to L functions, which are believed to be transcendental
[Candelas et.al. 19 - 20]

» Since crossings are also ubiquitous (dense?), the generalization (it any) is to a relation
between attractors and crossings, not CM and crossings

» The appearance of CM was an accident of the 1:1 correspondence between CM and
attractors for tori




Crossings on 1-parameter Quartic K3

» For the K3, there is still a correlation between CM points and attractors

» The CM points for the quartic are again at special values of the periods

113\ _ (@) @)\ _2567(7)* n(27)*
h (g atom) = (Jem +o%0) PO = o e

» We compute the spectrum and compare crossings to these CM points
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Crossings on 1-parameter Quintic CY3

» For the Quintic, we need to compare crossings to attractors:

 Compute the CY spectrum

 Read off crossings

 Compute the attractors in the mirror-dual (D0,D2,D4,D6) brane system and look for
minima of the central charge at the crossing points [Denef, Greene, Raugas "01]
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Announcement

Image credit: wikimedia commons

Jan 14-19, 2024
Aspen Center for Physics
US/Mountain timezone

e Fields, Strings, and Deep Learning

Timetable

Progress in deep learning has traditionally involved experimental data, but in recent years it has
impacted our understanding of formal structures arising in theoretical high energy physics and pure
mathematics, via both theoretical and applied deep learning. This conference will bring together high

Registration and
Accommodation

Travel and Visas energy theorists, mathematicians, and computer scientists across a broad variety of topics at the
Local information, interface of these fields. Featured topics include the interface of neural network theory with quantum
Transportation, Skiing field theory, lattice field theory, conformal field theory, and the renormalization group; theoretical

physics for Al, including equivariant, diffusion, and other generative models; ML for pure
mathematics, including knot theory and special holonomy metrics, and deep learning for applications
Poster in string theory and holography.

ML Meetings @ Caltech Aspen Winter Conference

- Dec 10-12: Mathematics and ML 2023 - Jan 14-19: Fields, Strings, and Deep Learning
- Dec 13-15: string_data 2023 Application deadline: Aug 31

Block Award
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Additional Material



Numerical Spectrum -

Discretizing the CY
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Numerical Spectrum - Discretizing the CY
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Numerical Spectrum - Discretizing the Eigenfunctions
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