Instituto de Física Teórica presents:

Torsion in Cohomology and Dimensional Peduction

by Fernando Marchesano

based on 2306.14959 w/Gonzalo F. Casas & Matteo Zatti



Instituto de Física Teórica presents:

TORSION IN COHOMOLOGY and Dimensional Peduction

by Fernando Marchesano

based on 2306.14959 w/Gonzalo F. Casas & Matteo Zatti

Parallel talk on Tuesday

Motivation: Discrete Gauge Symmetries

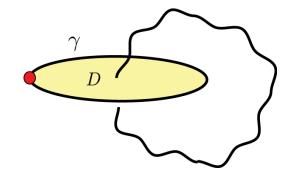
In a 4d EFT coupled to Einstein gravity, we expect to realise a \mathbb{Z}_k gauge symmetry in terms of a Stückelberg Lagrangian or BF coupling

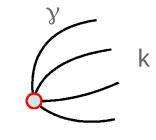
Banks & Seiberg'11

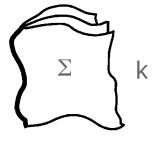
Direct consequences:

- Forbidden couplings (applications to MSSM-like models) *Ibanez & Ross '92*
- Aharanov-Bohm strings and particles, with a \mathbb{Z}_k charge

Alford, Krauss, Wilczek'89



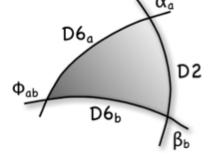




DGS in type II compactifications

- Orientifold models:
- k = g.c.d. of D-brane multi-wrapping numbers
 - Berasaluce-Gouzález et al. '11
 - Flux compactifications:
- k = flux quanta
- $B_2 \wedge F_p \wedge F_{8-p} \to kB \wedge F$
 - Berasaluce-Gouzález et al. '12

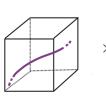
- Charged chiral matter
- Stückelberg scale above EFT cut-off $m_{\rm st} \sim m_s$

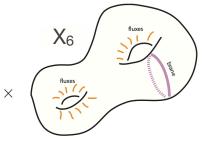


- Charged objects: D-branes

Ghilencea et al. '02

- $m_{\rm st} \sim m_{\rm flux} < m_{\rm KK}$





strings

DGS in type II compactifications

• Orientifold models:

k = g.c.d. of D-brane multi-wrapping numbers

Berasaluce-González et al. '11

- Flux compactifications:
- k = flux quanta

 $B_2 \wedge F_p \wedge F_{8-p} \to kB \wedge F$

Berasaluce-González et al. '12

• Torsion in (co)homology: DGS \rightarrow Tor $H_p(X_6, \mathbb{Z})$

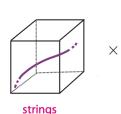
- Charged chiral matter
- Stückelberg scale above EFT cut-off $m_{\rm st} \sim m_s$

 $D6_a$

- Charged objects: D-branes

Ghilencea et al. '02

- $m_{\rm st} \sim m_{\rm flux} < m_{\rm KK}$



Ruxes

D2

Bb

 Related to the other two cases by dualities

Non-abelian DGS: Berasaluce-González et al. '12 Grimm, Pugh, Regalado '15 Braun et al. '17

Camara, Ibanez, F.M. 11

Grimm et al. '11

Mayrhofer et al. '14

Torsion in (co)homology

The integral homology groups of a manifold have the form:

$$H_p(X_n, \mathbb{Z}) = \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{b_p} \oplus \underbrace{\mathbb{Z}_{k_1} \oplus \ldots \mathbb{Z}_{k_r}}_{\operatorname{Tor} H_p(X_n, \mathbb{Z})} \qquad k \Pi_p^{\operatorname{tor}} = \partial \Sigma_{p+1}$$

- Torsion cycles cannot be detected by closed forms

$$\int_{\Pi_p^{\text{tor}}} \omega_p = \frac{1}{k} \int_{\Sigma_{p+1}} d\omega_p = 0$$

- As a consequence, branes wrapping torsion cycles of a CY are necessarily non-BPS objects of the EFT, although stable mod k.
- In general hard to compute the volume and embedding of a torsion cycle
- Similarly, torsion cohomology classes Tor $H^p(X_n, \mathbb{Z})$ can only be represented by exact *p*-forms \rightarrow different from conventional dimensional reduction

AB strings from torsion

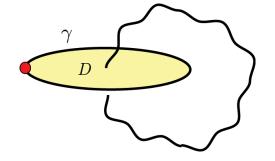
Despite all, we know that branes on torsion cycles correspond to Aharanov-Bohm particles and strings: – AdS/CFT *Gukov, Rangamani, Witten'98*

- CY orientifold compact. Camara, Ibanez, 7.M. 11

Let us focus on type IIA 4d compactifications. The spectrum of torsion cycles is constrained by Poincaré duality and the UCT:

Tor $H_2(X_6, \mathbb{Z}) \simeq \text{Tor } H_3(X_6, \mathbb{Z})$ Tor $H_1(X_6, \mathbb{Z}) \simeq \text{Tor } H_4(X_6, \mathbb{Z})$ D2-brane wrapping $\Pi_2^{\text{tor}} \implies 4d$ EFT particle

D4-brane wrapping $\Pi_3^{tor} \implies$ 4d EFT string



$$\frac{1}{2\pi i} \log[\operatorname{hol}(\gamma)] = L(\Pi_2^{\operatorname{tor}}, \Pi_3^{\operatorname{tor}}) = \frac{p}{k} \mod 1$$
Torsion linking number

RR U(1)'s in type IIA

	U(I) gauge sym	Discrete gauge sym
	Massless U(1)	Massive U(1)
•	$U(1)^{b_2}$	Tor $H_2(X_6, \mathbb{Z})$
٠	$H_2(X_6,\mathbb{R})\simeq H_4(X_6,\mathbb{R})$	$\operatorname{Tor} H_2(X_6, \mathbb{Z}) \simeq \operatorname{Tor} H_3(X_6, \mathbb{Z})$
	Elec. charge: D2 (4d part.)	Elec. charge: D2 (4d AB part.)
	Mag. charge: D4 (4d part.)	Mag. charge: D4 (4d AB string)
	Intersection number	Torsion linking number

Towards dimensional reduction

Question:

How do we recover this physics from the procedure of dimensional reduction?

<u>Proposal</u>: Include massive p-form modes that correspond to the generators of the torsion cohomology groups $\operatorname{Tor} H^3(X_6, \mathbb{Z}) \simeq \operatorname{Tor} H^4(X_6, \mathbb{Z})$

CY-like basis $\{\omega_a, \alpha_A, \beta^A, \tilde{\omega}^a\}$ with relations:

 $d\omega_a = k_{aA}\beta^A,$ $d\alpha_A = k_{aA}\tilde{\omega}^a,$ $\mathcal{L}^{-1} \simeq k_{aA} \in \mathbb{Z}$ $\mathcal{L}^{-1} \simeq k_{aA} \in \mathbb{Z}$ $\mathcal{L}^{-1} \simeq k_{aA} \in \mathbb{Z}$

Towards dimensional reduction

Question:

How do we recover this physics from the procedure of dimensional reduction?

<u>Proposal</u>: Include massive p-form modes that correspond to the generators of the torsion cohomology groups $\operatorname{Tor} H^3(X_6, \mathbb{Z}) \simeq \operatorname{Tor} H^4(X_6, \mathbb{Z})$

CY-like basis $\{\omega_a, \alpha_A, \beta^A, \tilde{\omega}^a\}$ with relations: $d\omega_a = k_{aA}\beta^A,$ $d\alpha_A = k_{aA}\tilde{\omega}^a,$ $L^{-1} \simeq k_{aA} \in \mathbb{Z}$ *d* $\alpha_A = k_{aA}\tilde{\omega}^a,$ *Camara, Ibanez, 7.M. 'II*

$$C_3 = \phi_A \beta^A + A^a \wedge \omega_a \qquad \longrightarrow \qquad k_{aA} B^A \wedge F^a$$

Basis necessary in SU(3) structure manifold comp. leading to 4d N=2 EFTs

Gurrieri et al. '02 D'Auria et al. '04 Grana, Louis, Waldram'05 Kashani-Poor & Minasian'06

Towards dimensional reduction

Question:

How do we recover this physics from the procedure of dimensional reduction?

<u>Proposal</u>: Include massive p-form modes that correspond to the generators of the torsion cohomology groups $\operatorname{Tor} H^3(X_6, \mathbb{Z}) \simeq \operatorname{Tor} H^4(X_6, \mathbb{Z})$

CY-like basis $\{\omega_a, \alpha_A, \beta^A, \tilde{\omega}^a\}$ with relations:

 $d\alpha_A = k_{aA}\tilde{\omega}^a,$

 $d\omega_a = k_{aA}\beta^A,$

 $L^{-1} \simeq k_{aA} \in \mathbb{Z}$

Camara, Ibanez, 7.M. 11

New Question:

How do we determine such a basis?

- Knowing the spectrum of light p-form modes not enough. Besides a mass matrix, these p-forms specify the quantisation of axions and gauge bosons
- Wall & Žubr theorems classify X_6 up to diffeom. in terms of its massless spectrum, so we need to go beyond diff. geom. to compute Tor $H^p(X_6, \mathbb{Z})$

Recap

- From the physics of D-branes, we know that torsion cohomology groups in a compactification manifold translate into EFT discrete gauge symmetries
- <u>From dualities</u>, we know that some of these DGS should be captured by a Stückelberg Lagrangian or BF coupling below the EFT cut-off
- <u>From consistency of dimensional reduction</u> in 4d N=2 compactifications, we know this physics should be captured by a CY-like basis of *p*-forms $\{\omega_a, \alpha_A, \beta^A, \tilde{\omega}^a\}$ involving harmonic, exact and co-exact *p*-forms
- What all this does not tell us is how to determine $\{\omega_a, \alpha_A, \beta^A, \tilde{\omega}^a\}$ in terms of the spectrum of light *p*-forms of the compact manifold
- Equivalently, we don't know how to compute some couplings in the EFT Lagrangian:

missin

 $f^2 (d\phi - kA)^2 + g^{-2}F^2$ $m_{\rm st} = fgk$

Smeared deltas

To each p-cycle $\Pi_p \subset X_n$, we can associate a bump delta (*n-p*)-form

$$\int_{X_n} \omega_p \wedge \delta_{n-p}(\Pi_p) = \int_{\Pi_p} \omega_p$$

Given a metric on X_n, one can decompose such a delta as a sum of Laplace eigenforms $\Delta b_{n-p}^i = \lambda_i^2 b_{n-p}^i$, and then smear it by truncating the series:

$$\delta_{n-p}(\Pi_p) = \sum_i c_i b_{n-p}^i, \qquad c_i = \int_{\Pi_p} \star b_{n-p}^i \qquad \longrightarrow \qquad \delta_{n-p}^{\mathrm{sm}}(\Pi_p) = \sum_{\lambda_i \ll m_{\mathrm{KK}}} c_i b_{n-p}^i$$

Smeared deltas

To each p-cycle $\Pi_p \subset X_n$, we can associate a bump delta (*n-p*)-form

$$\omega_p \wedge \delta_{n-p}(\Pi_p) = \int_{\Pi_p} \omega_p$$

Given a metric on X_n, one can decompose such a delta as a sum of Laplace eigenforms $\Delta b_{n-p}^i = \lambda_i^2 b_{n-p}^i$, and then smear it by truncating the series:

$$\delta_{n-p}(\Pi_p) = \sum_i c_i b_{n-p}^i, \quad c_i = \int_{\Pi_p} \star b_{n-p}^i \longrightarrow \delta_{n-p}^{\mathrm{sm}}(\Pi_p) = \sum_{\lambda_i \ll m_{\mathrm{KK}}} c_i b_{n-p}^i$$

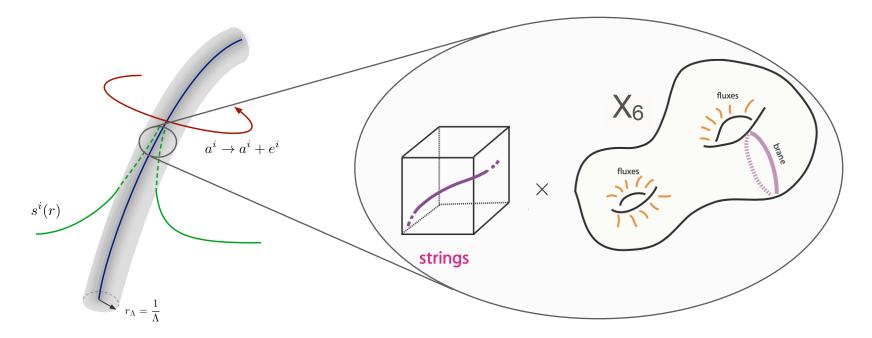
- Π_p non-trivial in de Rham $\implies \delta^{sm}(\Pi_p) \in Poincaré dual of [\Pi_p]$

- Π_p torsion or trivial $\implies \delta^{sm}(\Pi_p)$ exact, non-vanishing if there are massive *p*-form modes in the 4d EFT coupling to Π_p

Smeared deltas

Intuition: $\delta^{sm}(\Pi_p)$ encodes the 4d EFT long-wavelength description of a backreacted brane source wrapping Π_p

Example: D4-brane on $\Pi_3 \subset X_6 \rightarrow 4d$ solution of an *EFT string Lauza et al.* 21



Same solution for AB strings near the string core, and with an IR regulator at m_{st}^{-1} $\delta^{sm}(\Pi_3^{tor}) \neq 0 \implies$ non-trivial 4d backreaction \implies Stückelberg term in 4d EFT

Smeared deltas and calibrations

Intuition: $\delta^{sm}(\Pi_p)$ encodes the 4d EFT long-wavelength description of a backreacted brane source wrapping Π_p

<u>Example</u>: D4-brane on $\Pi_3 \subset X_6 \rightarrow 4d$ solution of an *EFT string Lawsa et al.* 21

In N=1 vacua, EFT strings and membranes capture info of the 4d EFT Lagrangian thanks to being 1/2 BPS objects $\implies \prod_p$ calibrated submanifold of X₆

Harvey & Lawson' 82 Koerber' 05, Martucci & Smyth' 05

Intuition: smeared backreaction under control for BPS objects Blaback et al. '10

smeared data of BPS objects capture their tension and physical charge, and the latter translate into EFT Lagrangian terms

 $f^{2}(d\phi - kA)^{2} + g^{-2}F^{2}$

Smeared BPS data

Smeared deltas and linking numbers

<u>Idea</u>: compute X₆ topological data using $\delta^{sm}(\Pi_p)$ of calibrated/BPS cycles

Torsion Linking number:
$$\Delta b_{n-p}^{i} = \lambda_{i}^{2} b_{n-p}^{i}$$
 $L(\Pi_{n-p-1}^{tor}, \Pi_{p}^{tor}) = \int_{X_{n}} d^{-1} \delta(\Pi_{n-p-1}) \wedge \delta(\Pi_{p}) \mod 1 = \sum_{i} \frac{c_{i}e_{i}}{\lambda_{i}} \mod 1$ $\delta_{n-p}(\Pi_{p}) = \sum_{i} c_{i}b_{n-p}^{i}$ Smeared version: $\sum_{i} \frac{c_{i}e_{i}}{\lambda_{i}} \mod 1$ $\delta_{(\Pi_{n-p-1})} = \sum_{i} \frac{c_{i}e_{i}}{\lambda_{i}} d \star b_{n-p}^{i}$ $L^{sm}(\Pi_{n-p-1}^{tor}, \Pi_{p}^{tor}) = \sum_{\lambda_{i} \ll m_{KK}} \frac{c_{i}e_{i}}{\lambda_{i}} \mod 1$ γ $\delta_{(\Pi_{n-p-1})} = \sum_{i} \frac{e_{i}}{\lambda_{i}} d \star b_{n-p}^{i}$ Conjecture:If non-vanishing, $L^{sm} = L$ for mutually BPS cyclesExtension: $[\Pi_{p}^{tor}] = [\Pi_{p}'] - [\Pi_{p}]$

BPS representatives

Caveats

How can a torsion cycle be calibrated?

In a manifold with a special holonomy metric it cannot, because calibrations are closed *p*-forms. But in manifolds with G-structure metrics $d\Phi_{\pm} \neq 0$

Simple class: SU(3)-structure manifolds (J, Ω) such that $dJ \neq 0 \neq d\Omega$

How can a \mathbb{Z}_k -charged object be BPS?

The nucleation process is allowed topologically, but not favoured energetically

We consider a 1/2 BPS domain-wall solution in a 4d N=2 EFT Gurrieri et al. '02

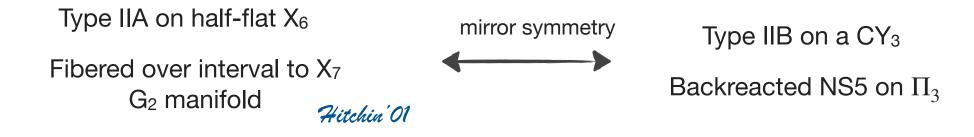
Type IIA on half-flat X₆

Fibered over interval to X₇ G₂ manifold mirror symmetry

Type IIB on a CY₃ Backreacted NS5 on Π_3

 $ds^{2} = ds_{\mathbb{R}^{1,2}}^{2} + V(d\xi)^{2} + ds_{X_{6}}^{2}(\xi) \longrightarrow (J(\xi), \Omega(\xi))$

We consider a 1/2 BPS domain-wall solution in a 4d N=2 EFT *Gurrieri et al. '02*

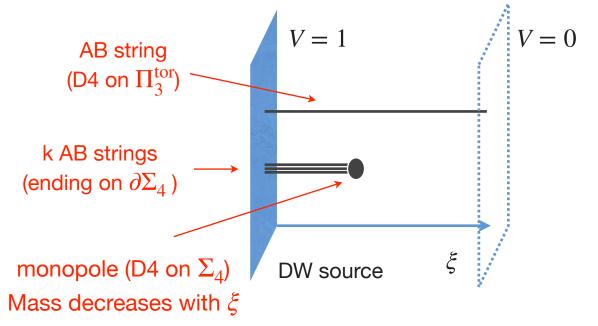


$$ds^{2} = ds_{\mathbb{R}^{1,2}}^{2} + V(d\xi)^{2} + ds_{X_{6}}^{2}(\xi) \longrightarrow (J(\xi), \Omega(\xi))$$

V monot. decreasing to 0

Hitchin flow eqs:

$$V^{1/2} dJ = \frac{1}{2} \partial_{\xi} \text{Re}\Omega$$
$$V^{1/2} d \text{Im}\Omega = -\frac{1}{2} \partial_{\xi} (J \wedge J)$$



We consider a 1/2 BPS domain-wall solution in a 4d N=2 EFT Gurrieri et al. '02 Type IIA on half-flat X₆ mirror symmetry Type IIB on a CY₃ Fibered over interval to X₇ Backreacted NS5 on Π_3 G₂ manifold Hitchin'01 0 0

$$ds^{2} = ds_{\mathbb{R}^{1,2}}^{2} + V(d\xi)^{2} + ds_{X_{6}}^{2}(\xi) \longrightarrow (J(\xi), \Omega(\xi))$$

$$V \text{ monot. decreasing to 0}$$

$$\text{Hitchin flow eqs:}$$

$$V^{1/2}dJ = \frac{1}{2}\partial_{\xi}\text{Re}\Omega$$

$$V^{1/2}d\text{Im}\Omega = -\frac{1}{2}\partial_{\xi}(J \wedge J)$$

$$\int_{\text{total energy}}^{\text{total energy}} \xi$$

Mass decreases with ξ

We consider a 1/2 BPS domain-wall solution in a 4d N=2 EFT Gurrieri et al. '02 Type IIA on half-flat X₆ mirror symmetry Type IIB on a CY₃ Fibered over interval to X₇ Backreacted NS5 on Π_3 G₂ manifold Hitchin'01 $ds^{2} = ds_{\mathbb{R}^{1,2}}^{2} + V(d\xi)^{2} + ds_{\chi_{\ell}}^{2}(\xi) \longrightarrow (J(\xi), \Omega(\xi))$ V = 1V = 0**AB** string Simplest example: (D4 on Π_3^{tor}) $X_6 = \tilde{T}^3 \times T^3$ k AB strings (ending on $\partial \Sigma_4$) $V = 1 - kC\xi \qquad C = m_{\rm st}|_{\xi=0}$ Conjecture can be ξ M. Zatti's talk checked explicitly monopole (D4 on Σ_4) DW source Mass decreases with ξ

More general 4d N=2 EFTs

General framework for dimensional reduction:

CY-like basis of *p*-forms { $\omega_a, \alpha_A, \beta^A, \tilde{\omega}^a$ }:

$$\int_{X_6} \omega_a \wedge \tilde{\omega}^b = \delta^b_a \qquad \int_{X_6} \alpha_A \wedge \beta^B = \delta^B_A$$

$$J_{c} = (b^{a} + it^{a}) \omega_{a} \longrightarrow K_{J} = -\log \frac{4}{3} \int_{X_{6}} -J^{3}$$
$$\Omega = Z^{A} \alpha_{A} - \mathcal{F}_{B} \beta^{B} \longrightarrow K_{\rho} = -\log \int_{X_{6}} i\bar{\Omega} \wedge \Omega$$

Grana, Louis, Waldram'05 Kashani-Poor & Minasian'06

$$d\omega_a = m_a^{\ A} \alpha_A + k_{aA} \beta^A,$$

 $d\alpha_A = k_{aA} \tilde{\omega}^a,$
 $d\beta^B = -m_a^{\ B} \tilde{\omega}^a,$
 $d\tilde{\omega}^a = 0,$

More general 4d N=2 EFTs

General framework for dimensional reduction:

CY-like basis of *p*-forms { $\omega_a, \alpha_A, \beta^A, \tilde{\omega}^a$ }:

$$\omega_a \wedge \tilde{\omega}^b = \delta^b_a \qquad \int_{X_6} \alpha_A \wedge \beta^B = \delta^B_A$$

$$J_{c} = (b^{a} + it^{a}) \omega_{a} \longrightarrow K_{J} = -\log \frac{4}{3} \int_{X_{6}} -J^{3}$$
$$\Omega = Z^{A} \alpha_{A} - \mathcal{F}_{B} \beta^{B} \longrightarrow K_{\rho} = -\log \int_{X_{c}} i\bar{\Omega} \wedge \Omega$$

Grana, Louis, Waldram'05 Kashani-Poor & Minasian'06

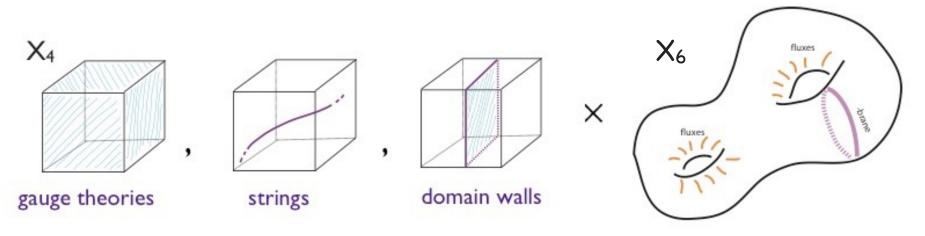
$$d\omega_{a} = m_{a}^{A} \alpha_{A} + k_{aA} \beta^{A},$$
$$d\alpha_{A} = k_{aA} \tilde{\omega}^{a},$$
$$d\beta^{B} = -m_{a}^{B} \tilde{\omega}^{a},$$
$$d\tilde{\omega}^{a} = 0,$$

<u>Proposal</u>: basis elements { ω_a , α_A , β^A , $\tilde{\omega}^a$ } are smeared deltas of calibrated cycles, and generate a discrete cone of BPS objects that includes the torsion generators

- Motivated by the EFT string completeness conjecture extended to AB strings
- Reproduces automatically the tension/mass of 4d BPS strings and particles

Torsion BPS objects in 4d N=1 vacua

In 4d N=1 vacua particles cannot be BPS, and strings are calibrated by closed p-forms, so torsion data are related to different BPS objects



Space-time filling branes ending on membranes: $\hat{g}^2 (dD_3 - kA_4)^2$

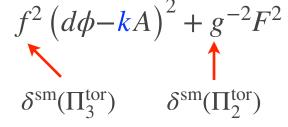
Membranes ending on strings: $\hat{f}^2 (dB_2 - kC_3)^2 + \hat{g}^{-2} (dC_3)^2$

The same ideas and machinery work for torsion cycles on SU(3)-structure vacua

 $\delta^{\rm sm}(\Pi_n^{\rm tor})$ appear in the smeared flux background

Conclusions

- Torsion in (co)homology implies a discrete gauge symmetry. This may or may not be realised as a Stückelberg-like Lagrangian in a lower-dimensional EFT. If it does, it means that we can compute torsion data in terms of certain smooth p-forms.
- The key objects to consider are smeared delta forms $\delta^{sm}(\Pi_p)$. These encode if the backreaction of a localised source is non-trivial at EFT wavelengths.
- We have argued that when Π_p is calibrated, $\delta^{sm}(\Pi_p)$ encodes EFT Lagrangian couplings. Intuitively, the smeared solution of a BPS localised object is under control. This applies even for torsion cycles Π_p^{tor} .
- This leads to the conjecture $L = L^{sm}$ for computing torsion linking numbers using smeared data. Intuitively: $m_{st} = fgk$



 Additionally, it gives us an integral basis of p-forms to obtain 4d N=2 EFTs from dimensional reduction in SU(3)-structure manifolds.

