On Classical de Sitter Solutions and Quantum Transitions

Fernando Quevedo University of Cambridge

String Phenomenology 2023
IBS, Daejeon, Korea
July 2023

S. Céspedes, S. de Alwis, F. Muia, FQ (to appear)
(also previous work with V. Pasquarella)
S. Bogojevic, C.P. Burgess, F. Muia, FQ (to appear)

Two Related Questions

- Classical de Sitter from supergravity and string theory.
- Quantum transitions in the landscape.

Transitions among dS/Minkowski/AdS and nothingness

Predictions from the landscape?

- Bubble nucleations imply open universe!
- Not possible to tunnel up from Minkowski nor anti de Sitter.

Early History

- Coleman de Luccia (1980)
- Witten (1981)
- Vilenkin + Hartle-Hawking (1982-3)
- Brown-Teitelboim (1987)
- Farhi-Guth-Guven (1990)
- Fischler-Morgan-Polchinski (1990)

Wave functions of the universe

Mini-superspace

$$
d s^{2}=-N^{2}(t) d t^{2}+a^{2}(t)\left(d r^{2}+\sin ^{2} r d \Omega_{2}^{2}\right)
$$

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)
$\mathcal{P}_{\mathrm{HH}}($ Nothing $\rightarrow \mathrm{dS})=\left\|\Psi_{\mathrm{HH}}\left(\mathrm{H}_{\mathrm{dS}}\right)\right\|^{2} \propto e^{\frac{\pi}{G H_{\mathrm{dS}}^{2}}}=e^{+\Gamma_{\mathrm{dS}}}$
$\mathcal{P}_{\mathrm{T}}($ Nothing $\rightarrow \mathrm{dS})=\left\|\Psi_{\mathrm{T}}\left(\mathrm{H}_{\mathrm{dS}}\right)\right\|^{2} \propto \mathrm{e}^{-\frac{\pi}{\mathrm{GH}} \mathrm{H}_{\mathrm{dS}}^{2}}=e^{-S_{\mathrm{dS}}}$
(Question: What about Minkowski and AdS Entropy?)

Two types of vacuum transitions

1. Transition between two minima of scalar potential Coleman-De Luccia 1980

2. No scalar field: \mathbf{M}_{1} to $\mathbf{M}_{1}+$ Wall $+M_{2}$ Brown-Teitelboim 87

Both realised in string landscape

Approximate picture

$0<400$

Eucildean approach (Coleman-de Luccia, Lee-Weinberg, Brown-Teitelboim) :

$$
\Gamma \sim e^{-B}, \quad B=S[\text { instanton }]-S[\text { background }]
$$

$$
B=\frac{\pi}{2 G}\left[\frac{\left[\left(H_{\mathrm{O}}^{2}-H_{\mathrm{I}}^{2}\right)^{2}+\kappa^{2}\left(H_{\mathrm{O}}^{2}+H_{\mathrm{I}}^{2}\right)\right] R_{\mathrm{O}}}{4 \kappa H_{\mathrm{O}}^{2} H_{\mathrm{I}}^{2}}-\frac{1}{2}\left(H_{\mathrm{I}}^{-2}-H_{\mathrm{O}}^{-2}\right)\right]
$$

$$
R_{\mathrm{o}}^{2}=\frac{4 \kappa^{2}}{\left(H_{\mathrm{O}}^{2}-H_{\mathrm{I}}^{2}\right)^{2}+2 \kappa^{2}\left(H_{\mathrm{O}}^{2}+H_{\mathrm{I}}^{2}\right)+\kappa^{4}}
$$

Analytic continuation from Euclidean to Lorentzian implies open universe but just a "guess" (O(4) symmetry)

Up-Tunneling and Minkowski limit

Detailed balance

$$
\Gamma_{\mathrm{up}}=\Gamma_{\mathrm{down}} \exp \left[\frac{\pi}{G}\left(\frac{1}{H_{\mathrm{I}}^{2}}-\frac{1}{H_{\mathrm{O}}^{2}}\right)\right]=\Gamma_{\mathrm{CDL}} \exp \left(S_{\mathrm{I}}-S_{\mathrm{O}}\right)
$$

For HH sign only!

De Sitter to Minkowski?

$$
\begin{array}{ll}
H_{I} \rightarrow 0, & \Gamma_{\text {down }} \rightarrow \exp \left[-\frac{\pi}{2 G} \frac{\kappa^{4}}{H_{O}^{2}\left(H_{O}^{2}+\kappa^{2}\right)^{2}}\right] \\
H_{O} \rightarrow 0, & \Gamma_{\mathrm{up}} \rightarrow 0
\end{array}
$$

Hamiltonian Approach

Fischler, Morgan, Polchinski 1990

Metric $\quad d s^{2}=-N_{t}^{2}(t, r) d t^{2}+L^{2}(t, r)\left(d r+N_{r} d t\right)^{2}+R^{2}(t, r) d \Omega_{2}^{2}$, Spherically symmetric

Action

$$
S_{\mathrm{tot}}=\frac{1}{16 \pi G} \int_{\mathcal{M}} d^{4} x \sqrt{g} \mathcal{R}+\frac{1}{8 \pi G} \int_{\partial \mathcal{M}} d^{3} y \sqrt{h} K+S_{\mathrm{mat}}+S_{\mathrm{W}}
$$

$$
S_{\mathrm{W}}=-4 \pi \sigma \int d t d r \delta(r-\hat{r})\left[N_{t}^{2}-L^{2}\left(N_{r}+\dot{\hat{r}}\right)^{2}\right]^{1 / 2}
$$

$$
S_{\mathrm{mat}}=-4 \pi \int d t d r L N_{t} R^{2} \rho(r), \quad \rho=\Lambda_{\mathrm{O}} \theta(r-\hat{r})+\Lambda_{\mathrm{I}} \theta(\hat{r}-r)
$$

Conjugate variables

$$
\begin{aligned}
\pi_{L} & =\frac{N_{r} R^{\prime}-\dot{R}}{G N_{t}} R, \quad \pi_{R}=\frac{\left(N_{r} L R\right)^{\prime}-\partial_{t}(L R)}{G N_{t}} \\
\mathcal{H}_{g} & =\frac{G L \pi_{L}^{2}}{2 R^{2}}-\frac{G}{R} \pi_{L} \pi_{R}+\frac{1}{2 G}\left[\left(\frac{2 R R^{\prime}}{L}\right)^{\prime}-\frac{R^{\prime 2}}{L}-L\right] \\
P_{g} & =R^{\prime} \pi_{R}-L \pi_{L}^{\prime}
\end{aligned}
$$

Constraints

$$
\begin{aligned}
& \mathcal{H}=\mathcal{H}_{g}+4 \pi L R^{2} \rho(r)+\delta(r-\hat{r}) E=0, \\
& P=P_{a}-\delta(r-\hat{r}) \hat{p}=0, \\
& E=\sqrt{\frac{\hat{p}^{2}}{\hat{L}^{2}}+m^{2}}, \quad m=4 \pi \sigma \hat{R}^{2}, \quad \hat{p}=\partial \mathcal{L} / \partial \dot{\hat{r}}
\end{aligned}
$$

De Sitter to de Sitter

$$
\mathcal{P}(\mathrm{dS} \rightarrow \mathrm{dS} / \mathrm{dS} \oplus \mathrm{~W})=\frac{|\Psi(\mathrm{dS} / \mathrm{dS} \oplus \mathrm{~W})|^{2}}{|\Psi(\mathrm{dS})|^{2}}
$$

$$
V=-\frac{1}{4 \kappa^{2}} \hat{R}^{2}\left[\left(H_{\mathrm{O}}^{2}-H_{\mathrm{I}}^{2}\right)^{2}+2 \kappa^{2}\left(H_{\mathrm{O}}^{2}+H_{\mathrm{I}}^{2}\right)+\kappa^{4}\right]
$$

$$
\begin{aligned}
& A_{\mathrm{O}}=1-H_{\mathrm{O}}^{2} R^{2}, \quad A_{\mathrm{I}}=1-H_{\mathrm{I}}^{2} R^{2} \\
& \left.I_{\mathrm{tot}}\right|_{\mathrm{tp}}-\bar{I}=-\frac{\eta \pi}{G}\left[\frac{\left[\left(H_{\mathrm{O}}^{2}-H_{\mathrm{I}}^{2}\right)^{2}+\kappa^{2}\left(H_{\mathrm{O}}^{2}+H_{\mathrm{I}}^{2}\right)\right] R_{\mathrm{O}}}{8 \kappa H_{\mathrm{O}}^{2} H_{\mathrm{I}}^{2}}-\frac{1}{4}\left(H_{\mathrm{I}}^{-2}-H_{\mathrm{O}}^{-2}\right)\right]
\end{aligned}
$$

Same result as Euclidean approach
$\eta=+1 \quad$ Background Hartle-Hawking
$\eta=-1 \quad$ Background Vilenkin

De Sitter Slicings

From Hamiltonian approach: $\mathbf{O}(3)$ symmetry, closed slicing. Universe inside the bubble is closed for global slicing.

Schwarzschild to de Sitter ($\mathrm{H}_{0}=\mathbf{0}$)

Farhi,Guth, Guven (Euclidean) + Fischler, Morgan, Polchinski (Hamiltonian)

Zero Schwarzschild mass limit

(Minkowski \approx Schwarzschild in the $\mathrm{M}=0$ limit)

$$
\begin{array}{cl}
\mathcal{P}(\mathcal{M} \rightarrow \mathcal{M} / \mathrm{dS} \oplus \mathrm{~W})=\exp \left[\frac{\eta \pi}{G H^{2}}\left(1-\frac{\kappa^{4}}{\left(H^{2}+\kappa^{2}\right)^{2}}\right)\right] \quad \text { Up-tunneling } \\
\mathcal{P}(\mathrm{dS} \rightarrow \mathrm{dS} / \mathcal{M} \oplus \mathrm{W})=\exp \left[\frac{\eta \pi}{G H^{2}}\left(-\frac{\kappa^{4}}{\left(H^{2}+\kappa^{2}\right)^{2}}\right)\right] \quad \text { Down-tunneling }
\end{array}
$$

Detailed Balance

$$
\frac{\mathcal{P}(\mathcal{M} \rightarrow \mathcal{M} / \mathrm{dS} \oplus \mathrm{~W})}{\mathcal{P}(\mathrm{dS} \rightarrow \mathrm{dS} / \mathcal{M} \oplus \mathrm{W})}=\exp \left[\eta \frac{\pi}{G} \frac{1}{H^{2}}\right]
$$

Entropy
M=0 Schwarzschild $=\mathbf{H}=\mathbf{0}$ de Sitter (Difference on background wave function)

AdS to AdS

$$
\begin{gathered}
B=-\frac{\eta \pi}{2 G}\left[\frac{\left(\left|H_{I}^{2}\right|-\left|H_{O}^{2}\right|\right)^{2}-\kappa^{2}\left(\left|H_{I}^{2}\right|+\left|H_{O}^{2}\right|\right)}{2 \kappa\left|H_{I}^{2}\right|\left|H_{O}^{2}\right|} R_{0}-\left(\frac{1}{\left|H_{O}^{2}\right|}-\frac{1}{\left|H_{I}^{2}\right|}\right)\right] \\
\mathcal{P}_{\text {up }}^{\operatorname{AdS} \rightarrow \operatorname{AdS}}=\mathcal{P}_{\text {down }}^{\mathrm{AdS}} \rightarrow \mathrm{AdS}
\end{gathered}
$$

Detailed balance if Entropy of AdS $=0$!

AdS to dS

$$
B^{\mathrm{AdS}->\mathrm{dS}}=\frac{\eta \pi}{G}\left\{\frac{\left\{\left(\left|H_{B}^{2}\right|+H_{A}^{2}\right)^{2}+\kappa^{2}\left(-\left|H_{B}^{2}\right|+H_{A}^{2}\right)\right\} R_{\mathrm{o}}}{4 \kappa\left|H_{B}^{2}\right| H_{\mathrm{A}}^{2}}+\frac{1}{2}\left(\frac{1}{H_{A}^{2}}-\frac{1}{\left|H_{B}^{2}\right|}\right)\right\}
$$

$$
\frac{P^{\mathrm{AdS}->\mathrm{dS}}}{P^{\mathrm{dS}->\mathrm{AdS}}}=\frac{e^{B^{\mathrm{AdS}}->\mathrm{dS}}}{e^{B^{\mathrm{dS}}->\mathrm{AdS}}}=\frac{\exp \left(\frac{\eta \pi}{2 G} \frac{1}{H_{A}^{2}}\right)}{\exp \left(-\frac{\eta \pi}{2 G} \frac{1}{H_{A}^{2}}\right)}=e^{\eta\left(S_{\mathrm{dS}}-\left(S_{\mathrm{AdS}}=0\right)\right)},
$$

Detailed balance if AdS entropy=0!

Minkowski limit from dS blows-up but from AdS is finite!?

To Nothingness and Back?

For SAdS to dS $\quad H_{\mathrm{O}} \gg H_{\mathrm{I}}, M, \kappa$

$$
B^{\text {AdS }->\mathrm{dS}} \rightarrow \frac{\eta \pi}{G}\left\{\frac{\left\{\left(\left|H_{B}^{2}\right|\right)^{2}\right\} 2 \kappa /\left|H_{B}^{2}\right|}{4 \kappa\left|H_{\mathrm{B}}^{2}\right| H_{A}^{2}}+\frac{1}{2}\left(\frac{1}{H_{A}^{2}}+0\right)\right\}=\frac{\eta \pi}{2 G} \frac{1}{H_{A}^{2}} .
$$

The same as Vilenkin, Hartle-Hawking wave functions!
₹ Brown-Dahlen: Nothing as AdS

$$
H_{\mathrm{O}} \rightarrow \infty
$$

SAdS to dS

$$
\begin{aligned}
& \left.\left.I_{\mathrm{B}}\right|_{\mathrm{tp}} \equiv I_{\mathrm{B}}\right|_{R_{\mathrm{I}}} ^{R_{\mathrm{O}}}= \begin{cases}\frac{\eta \pi}{2 G}\left(R_{\mathrm{O}}^{2}-R_{\mathrm{I}}^{2}\right), & M>M_{\mathrm{S}} \\
\frac{\eta \pi}{2 G}\left(R_{\mathrm{O}}^{2}-R_{\mathcal{S}}^{2}\right), & M_{\mathrm{S}}>M>M_{\mathrm{D}} \\
\frac{\eta \pi}{2 G}\left(R_{\mathrm{dS}}^{2}-R_{\mathcal{S}}^{2}\right), & M_{\mathrm{D}}>M\end{cases} \\
& M_{\mathrm{S}}=\frac{H_{\mathrm{O}}^{2}+H_{\mathrm{I}}^{2}+\kappa^{2}}{2 G\left(H_{\mathrm{I}}^{2}+\kappa^{2}\right)^{3 / 2}, \quad} \quad \begin{array}{l}
M_{\mathrm{D}}=\frac{H_{\mathrm{O}}^{2}+H_{\mathrm{I}}^{2}-\kappa^{2}}{2 G H_{\mathrm{I}}^{3}},
\end{array}
\end{aligned}
$$

Need numerical estimates for wall contribution but the transition is allowed however detailed balance is OK only for $\mathrm{M}_{\mathrm{D}}>\mathrm{M}$ (?)

$$
\frac{P^{\mathrm{AdS}->\mathrm{dS}}}{P^{\mathrm{dS}->\mathrm{AdS}}}=\frac{e^{B^{\mathrm{AdS}->\mathrm{dS}}}}{\left.e^{B^{\mathrm{dS}->\mathrm{AdS}}}=\frac{\exp \left(\frac{\eta \pi}{2 G} \frac{1}{H_{A}^{2}}\right)}{\exp \left(-\frac{\eta \pi}{2 G} \frac{1}{H_{A}^{2}}\right)}=e^{\eta\left(S_{\mathrm{dS}}-\left(S_{\mathrm{AdS}}=0\right)\right)}, \text {, }, \text {. }{ }^{2}\right)}=
$$

Summary

- Schwarzschild M=0 to dS allowed
- AdS Schwarschild M=0 to (A)dS also allowed
- Entropy of Minkowski/AdS is 0 or ∞
- Transition from $\Lambda \rightarrow-\infty$ to dS same as HH/Vilenkin universe from nothing!
- Universe after transition open or closed!
- Detailed balance OK for small bh mass (?)

On classical dS solutions on 6D supergravity and their uplift

6D Supergravity (Salam-Sezgin)

$$
\begin{aligned}
& S=-\int \mathrm{d}^{D} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} g^{M N}\left(R_{M N}+\partial_{M} \varphi \partial_{N} \varphi\right)+\frac{1}{2} \sum_{r} \frac{1}{\left(p_{r}+1\right)!} e^{-p_{r} \varphi} F_{r}^{2}+\mathcal{A} e^{\varphi}\right], \\
& \mathbf{D}=\mathbf{6}, \mathbf{r}=\mathbf{2}, \mathbf{A}>\mathbf{0}
\end{aligned}
$$

- Positive potential (evades Maldacena-Nunez theorem)
- Chiral
- No maximally symmetric solution in 6D
- Maximally symmetric in 4D
- Maximally symmetric smooth solution: Minkowski x S², N=1 SUSY.

General 4D Solutions

Gibbons et al 2004
Burgess et al 2005

$$
\begin{aligned}
& \mathrm{d} s^{2}=\hat{g}_{M N} \mathrm{~d} x^{M} \mathrm{~d} x^{N}=W^{2}(y) g_{\mu \nu}(x) \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\tilde{g}_{i j}(y) \mathrm{d} y^{i} \mathrm{~d} y^{j} \\
& \hat{g}_{\mu \nu}=W^{2} g_{\mu \nu}, \quad \hat{R}_{\mu \nu}=R_{\mu \nu}+\frac{1}{n}\left(W^{2-n} \tilde{\nabla}^{2} W^{n}\right) g_{\mu \nu} \quad \text { and } \quad \hat{\square} \varphi=W^{-n} \tilde{\nabla}_{i}\left(W^{n} \tilde{g}^{i j} \partial_{j} \varphi\right), \\
& \frac{1}{n} \int_{M} \mathrm{~d}^{d} y \sqrt{\tilde{g}} W^{n-2} R=-\sum_{\alpha} \int_{\Sigma_{\alpha}} \mathrm{d}^{d-1} y \sqrt{\tilde{g}} N_{i}\left[W^{n} \tilde{g}^{i j} \partial_{j}\left(\ln W+\frac{2 \varphi}{D-2}\right)\right]
\end{aligned}
$$

No singularities/boundaries imply $\mathrm{R}=\mathrm{H}^{2}=0$

Asymptotic Near Brane solutions

Burgess et al 2005

$$
\varphi \approx q \ln r \quad \text { and } \quad \mathrm{d} s^{2} \approx r^{2 w} g_{\mu \nu}(x) \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\mathrm{d} r^{2}+r^{2 \alpha} f_{a b}(z) \mathrm{d} z^{a} \mathrm{~d} z^{b}
$$

$$
W(y)=r^{w} \quad \text { and } \quad \tilde{g}_{i j} \mathrm{~d} y^{i} \mathrm{~d} y^{j}=\mathrm{d} r^{2}+r^{2 \alpha} f_{a b} \mathrm{~d} z^{a} \mathrm{~d} z^{b},
$$

$$
n w+\alpha(d-1)=1 . \quad n w^{2}+\alpha^{2}(d-1)+q^{2}=1 . \quad \text { Kasner constraints }
$$

(BKL: Belinsky et al)

$$
\begin{aligned}
& \mathbf{n}=\mathbf{4}, \mathbf{d}=\mathbf{2} \\
& -\frac{1}{\sqrt{n}} \leq w \leq \frac{1}{\sqrt{n}}, \quad-\frac{1}{\sqrt{d-1}} \leq \alpha \leq \frac{1}{\sqrt{d-1}} \quad \text { and } \quad-1 \leq q \leq 1 .
\end{aligned}
$$

Flat Solutions

Gibbons et al.

$$
\begin{aligned}
\mathrm{d} s^{2} & =\hat{g}_{M N} \mathrm{~d} x^{M} \mathrm{~d} x^{N}=W^{2} q_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+a^{2} \mathrm{~d} \theta^{2}+a^{2} W^{8} \mathrm{~d} \eta^{2} \\
e^{\varphi} & =W^{-2} e^{-\lambda_{3} \eta} \\
W^{4} & =\left(\frac{Q \lambda_{2}}{4 g \lambda_{1}}\right) \frac{\cosh \left[\lambda_{1}\left(\eta-\eta_{1}\right)\right]}{\cosh \left[\lambda_{2}\left(\eta-\eta_{2}\right)\right]} \\
a^{-4} & =\left(\frac{g Q^{3}}{\lambda_{1}^{3} \lambda_{2}}\right) e^{-2 \lambda_{3} \eta} \cosh ^{3}\left[\lambda_{1}\left(\eta-\eta_{1}\right)\right] \cosh \left[\lambda_{2}\left(\eta-\eta_{2}\right)\right] \\
F & =\left(\frac{Q a^{2}}{W^{2}}\right) e^{-\lambda_{3} \eta} \mathrm{~d} \eta \wedge \mathrm{~d} \theta
\end{aligned}
$$

Numerical de Sitter solution

$$
\begin{aligned}
& X^{\prime \prime}+e^{2 X}=0 \\
& Y^{\prime \prime}+e^{2 Y}-\epsilon e^{2 Y+Z}=0 \\
& Z^{\prime \prime}+\frac{\epsilon}{2} e^{2 Y+Z}=0
\end{aligned}
$$

$$
e^{-X}=\lambda_{1}^{-1} \cosh \left[\lambda_{1}\left(\eta-\eta_{1}\right)\right] .
$$

X, Y, Z linear combinations of $\log W, \log a, \varphi$

6D Supergravity from F-theory

Grimm et al 2013

11D M-theory to 5D on elliptically fibred CY_{3} and uplift to $\mathrm{D}=6$
$\mathrm{h}_{12}+1$ hypermultiplets, $\mathrm{h}_{11}-1$ tensor multiplets

$$
\begin{aligned}
S^{(6)} & =\int_{\mathcal{M}_{6}}\left[\frac{1}{2} \hat{R} \hat{*} 1-\frac{1}{4} \hat{g}_{\alpha \beta} \hat{G}^{\alpha} \wedge \hat{*} \hat{G}^{\beta}-\frac{1}{2} \hat{g}_{\alpha \beta} d \hat{j}^{\alpha} \wedge \hat{*} d \hat{j}^{\beta}-\frac{1}{2} \hat{h}_{U V} \hat{D} \hat{q}^{U} \wedge \hat{*} \hat{D} \hat{q}^{V}\right. \\
& \left.-2 \Omega_{\alpha \beta} \hat{j}^{\alpha} b^{\beta} C_{I J} \hat{F}^{I} \wedge \hat{*} \hat{F}^{J}-\Omega_{\alpha \beta} b^{\alpha} C_{I J} \hat{B}^{\beta} \wedge \hat{F}^{I} \wedge \hat{F}^{J}-\hat{V}^{(6)} \hat{*} \hat{1}\right]
\end{aligned}
$$

6D potential from D7 fluxes

$$
\hat{V}_{\text {flux }}^{(6)}=\frac{1}{32 \Omega_{\alpha \beta} \hat{j}^{\alpha} b^{\beta} \hat{\mathcal{V}}^{2}} C^{-1 i j} \theta_{i} \theta_{j}
$$

From 6D to 4D

Field equations

$$
\begin{aligned}
\varphi^{\prime \prime} & =\tilde{V} e^{\varphi-2 \chi+2 \Omega+8 \Gamma}-2 C \Delta^{\prime 2} e^{-\varphi-2 \Omega+2 \Delta}, \\
\chi^{\prime \prime} & =-\frac{k^{2}}{4} e^{-2 \chi+8 \Gamma+2 \Delta}-4 \tilde{V} e^{\varphi-2 \chi+2 \Omega+8 \Gamma}, \\
\Gamma^{\prime \prime} & =3 H^{2} e^{2 \Omega+6 \Gamma}-\frac{1}{2} \varphi^{\prime \prime}, \\
\Omega^{\prime \prime} & =-4 C\left(\Delta^{\prime}\right)^{2} e^{-\varphi-2 \Omega+2 \Delta}-\frac{1}{8} k^{2} e^{-2 \chi+8 \Gamma+2 \Delta}-\frac{1}{2} \varphi^{\prime \prime}, \\
\Delta^{\prime \prime} & =\Delta^{\prime} \varphi^{\prime}+2 \Omega^{\prime} \Delta^{\prime}-\left(\Delta^{\prime}\right)^{2}+\frac{k^{2}}{32 C} e^{\varphi-2 \chi+2 \Omega+8 \Gamma} .
\end{aligned}
$$

Constraint
$6 H^{2} e^{2 \Omega+6 \Gamma}-4 \Omega^{\prime} \Gamma^{\prime}-6 \Gamma^{\prime 2}+\frac{1}{2} \varphi^{\prime 2}+\frac{1}{4} \chi^{\prime 2}+2 C e^{-\varphi-2 \Omega+2 \Delta} \Delta^{\prime 2}-\tilde{V} e^{\varphi-2 \chi+2 \Omega+8 \Gamma}-\frac{k^{2}}{16} e^{-2 \chi+8 \Gamma+2 \Delta}=0$
$\chi=\log$ volume, $\Gamma=\log \mathrm{W}, \Omega=\log , \Delta=\log \mathrm{A}$
$\mathrm{H}^{2}>0$ de Sitter

Asymptotic Solutions

Near brane solutions:

$$
\begin{aligned}
& \varphi=q \ln r, \quad \chi=s \ln r, \quad d s^{2}=r^{2 w} g_{\mu \nu} d x^{\mu} d x^{\nu}+d r^{2}+r^{2 \alpha} f(z) d z d z \\
& F^{r a} \sim r^{\gamma} . \\
& 4 w+\alpha=1 \quad 4 w^{2}+\alpha^{2}+q^{2}+\frac{1}{2} s^{2}=1 . \quad \begin{array}{l}
\text { Kasner constraints } \\
\text { (BKL: Belinsky et al) }
\end{array} \\
& \quad-\frac{1}{2} \leq w \leq \frac{1}{2}, \quad-1 \leq \alpha \leq 1, \quad-1 \leq q \leq 1, \quad-\sqrt{2} \leq s \leq \sqrt{2} .
\end{aligned}
$$

Numerical dS Solutions

THANK YOU!

General 6D Equations from F-theory

Grimm et al 2013

$$
\begin{gathered}
\hat{R}_{M N}=+\frac{1}{4} \hat{g}_{\alpha \beta} \hat{G}^{\alpha}{ }_{M}{ }^{R S} \hat{G}^{\beta}{ }_{N R S}-\frac{1}{24} \hat{g}_{\alpha \beta} \hat{G}^{\alpha R S T} \hat{G}^{\beta}{ }_{R S T} \hat{g}_{M N} \\
+4 \Omega_{\alpha \beta} \hat{j}^{\alpha} b^{\beta} C_{I J} \hat{F}^{I}{ }_{M}{ }^{R} \hat{F}^{J}{ }_{N R}-\frac{1}{2} \Omega_{\alpha \beta} \hat{j}^{\alpha} b^{\beta} C_{I J} \hat{F}^{I R S} \hat{F}^{J}{ }_{R S} \hat{g}_{M N} \\
+\hat{g}_{\alpha \beta} \partial_{M} \hat{j}^{\alpha} \partial_{N} \hat{j}^{\beta}+\hat{h}_{U V} \hat{D}_{M} \hat{q}^{U} \hat{D}_{N} \hat{q}^{V}+\frac{1}{2} \hat{V}_{(6)} \hat{g}_{M N}, \\
d\left(\hat{h}_{U V} \hat{*} \hat{D} \hat{q}^{V}\right)=\frac{1}{2} \partial_{U} \hat{h}_{V W} \hat{D} \hat{q}^{V} \wedge \hat{*} \hat{D} \hat{q}^{W}+\hat{h}_{V W} \partial_{U} \hat{k}_{I}^{V} \hat{A}^{I} \wedge \hat{*} \hat{D} \hat{q}^{W}+\partial_{U} \hat{V}_{(6)} \hat{*} 1, \\
d\left(\Omega^{\alpha \beta} \hat{g}_{\beta \gamma} \hat{*} d \hat{j}^{\gamma}\right)=\hat{j}_{\beta} \hat{G}^{\alpha} \wedge \hat{*} G^{\beta}+2 \hat{j}_{\beta} d \hat{j}^{\alpha} \wedge \hat{*} d \hat{j}^{\beta}+2 b^{\alpha} C_{I J} \hat{F}^{I} \wedge \hat{*} \hat{F}^{J}-\frac{1}{\Omega_{\beta \gamma} \hat{j}^{\beta} b^{\gamma}} b^{\alpha} \hat{V}(6) \hat{*} 1, \\
\hat{D}\left(4 \Omega_{\alpha \beta} \hat{j}^{\alpha} b^{\beta} \hat{*} \hat{F}^{I}\right)=-\hat{h}_{U V} C^{-1 I J} \hat{k}_{J}^{U} \hat{*} \hat{D} \hat{q}^{V}-4 b^{\alpha} \hat{g}_{\alpha \beta} \hat{F}^{I} \wedge \hat{*} \hat{G}^{\beta} \\
-2 \Omega_{\alpha \beta} b^{\alpha} b^{\beta} C_{J K} \hat{A}^{I} \wedge \hat{F}^{J} \wedge \hat{F}^{K}+4 \Omega_{\alpha \beta} b^{\alpha} b^{\beta} C_{J K} \hat{F}^{I} \wedge \hat{\omega}^{c s}, \\
d\left(\Omega^{\alpha \beta} \hat{g}_{\beta \gamma} \hat{*} \hat{G}^{\gamma}\right)=2 b^{\alpha} C_{I J} \hat{F}^{I} \wedge \hat{G}^{\beta}=\Omega_{\alpha \beta} \hat{G}^{\beta},
\end{gathered}
$$

