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Two Related Questions

• Classical de Sitter from supergravity and
string theory.

• Quantum transitions in the landscape.



Transitions among dS/Minkowski/AdS
and nothingness



Predictions from the landscape?

• Bubble nucleations imply open universe!

• Not possible to tunnel up from Minkowski
nor anti de Sitter.



Early History

• Coleman de Luccia (1980)

• Witten (1981)

• Vilenkin + Hartle-Hawking (1982-3)

• Brown-Teitelboim (1987)

• Farhi-Guth-Guven (1990)

• Fischler-Morgan-Polchinski (1990)



Wave functions of the universe

space is then given in each case by

PHH(Nothing ! dS) = k HH (HdS)k
2
/ e

⇡

GH
2
dS = e+SdS (2.2) {eq:PHH}

PT(Nothing ! dS) = k T (HdS)k
2
/ e

� ⇡

GH2
dS = e�SdS (2.3) {eq:PT}

In the last relation on each line we have noted the curious fact that these solutions of the WdW
equation yield expressions which in the HH case is proportional to the positive exponential of the
horizon entropy SdS and hence to the dimension of the Hilbert space that can be built on the
horizon while in the tunneling case it is inversely proportional to the dimension of the Hilbert
space.

Note that the probability amplitude can be seen as a tunneling e↵ect considering the scale factor
a(t) as a field with the ’wrong’ kinetic term and a scalar potential V (a) = �3a+⇤a3. The tunneling
would be from ’nothing’ which would correspond to a = 0 to a 6= 0 which is the turning point of a
potential barrier of �V (a).

2.2 Bubble of Nothing

Review Witten’s BON

3 Down and Up-Tunneling Transitions

3.1 Hamiltonian approach to vacuum transitions

Let us start reviewing vacuum transitions from the Hamiltonian approach as initiated by Fischler,
Morgan and Polchinski (FMP) [11]. Starting with the spherically symmetric metric

ds2 = �N2
t dt2 + L(r, t)2(dr + Nrdt)2 + R(r, t)2d⌦2

2 (3.1)

in order to address the vacuum transition problem FMP considered the bulk-brane system with
the brane (or wall) at r = r̂ separating two regions with di↵erent cosmological constants ⇤± and
the following action:

S = Sbulk + Sbrane +

Z
d4x

p
�g (⇤+⇥(r � r̂) + ⇤�⇥(r̂ � r)) (3.2)

with standard Einstein-Hilbert Sbulk and brane action Sbrane respectively and with ⇥ the step
function.

FMP reduced the vacuum transition problem to solving for the quantum mechanics of the brane
(assumed spherically symmetric) with a wave function  (R̂) which solves the Wheeler deWitt
equation. In the leading WKB approximation this implies solving the momentum and Hamiltonian
constraints while satisfying the matching conditions at the brane.

R0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥



2
R̂ , (3.3) {eq:JunctionConditions}

3

Mini-superspace

Hartle-Hawking vs Vilenkin (tunneling to dS from nothing)
entropy

where VA = V (�A). Hence we have
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In the second line we have assumed that beyond the point ⌧̄+�⌧ , V ' VA so that the contribution
from ⌧̄ + �⌧ to ⌧max in the first term of the first line cancels against the second term. Also T in
the middle term is defined by

⇢̄3T = 2

Z
⌧̄+�⌧

⌧̄��⌧

d⌧⇢3(V (�(⌧) � VA). (4.5)

In the second line of Eq. (4.4) we have taken the path in ⌧ such that for 0 < ⌧  ⌧̄ � �⌧ , � is
held fixed at �B while in the interval ⌧̄ + �⌧  ⌧ < ⌧max, � = �A. So in the first and third terms
in Eq. (4.4) we can replace the integral over d⌧ = d⌧

d⇢
d⇢ using the Euclidean Eq. (4.1) with �

fixed7. This gives d⌧

d⇢
= ±1/

p
1 � VB,A⇢2 in the first and third terms8 so these integrations can

be done giving us (in the thin wall limit �⌧ ! 0),

B

2
= �12⇡2

"
±
�
1 � 1

3
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�3/2 � 1
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⌥
�
1 � 1

3
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�3/2 � 1

VB

#
+ 2⇡2⇢̄3T. (4.6)

⇢̄ is then determined by extremising B. Upon substituting this value into the above one then
gets the usual expressions which we will quote later after re-deriving the above without invoking
Euclidean arguments with their corresponding interpretational issues.

4.2 Vacuum transitions in mini-superspace

An instructive exercise, that helps understanding the formalism outlined in Sec. 2 and shows
the di↵erences between the Lorentzian and Euclidean appproaches, consists in studying vacuum
transitions in a mini-superspace setup that includes a real scalar field. This calculation is a
generalization of the ‘tunneling from nothing’ scenario [20–23]. For a recent discussion see for
instance [34–36]. The metric is

ds2 = �N2(t)dt2 + a2(t)(dr2 + sin2 rd⌦2

2) . (4.7)

The action (setting Mp = 1/
p

8⇡G = 1) is given by the sum S = Sg + Sm, where

Sg = 2⇡2

Z
1

0

dt
�
�N�13aȧ2 + 3kaN

�
, (4.8)

Sm = 2⇡2

Z
1

0

dt

✓
N�1

1

2
a3�̇2 � Na3V (�)

◆
. (4.9)

Here k = ±1, 0 depending on whether the three-spatial slice is positively (negatively) curved
or flat. Of course in the open k = 0, �1 cases the factor 2⇡2 would have to be replaced by an

7Although not explicitly stated this seems to have been assumed also in [33].
8In [33] only the positive sign is kept here.

17
(Question: What about Minkowski and AdS Entropy?)



it to a height greater than the height of the barrier, see Fig. 1. In typical KKLT-type

models this leads to vacuum destabilization if the added energy density V (φ)/σn, which is

responsible for inflation, is much greater than the height of the barrier Vbarrier ! 3m2
3/2M

2
P .

Since H2 ∼ ∆V (φ,σ)/3, this leads to the bound (1.1) (see [3] for a more detailed discussion

of this issue, while a similar problem in a slightly different context was also found in [4]).

100 150 200 250 Σ

1

2
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4

V

Figure 1: The lowest curve with dS minimum is the potential of the KKLT model. The second
one shows what happens to the volume modulus potential when the inflaton potential Vinfl = V (φ)

σ3

added to the KKLT potential. The top curve shows that when the inflaton potential becomes too
large, the barrier disappears, and the internal space decompactifies. This explains the constraint
H ! m3/2.

In KKLT-based models, it therefore seems that for a gravitino mass m3/2 ∼ 1TeV the

Hubble constant during the last stages of a string theory inflation model should be quite

low, H ! 1 TeV, which is ten orders of magnitude below the often discussed GUT inflation

scale. Therefore if one believes in standard SUSY phenomenology with m3/2 ! O(1) TeV,

one should find a realistic particle physics model where the nonperturbative string theory

dynamics occurs at the LHC scale or even lower (the mass of the volume modulus in the

KKLT scenario typically is not much greater than the gravitino mass), and inflation occurs

at a density at least 30 orders of magnitude below the Planck energy density [3]. For a

recent analysis of this issue see e.g. [5] and for a discussion in the context of the heterotic

string see [6].

This problem is quite generic. For example, recently a new interesting mechanism of

moduli stabilization was proposed, which is based on the models with compacification on Nil

manifolds with negative curvature [7]. This mechanism presents a significant modification

of the compactifications on flat Calabi-Yau spaces, as suggested by the assumption of the

low scale supersymmetry. And yet, the same constraint H ! m3/2 remains valid for the

inflationary models in this scenario [8].

The situation becomes even trickier in the large volume models of vacuum stabilization

[2]. In such models the height of the barrier is much smaller, Vbarrier ∼ m3
3/2MP . In this

case, the constraint that the inflaton potential should not be much greater than the height

– 2 –

Two types of vacuum transitions

1. Transition between two minima of scalar potential

2. No scalar field: M1 to M1+Wall+M2
Brown-Teitelboim 87

Coleman-De Luccia 1980

Both realised in string landscape 
Populating the String Landscape.

Motivations

• How is it populated? 

Eternal inflation is not enough.

• Starting from a given de Sitter, is it possible 

 to up-tunnel?

V = e− nχ
Mχ V0(ϕ) + V1(χ)

V0(ϕ) = μ4
ϕ ( ϕ2

M2
ϕ

− 1)
2

V1(χ) = μ4
χ [−e−2χ/Mχ + ae−χ/Mχ + be−3χ/Mχ]

V

χ

ϕ

[Aguirre, Johnsons, Larfors, ’09, ’10]

Approximate 
picture



dS to dS

In field theory there is a similar process, described by Colemann and De Luccia (CDL)

[1], of decay of false vacuum to true vacuum. However there is a very important di↵erence

between CDL and BT processes. The former is a field theory process which describes

tunneling between two minima of a potential and stops once the field reaches in its true

minimum. However the membrane nucleation will always be (may be) repeated for dS

(AdS) with the inside value of flux and CC now become a background configuration. In

this sense the BT process is more suitable for describing the string landscape.

The probability per unit volume per unit time for brane nucleation is given in terms

of B. In [2] one has a universal expression for B valid for any decay. The corresponding B

is given by

B = 2⇡2⇢3T + 12⇡2

(
1

⇤i

"
�i

✓
1�

⇤i

3
⇢2
◆3/2

� 1

#
�

1

⇤o

"
�o

✓
1�

⇤o

3
⇢2
◆3/2

� 1

#)
. (2.2)

Here �o/i = ±1 is determined from

�o = Sign


✏

3
�

T 2

4

�
, �i = Sign


✏

3
+

T 2

4

�
, (2.3)

T is the tension of the bubble wall and ✏ is defined as

✏ = ⇤o � ⇤i. (2.4)

It is also obvious from (2.3) that

�i � �o. (2.5)

The choice of �o/i gives many possibilities of decay. As we will see later, the choices which

are relevant to us are

�o = ±1, �i = +1. (2.6)

Here ⇢ is the size of the bubble and is determined by extremizing B,

⇢ =

(
⇤o

3
+

1

T 2


✏

3
�

T 2

4

�2)�1/2

. (2.7)

From (2.7), we get the following condition


✏

3
�

T 2

4

�2
� �

T 2⇤o

3
. (2.8)

Thus if we start with de Sitter space for which ⇤o > 0, then this condition is automatically

satisfied. However for ⇤o < 0 which is the case of AdS space, this inequality has to be

satisfied in order to have a brane nucleation.

The outcomes of the BT brane nucleation process are:

– 4 –

no way to limit these disconnected sums and including them will simply make the whole

formalism ambiguous. Hence we simply set the coe�cients of such additional contributions

to the wave function to zero as being physically meaningless. We are only interested in

wave functions that can be interpreted as transitions mediated by our wall/brane and that

means we just keep the connected terms. A better understanding of this situation would

be desirable.

4.2 Euclidean approaches

Let us now compare our results with the standard Euclidean approach for tunnelling,

starting from the original CDL and BT and then with the FGG approach for the Minkowski

to dS transition.

BT/CDL

The original treatments on vacuum transitions were done following the standard instanton

techniques which are formulated in Euclidean space. Both CDL and BT formalisms are

Euclidean. Up-tunnelling dS to dS transitions are forbidden in CDL but not in BT (and

also Lee-Weinberg [24]) but Minkowski to dS transitions are forbidden in both CDL and

BT. Let us investigate the di↵erence. CDL and BT give the following expression for the

transition probability: P = e
�|2IBT|, where

IBT(R̂) =
⇡

4G

" 
✏(R̂0

�)

H
2

I

⇣
1�H

2

I
R̂

2

⌘3/2
�H

�2

I

!
�
 
✏(R̂0

+
)

H
2

O

⇣
1�H

2

O
R̂

2

⌘3/2
�H

�2

O

!
+ R̂

3

#
.

(4.5)

This expression is extremised (so that the probability is maximised) at R̂ = Ro with the

latter given by Eq. (2.42). If we substitute this into Eq. (4.5) we get

IBT(R̂ = Ro) =
⇡

2G

"⇥
(H2

O �H
2
I )

2 + 
2(H2

O +H
2
I )
⇤
Ro

4H2
OH

2
I

� 1

2

�
H

�2
I �H

�2
O

�
#
, (4.6)

which is exactly the same result as in Eq. (2.54), obtained using the Hamiltonian approach

for dS to dS transitions. When setting the initial Hubble parameter to zero, the transition

probability vanishes. As mentioned in the previous Subsection this result agrees with the

Hamiltonian approach in the absence of spacetimes disconnected to the wall. However,

this does not prevent up-transitions: the argument for this is that FMP and FGG, instead,

focused on another transition, i.e. Schwarzschild to dS and subsequently they took M ! 0.
18 The main di↵erence between the two approaches is that, taking the Minkowski limit in

the latter implies the vanishing of the term proportional to the black hole mass parameter;

thereby, the total action still remains finite, leading to a nontrivial transition probability.

Notice that away from the turning points our general expression (3.9) does not coincide

with the BT expression (4.5). However both equations are such that they reproduce the

same expression (4.6) upon minimisation and evaluation at the turning points. This is the

relevant comparison.

18Note that, in this case, the bulk action would have a term like 2GM✓(�R̂
0
+) ! 0 in the flat spacetime

limit.
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Euclidean approach (Coleman-de Luccia, Lee-Weinberg, Brown-Teitelboim) :

Contents

1 Introduction 1

1 Introduction

� ⇠ e�B, B = S[instanton]� S[background] (1.1)

�up = (1.2)

– 1 –

with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.

HO and HI) using

AO = 1�H
2
OR

2
, AI = 1�H

2
I R

2
, (2.40)

V = � 1

42
R̂

2
⇥
(H2

O �H
2
I )

2 + 22(H2
O +H

2
I ) + 

4
⇤
, (2.41)

R
2
o =

42

(H2
O �H

2
I )

2 + 22(H2
O +H

2
I ) + 4

, (2.42)
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Analytic continuation from Euclidean to Lorentzian implies open universe  but just a 
“guess’’ (O(4) symmetry)



Detailed balance

Contents

1 Introduction 1

1 Introduction

� ⇠ e�B, B = S[instanton]� S[background] (1.1)

�up = (1.2)

– 1 –

An important non-trivial check of the validity of the Schwarzschild to dS calculation for

up-tunnelling is that it exactly reproduces the CDL result when applied to down-tunnelling

as we explicitly derived in the previous Section. As already discussed, the fact that the two

limits HO, M ! 0 lead to di↵erent results is a consequence of the fact that though both

background actions may be interpreted as giving the relevant entropies in the black hole

limit we get zero entropy corresponding to the entropy of the vacuum state of Minkowski

(interpreted as the log of the dimension of the non-degererate vacuum state) while the

H ! 0 limit of dS gives the entropy (i.e. log of the dimension) of the entire HIlbert space

that can be built on Minkowski space. We will discuss this further in the next Section.

FGG

The original study of the Minkowski to dS transition was performed in [3] using the Eu-

clidean formalism. A very detailed study was made of the transition probability and it

was found that the corresponding instantons are singular. Concretely the instantons corre-

spond to Euclidean manifolds over degenerate metrics. This has cast doubt on the validity

of the transition.

Here we want to emphasise that even though the validity of the use of these degenerate

metrics can be questioned, one of the merits of the subsequent work of FMP was to put

these results on firmer ground by using the Hamiltonian approach, in which case there is

no need to introduce degenerate metrics.

In summary, the advantages of Hamiltonian over Euclidean are

• Both results agree but in FMP there is no need to introduce singular geometries;

• Some explicit terms in the action are derived in FMP but introduced by hand in

FGG;

• The spacetime trajectory of the wall can be properly described in a causal diagram;

• Unitarity of the process is built-in within the formalism.

However FGG, aware of the limitations of the Euclidean approach were able to add

the right ingredients to obtain a non-zero amplitude and the fact that their result agrees

with the Hamiltonian approach makes their assumptions more robust. We conclude that

even though the original Euclidean approach for up-tunnelling from Minkowski spacetime

is subject to criticism, the fact that the subsequent Hamiltonian approach gives the same

results provide strong evidence for the validity of this approach.

4.3 Thermal/Tunnelling Approach

A further argument questioning the validity of up-tunnelling from Minkowski space goes

as follows19. Starting from dS to dS, two expressions for the amplitude can be estimated

in the Minkowski limit of one dS (HO ! 0). The first expression assumes detailed balance:

�(1)
up = �down exp


⇡

G

✓
1

H
2
I

� 1

H
2
O

◆�
= �CDL exp (SI � SO) , (4.7)

19We thank Alan Guth for a discussion of this point. See for instance [25].
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De Sitter to Minkowski ?

Contents

1 Introduction 1

1 Introduction

� ⇠ e
�B

, B = S[instanton]� S[background] (1.1)

�up = (1.2)

HI ! 0, �down ! exp


� ⇡

2G

1

H
2
O

�
(1.3)

HO ! 0, �up ! 0 (1.4)

– 1 –

entropies

Contents

1 Introduction 1

1 Introduction

� ⇠ e
�B

, B = S[instanton]� S[background] (1.1)

�up = (1.2)

HI ! 0, �down ! exp

"
� ⇡

2G


4

H
2
O

�
H

2
O
+ 2

�2

#
(1.3)

HO ! 0, �up ! 0 (1.4)

�flux ⌧ �decompactification e.g. �flux ⇠ e
�V2

�decompactification (1.5)

– 1 –

Up-Tunneling and Minkowski limit

For HH sign only!



Hamiltonian Approach

not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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where @M is a time-like boundary, K is the extrinsic curvature and h is the metric induced

on the boundary. SK is the Gibbons-Hawking boundary term that needs to be added to

SEH in order to recover the correct field equation of motion when applying the variational

principle. In the above metric the bulk Einstein-Hilbert action becomes5

SEH =
1

2G

Z
drdt


2

Nt

(NrLR)0(Ṙ�NrR
0)� 2

Nt

@t(LR)(Ṙ�NrR
0)+

+
2

L
(NtR)0R0 +

Nt

L
(L2 �R

02) +
L

Nt

(Ṙ�NrR
0)2

�
. (2.3)

The canonically conjugate variables to L, R and the Hamiltonian and momentum of the

gravity theory are

⇡L =
NrR

0 � Ṙ

GNt

R, ⇡R =
(NrLR)0 � @t(LR)

GNt

, (2.4)

Hg =
GL⇡

2
L

2R2
� G

R
⇡L⇡R +

1

2G

"✓
2RR

0

L

◆0

� R
02

L
� L

#
, (2.5)

Pg = R
0
⇡R � L⇡

0

L . (2.6)

We assume that the spherical brane is located at r = r̂. The induced metric6 can be written

as

hij = gµ⌫
@x

µ

@�i

@x
⌫

@�j
, h

00
= �N

2
t + L

2(Nr + ˙̂r)2 , (2.7)

and then the determinant takes the simple form

p
h = 4⇡R̂2

p
h00 , (2.8)

where the ˆ denotes that the function R(r) has been evaluated at r = r̂. Finally, the
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where � is the tension of the wall, while the matter action is
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Z
dtdr LNtR

2
⇢(r) , ⇢ = ⇤O ✓(r � r̂) + ⇤I ✓(r̂ � r) , (2.10)

i.e. it just includes a cosmological constant term which takes di↵erent values on the two

sides of the wall7. The Hamiltonian and momentum constraints are

H = Hg + 4⇡LR2
⇢(r) + �(r � r̂)E = 0 , (2.11)

P = Pg � �(r � r̂)p̂ = 0 , (2.12)

5In the entire paper we denote x
0 = d

dr
x and ẋ = d

dt
x.

6We choose the gauge �
0 = t, �1 = ✓, �2 = �.

7Here and in the following we denote by a subscript I the internal region such that r < r̂, while we

denote by a subscript O the outer region such that r > r̂.
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not be an inconsistency since both states can be pure3. Also, even though the instanton

calculation of FGG involves a singular configuration, the FMP Hamiltonian calculation

has no such problem. Thus we believe that the latter should be taken seriously and as we

pointed out above the thermodynamic issues it presents should be addressed as above.

In this paper we also generalise the FMP argument away from the turning point of the

tunnelling trajectory. This enables us to show the relation to the well-known arguments

due to HH and Vilenkin for di↵erent wave functions for creating dS spaces from ‘nothing’4.

Indeed in the case of the dS to dS transitions there is no initial turning point very much like

the case of tunnelling from ‘nothing’. Also this general discussion resolves the issue related

to the sign of the exponent of the wave function (mentioned for instance by Bachlech-

ner [15]) in that the usual (CDL/BT) tunnelling arguments are recovered from the general

solution to the WDW equation by picking the dominant term in both the numerator and

the denominator of the ratio defining the relative probability.

In the next Section we start by reviewing the Hamiltonian formalism used by FMP. We

introduce the transition amplitudes in terms of relative probabilities and discuss the di↵er-

ent cases of transition among dS and Minkowski spacetimes. We finish the Section with a

summary comparing the value of the di↵erent amplitudes for up- and down-tunnelling. In

Sec. 3 we generalise the formalism by computing the wave functions away from the turning

points that allows us to properly study the wave function in the regions under and outside

the barrier. This is also relevant since the pre-factor of the semi-classical wave function

usually blows up at the turning points. The issue of the dominant components of the wave

functions contributing to the transition amplitude are addressed. Sec. 4 is dedicated to

comparison with other approaches to the Minkowski to dS transition. We address several

concerns that have been raised over the years questioning the validity of the FGG proposal.

We conclude that the FGG proposal survives the di↵erent challenges and it is robust. In

particular we address explicitly the consistency with AdS/CFT and detailed balance. We

present our conclusions in Sec. 5.

2 Vacuum transitions in the Hamiltonian formalism

2.1 Summary of the Hamiltonian formalism

We consider spherically symmetric configurations so that the metric in four dimensions

take the form

ds
2 = �N

2
t (t, r)dt

2 + L
2(t, r)(dr +Nrdt)

2 +R
2(t, r)d⌦2

2 , (2.1)

where as usual, d⌦2
2 = d✓

2 + sin2 ✓ d�2, ✓ and � being the angular coordinates on the

two-sphere. In the case of a single wall separating two domains, the total action is

Stot =
1

16⇡G

Z

M

d
4
x
p
gR+

1

8⇡G

Z

@M

d
3
y

p
hK + Smat + SW ⌘

⌘ SEH + SK + Smat + SW , (2.2)

3We thank Steve Shenker for pointing out this argument.
4For recent discussions of the di↵erent proposals for the ‘wave function of the universe’ in terms of

solutions to the WDW equation see [17] and [18].
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Metric

Action

Conjugate variables Constraints

Fischler, Morgan, Polchinski 1990

where

E =

s
p̂2

L̂2
+m2 , m = 4⇡�R̂2

, p̂ = @L/@ ˙̂r , (2.13)

and the Lagrangian can be read from Eq. (2.2). Away from the domain wall (i.e. r 6= r̂)

we have from the second constraint,

⇡R =
L

R0
⇡
0

L. (2.14)

Inserting Eq. (2.14) in Eq. (2.11) (for r 6= r̂) we get

d

dr

✓
⇡
2
L

2R

◆
=

1

2G2

d

dr

"
R

✓
R

0

L

◆2

�R+
8⇡

3
G⇢R

3

#
, (2.15)

that translates into the solution

⇡L = ⌘
R

G


R

02

L2
�A↵

�1/2
, ↵ = O, I , ⌘ = ±1 , (2.16)

A↵ = 1� 2GM↵

R
�H

2
↵R

2
, H

2
↵ =

8⇡G

3
⇤↵ , (2.17)

where M↵ is an integration constant. This of course corresponds to the general solution

to the spherically symmetric metric ansatz, i.e Schwarzschild-dS (SdS). If the constant

M↵ = 0, ⇤↵ 6= 0, we have a pure dS solution and if ⇤↵ = 0, M↵ 6= 0 we have a Schwarzschild

black hole. In the static coordinate system with R as one of the coordinates, the spherically

symmetric SdS metric takes the static form:

ds
2
↵ = �A↵(R) d⌧2 +A

�1
↵ (R) dR2 +R

2
d⌦2

2 . (2.18)

Constraints and dynamics of the wall

The constraints on the domain wall are imposed by integrating Eq. (2.11) and Eq. (2.12)

from r̂ � ✏ to r̂ + ✏ leading to

R̂

L̂
(R0(r̂ + ✏)�R

0(r̂ � ✏)) = �GE , (2.19)

⇡L(r̂ + ✏)� ⇡L(r̂ � ✏) =
p̂

L̂
= 0 , (2.20)

where to get the last equality we have transformed to the rest frame of the wall so that

p̂ = 0 and E = m = 4⇡R̂2
�. We note for future reference that in the limit  ! 0 ,

AI = AO, i.e. there is not change in the geometry in the absence of the wall. Combining

Eq. (2.20) with Eq. (2.16) and then using Eq. (2.19) gives

R
0(r̂ ± ✏)

L̂
=

1

2R̂

⇣
ÂI � ÂO

⌘
⌥ 

2
R̂ , (2.21)

where we have defined

 ⌘ 4⇡�G =
Gm

R̂2
. (2.22)
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Spherically symmetric



De Sitter to de Sitter

with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.

HO and HI) using

AO = 1�H
2
OR

2
, AI = 1�H

2
I R

2
, (2.40)

V = � 1

42
R̂

2
⇥
(H2

O �H
2
I )

2 + 22(H2
O +H

2
I ) + 

4
⇤
, (2.41)

R
2
o =

42

(H2
O �H

2
I )

2 + 22(H2
O +H

2
I ) + 4

, (2.42)
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where Ro is the turning point (i.e. solution of V = �1) There is no initial turning point in

this case since the potential V / �R
2 which has only one turning point (see Fig. 5). So

e↵ectively the integration in Eq. (2.33) starts from R(0) = 0 analogous to the tunnelling

from ‘nothing’ case studied by HH and Vilenkin. The matching conditions are given by

R̂
0
±

L
=

1

2R̂
(H2

O �H
2
I ⌥ 

2)R̂2 ⌘ c±R̂ . (2.43)

Ro

-1

0

R

V e
ff

Figure 5: E↵ective potential for dS to dS transitions. Notice there is only one turning point.

The boundary action in Eq. (2.38) then becomes10

Ib

����
tp

= � ⌘

G

Z
Ro

0
�R̂R̂

"
cos�1

 
R

0
+

L

p
ÂO

!
� cos�1

 
R

0
�

L

p
ÂI

!#
= (2.45)

= � ⌘

G

⇡

4
R

2
o


✏(R0

+)

1 + |c+|Ro
�

✏(R0
�)

1 + |c�|Ro
+ 2

⇣
✓(�R̂

0

+)� ✓(�R̂
0

�)
⌘�

. (2.46)

In this case, for instance, the subscript ‘tp’ amounts to evaluating the integral in Eq. (2.46)

between 0 and Ro. After some algebra this becomes

Ib

����
tp

=
⌘

G


⇡

2
R

2
o

⇣
✓(�R̂

0

�)� ✓(�R̂
0

+)
⌘
+

⇡

4H2
I

✏(R̂0

�)�
⇡

4H2
O

✏(R̂0

+)+

�⇡
(H2

O �H
2
I )

2 + 
2(H2

O +H
2
I )

8H2
OH

2
I

Ro

�
. (2.47)

10We have used the definite integral

Z
1/

p
1+a

0

dx x cos�1 xp
1� ax2

=
⇡

4a

✓
1� 1p

1 + a

◆
. (2.44)

Also note that cos�1(�x) = ⇡ � cos�1
x.
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Note that since the expression in Eq. (2.50) is symmetric under the interchange I $
O the action for down-tunnelling to Minkowski is exactly the same with I ! O in the

Eq. (2.51). Observe that since the M ! 0 limit of A = 1 � 2MG/R is the same as the

H ! 0 limit of A = 1�H
2
R

2 (A ! 1) the Minkowski limit of the black hole to dS action

is the same as the dS to dS action where one of the dS’s goes to the Minkowski limit. What

is di↵erent in the two cases is the expression for the background action (which is zero in

the black hole case and is the HH or the Vilenkin wave function for the (initial) dS case

(see below).

Recall now that in dS to dS transitions there is no initial classical trajectory. This

is exactly like the tunnelling from ‘nothing’ discussion in quantum cosmology in which

solutions of the WDW equation are compared at the final (and only) turning point with

the solution to be at scale factor zero (i.e. ‘nothing’). Thus these expressions should be

interpreted as giving the probability to find the space of two dS (or dS and Minkowski)

spaces mediated by a wall compared to have ‘nothing’. We will discuss this further in

Sec. 3.

In this case, the latter configuration is the background, whose action, denoted by Ī, is

given by

I =
⌘

G

Z
⇡

0
dr

2

4R
q
1�H

2
OR

2 �R
0
+ �RR

0 cos�1

0

@ R
0
+

L

q
1�H

2
OR

2

1

A

3

5 . (2.52)

) I =
⌘⇡

2GH
2
O

. (2.53)

which (for ⌘ = +1) gives the HH wave function (Vilenkin’s tunnelling wave function cor-

responds to ⌘ = �1). Adding Eq. (2.49) to Eq. (2.47) and subtracting Eq. (2.53) we

get

Itot

����
tp

� I = �⌘⇡

G

"⇥
(H2

O �H
2
I )

2 + 
2(H2

O +H
2
I )
⇤
Ro

8H2
OH

2
I

� 1

4

�
H

�2
I �H

�2
O

�
#
, (2.54)

which is exactly what BT obtained. It is easy to check that the quantity in Eq. (2.54) is

negative (positive) for ⌘ = +1 (⌘ = �1). Observe that, when taking the limit HO ! 0, the

relative probability is exponentially suppressed (choosing ⌘ = +1), implying nucleation of

a dS vacuum is exponentially suppressed with respect to the nucleation of a Minkowski

spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.

2.4 Schwarzschild to de Sitter transitions

The case investigated by FGG/FMP corresponds to s Schwarzschild to dS transition,

namely one where

AO = 1� 2GMO

R
, AI = 1�H

2
I R

2
. (2.55)
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Same result as Euclidean approach
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responds to ⌘ = �1). Adding Eq. (2.49) to Eq. (2.47) and subtracting Eq. (2.53) we

get
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which is exactly what BT obtained. It is easy to check that the quantity in Eq. (2.54) is

negative (positive) for ⌘ = +1 (⌘ = �1). Observe that, when taking the limit HO ! 0, the

relative probability is exponentially suppressed (choosing ⌘ = +1), implying nucleation of

a dS vacuum is exponentially suppressed with respect to the nucleation of a Minkowski

spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.

2.4 Schwarzschild to de Sitter transitions

The case investigated by FGG/FMP corresponds to s Schwarzschild to dS transition,

namely one where

AO = 1� 2GMO

R
, AI = 1�H

2
I R

2
. (2.55)
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Background Hartle-Hawking

Note that since the expression in Eq. (2.50) is symmetric under the interchange I $
O the action for down-tunnelling to Minkowski is exactly the same with I ! O in the

Eq. (2.51). Observe that since the M ! 0 limit of A = 1 � 2MG/R is the same as the

H ! 0 limit of A = 1�H
2
R

2 (A ! 1) the Minkowski limit of the black hole to dS action

is the same as the dS to dS action where one of the dS’s goes to the Minkowski limit. What
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spacetime. This is in contrast to the limit HO ! 0 of Eq. (2.50). Thus this suppression is

coming entirely from the blow up of the HH wave function. We will discuss this further in

Sec. 3 where we will explain how the sign ⌘ is determined.
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Background Vilenkin

with the inverse cosine defined be be between 0 and ⇡, while ⌘ = ±1, as from Eq. (2.16)

and [I ! O] means that the integrand is the same as in the first term of Eq. (2.37), with the

subscript I substituted by O. FMP did not evaluate the boundary term in Eq. (2.38) since

the integral cannot be done analytically for M 6= 0. However the most extreme form of the

puzzle that we encounter comes from the limiting case M ! 0, i.e. dS bubble nucleation

from flat space. In this case there is no inner turning point and it is easy to calculate the

boundary integral.

Since we want to compute the relative probability for the nucleation of the spacetime

N , the action Itot must be computed at the (second) turning point. We will denote all

quantities evaluated at the turning point(s) by the subscript ‘tp’. In the cases with two

turning points, the subscript tp will denote the di↵erence between the quantity evaluated

at the second turning point and the same quantity evaluated at the first turning point,

incorporating then the background subtraction, see Sec. 2.4.

If Eq. (2.33) holds, the transition probability is given by the real part of Eq. (2.37) and

Eq. (2.38). In order to compute the tunnelling probability we need to evaluate the classical

action in Eq. (2.37) and Eq. (2.38) in each di↵erent case as we do in the next Sections.

2.3 de Sitter to de Sitter transitions

In this Section we are interested in the relative probability of nucleating a configuration

with two dS spaces joined at a wall versus the probability of having a single dS space, see

Fig. 4:

P(dS ! dS/dS�W) =
| (dS/dS�W)|2

| (dS)|2 . (2.39)

It is possible to calculate the general case of dS to dS transitions (with Hubble constants

O I
W

Figure 4: Pictorial representation of the background spacetime B and the nucleated spacetime N . The

letters O and I represent the outer and inner regions respectively, while W represents the wall that separates

the two regions.
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Figure 11: Penrose diagrams for de Sitter space with slicing corresponding from left to right to
closed, flat and open slicings, respectively. Notice that the horizontal closed universe slicing is
global.

fig:slicings

with Nt, Nr the lapse and shift functions respectively and d⌦2
2

the line element for the 2-sphere.
The system consists of two de Sitter spaces with cosmological constants ⇤I , ⇤O separated by a
wall of tension � at r = r̂. The bulk and boundary actions are the standard gravitational ones
and the matter action is simply giving by the two cosmological constants, so the total action is:

S =
1

16⇡G

Z

M
d4x

p
�gR +

1

8⇡G

Z

@M
d3y

p
�hK + SM + SW , (5.3)

where K is the extrinsic curvature of the wall and

SM = �4⇡

Z
dtdrLNtR

2 (⇤O✓(r � r̂) + ⇤I✓(r̂ � r)) ,

SW = �4⇡T

Z
dtdr�(r � r̂)

h
N2

t � L2(Nr + ˙̂r)2
i
. (5.4)

In the above we defined T ⌘ 4⇡G� .Following the standard Dirac prescription for this Hamil-
tonian system, the Hamiltonian and momentum constraints can be found and the matching
conditions at the wall lead to an equation for the wall trajectory of the form:

˙̂R2 + V = �1; V = �R̂2

R2
0

, (5.5) {rdot}

where R̂ = R(r̂) and R0 is the turning point:

R2

0 =
4T 2

⇥
(H2

O
� H2

I
)2 + 2T 2(H2

O
+ H2

I
) + T 4

⇤ . (5.6)
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De Sitter Slicings

Closed Flat Open

From Hamiltonian approach: O(3) symmetry, closed slicing. 
Universe inside the bubble is closed for global slicing.



(see also [13]). As a first step towards this objective we believe it is important to revisit

the original proposals for a Minkowski to dS transition.

r = 0

I+

r = 0

I+

I�

r = 0

Figure 3: The Penrose diagram including i) the combined classical trajectory (in blue) starting with the

(a) trajectory at r = 0 that reaches a turning point, ii) the corresponding tunnelling through the wormhole

(horizontal line in orange) to an expanding bubble in trajectory (b) of the same energy, iii) its further

evolution towards infinite radius. The e↵ective spacetime corresponds to patching the two shaded regions.

The green shaded area on the right corresponds to the relevant part of the Schwarzschild spacetime and

the dashed yellow area on the left to the corresponding part of the dS spacetime.

In this paper we will address this question directly by considering the nucleation of

baby universes within the four dimensional context. We will first review the Hamiltonian

argument given by FMP [8, 9] in support of the claim of Guth and collaborators on the

creation of baby universes from behind the horizon of a black hole configuration [3, 4, 14].

While these calculations were somewhat incomplete, since a certain boundary term was

not explicitly worked out (see Sec. 2.3), in the corresponding case of transitions from dS

to dS spaces this can indeed be done and explicit formulae obtained as in [15].

Next we compare these calculations with the vacuum transition probabilities obtained

by CDL [1] and BT [2] using Euclidean instanton methods. In fact the latter paper (which

is the one used by Bousso and Polchinski [10]) is more closely related to the current inves-

tigation since it involves the nucleation of a brane as in the string theory case. We find

that while CDL/BT gives zero transition probability for up-tunnelling from flat space, the

FMP calculation (in agreement with the calculation of FGG) gives a non-vanishing prob-

ability for this. We explicitly compute this amplitude in two independent ways depending

on the way we describe Minkowski space: we consider the zero cosmological constant limit

of dS and the zero mass limit of the Schwarzschild solution. In the latter case we get a

non-vanishing result but in the former case we find a vanishing transition amplitude.

We explain this discrepancy by arguing that it is due to the use of di↵erent relative

probabilities. We interpret the CDL/BT expression as coming from the (absolute value

squared of the) ratio of the Wheeler-DeWitt (WDW) wave functions for the nucleated

spacetime configuration N to the background spacetime configuration B

P =
| N |2

| B|2
, (1.1)

– 4 –

Farhi,Guth, Guven (Euclidean) +  Fischler, Morgan, Polchinski (Hamiltonian)
the laboratory’1 (see also Blau, Guth and Guendelman (BGG) [4] and references therein).

Their analysis starts from an eternal Schwarzschild black hole (S), and involves a Euclidean

instanton that mediates the transition.

R

V e
ff

(a) (b)

Ri Ro

Region I Region II Region III

Figure 1: Pictorial representation of the e↵ective potential associated to a Schwarzschild to dS transition,

see also Fig. 7. Region I and III are the classically allowed regions for the motion of the bubble wall, while

Region II is the classically forbidden region. The horizontal lines correspond to di↵erent wall trajectories

and Ri and Ro (the subscripts ‘i’ and ‘o’ stand for ‘inner’ and ‘outer’) correspond to two classical turning

points of the wall trajectory. Type (a) is a bubble that can classically expand until R = Ri and then

collapse to a singularity. Type (b) contracts from spatial infinity, reflects o↵ the second turning point and

then expands back to infinity. In the quantum version classical trajectory (a) can tunnel to (b). In the dS

to dS transitions the first turning point disappears, see Fig. 5.

In the BGG discussion the trajectories of the bubble wall with respect to the e↵ective

potential were classified into five main types, according to the value of the mass M of

the black hole. We have omitted all but the ones relevant for our discussion since we are

ultimately interested in the M ! 0 limit. In Fig. 1 the trajectory (a) corresponds to a

bubble coming out of the white hole singularity, bouncing o↵ the turning point Ri and

then collapsing to the black hole. Trajectory (b) represents a wall coming in from infinity,

reflecting o↵ the second turning point and then expanding back to infinity. Trajectory (a)

by itself does not allow for an ever expanding universe. Trajectory (b) on the other hand

allows for a continuously expanding universe but su↵ers from the Penrose theorem in the

sense that the wall surface is an anti-trapped surface and cannot escape a singularity (see

Fig. 2). Selecting a point P on the left hand side of the wall trajectory, i.e. within the dS

patch, any pair of orthogonal ingoing geodesics either hit the singularity or past asymptotic

infinity behind the horizon of the observer on the right hand side. However, FGG argued

that tunnelling between these trajectories can result in the spontaneous nucleation of an

expanding bubble at the second turning point Ro, see Fig. 3. The important feature of

the given setup enabling type (a) trajectories to be buildable is the choice of the range

1Please note that the creation of baby universes from Minkowski should not be thought as an instability

of Minkowski spacetime since the original Minkowski spacetime remains after nucleating the dS bubble.

– 2 –

Tunneling

Schwarzschild to de Sitter
(HO=0)



Zero Schwarzschild mass limit

in the initial state A as P(A ! A/B � W). The transition probabilities for up- and

down-tunnelling therefore read

P(M ! M/dS�W) = exp
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GH2

✓
1� 

4

(H2 + 2)2

◆�
(2.64)

and

P(dS ! dS/M�W) = exp
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(H2 + 2)2

◆�
(2.65)

respectively. The ratio between the two transitions in Eq. (2.64) and Eq. (2.65) is thus

P(M ! M/dS�W)

P(dS ! dS/M�W)
= exp


⌘
⇡

G

1

H2

�
, (2.66)

which is the ratio of the exponentials of the entropy of dS to the exponential of the entropy

of Minkowski (taken as the M ! 0 limit of a Schwarzschild black hole entropy, i.e. zero),

implying that detailed balance is correctly recovered even in the black hole case in the limit

M ! 0.

Now depending on the sign ⌘ we have two di↵erent puzzles. Take the brane tension 

to be vanishingly small  ⌧ H and consider first the case ⌘ = +1. Then Eq. (2.64) (which

is the relative probability for tunnelling from ‘nothing’ to the composite of Minkowski and

dS joined at the brane compared to remaining in the Minkowski ground state) goes over

to the HH wave function for tunnelling from ‘nothing’ to dS space. Now if we take smaller

and smaller values of H we get the well-known divergence of the HH wave function for zero

cosmological constant. This appears to mean that it is infinitely more probable to be in

a dS space with cosmological constant tending to zero than to be in the vacuum state of

Minkowski. Of course this is again a reflection of the fact that the HH wave function is

the exponential of the horizon entropy. In some sense this ratio (in the limit) then is the

probability of being in a random state of the Hilbert space built on the Minkowski vacuum

relative to being in the ground state.

On the other hand with ⌘ = �1 the same ratio gives the probability of being in dS after

tunnelling from ‘nothing’ according to Vilenkin compared to the probability of being in the

Minkowski vacuum. This ratio, in the limit of the cosmological constant of the dS space

going to zero, goes to zero. It is unclear how to interpret this. In Sec. 3 we will argue that

the dominant contribution to these relative probabilities corresponds to choosing ⌘ = +1

i.e. with the HH wave function for dS.

2.6 Schwarzschild-de Sitter to Schwarzschild-de Sitter transitions

For completeness let us briefly consider also the most general case of SdS to SdS. Taking
two metric functions of the same kind
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at the turning points the bulk action reads
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Entropy

where Ro is the turning point (i.e. solution of V = �1) There is no initial turning point in

this case since the potential V / �R
2 which has only one turning point (see Fig. 5). So

e↵ectively the integration in Eq. (2.33) starts from R(0) = 0 analogous to the tunnelling

from ‘nothing’ case studied by HH and Vilenkin. The matching conditions are given by

R̂
0
±

L
=

1

2R̂
(H2

O �H
2
I ⌥ 

2)R̂2 ⌘ c±R̂ . (2.43)

Ro

-1

0

R

V e
ff

Figure 5: E↵ective potential for dS to dS transitions. Notice there is only one turning point.

The boundary action in Eq. (2.38) then becomes10
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In this case, for instance, the subscript ‘tp’ amounts to evaluating the integral in Eq. (2.46)

between 0 and Ro. After some algebra this becomes
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10We have used the definite integral
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Also note that cos�1(�x) = ⇡ � cos�1
x.
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M=0 Schwarzschild≠ H=0 de Sitter
(Difference on background wave function)

(Minkowski ≈ Schwarzschild in the M=0 limit)



AdS to AdS

first line (and hence its parametrization) is determined by continuity and the sign of R̂0
± which is

determined by the matching conditions and fixed by the geometry on either side of r̂. It should
be also be noted that if the geometry on either or both sides has horizons then R(b) should be
replaced by the solution (horizon) to AI = 0 and R(c) by the solution to AO = 0.

In the current case dS has a horizon R2

D
= H�2

dS
while AdS has no horizon. Let us consider the

transition A ! B where A is deSitter and B is AdS. Thus (recall that H2 ⌘ 8⇡G⇤

3
is positive

for dS and negative for AdS), AO = 1 � H2

AR2 and AI = 1 � H2

BR2 = 1 + |H2

B|R2 and R̂± =
1

2

�
H2

A + |HB|2 ⌥ 2
�
R̂. The last equation implies that R̂0

�/L > 0. Thus the first term in (2.33) is
zero. Also the step function in the integral requires R to be a decreasing function of r to contribute,
and there is internal horizon in empty dS (no blackhole) R(1) = 0. So let us take a parametrisation
such that R idecreases from r̂ to r = c as above, and then increases. The latter region of course
gives no contribution to the integral. Hence we have (Note that from figure (3) that R̂0

+ is negative
and remains negative in the limit M ! 0 for all R � 0 )

SB

⇣
R̂
⌘
=

i⌘⇡

2G
(0� R̂2), SB (0) =

i⌘⇡

2G
(0). (2.34)

Note that a potetntial divergence (since AdS is non compact) is averted since the step function in
the first term of (2.33) is zero. Subracting the second equation from the first and adding the wall
contribution we thus get:

BdS�>AdS =
⌘⇡

G

(�
(H2

A + |H2

B|)2 + 2(H2

A � |H2

B|)
 

Ro

4H2

A|H2

B|
� 1

2

�
H�2

A + |H�2

B |
�
)

, (2.35) {eq:BdSAdS}

with R0 given by (2.17) with the above substitution H2

B ! �|H2

B|. Also in this case there is no
constraint on the tension .

As in the case of dS to dS the configuration after the transition is actually the patching together
of the original dS with an AdS space separated by a wall. The latter will however collapse if any
matter is introduced as argued in [3]. After the collapse we will be left with a segment of dS space
bounded by an end of the world brane. On the other side of the brane there is no geometry left
and is equivalent to Witten’s bubble of nothing [7].

2.3 AdS to AdS

The AdS to AdS transitions can be analysed similarly to the previous ones. However for transitions
between AdS states there is a constraint that needs to be satisfied to guarantee that the turning
point radius R0 is real. In this case H2

I = �|HI |2 < 0, H2

O = �|HO|2 < 0. Now we have from
(2.17),

1

4

✓
1



�
�|H2

O|+ |H2

I |
�
� 

◆2

> |H2

O|,

i.e.

 <
���
q
|H2

I |�
q
|H2

O|
���, or  >

���
q
|H2

I |+
q
|H2

O|
���, (2.36) {eq:kappaconstraint}

In this case,

SB[R̂] =
⌘⇡

2G

h⇣
R̂2 � R2(0)

⌘
✓(�R̂0

�) +
⇣
R2(1)� R̂2

⌘
✓(�R̂0

+)
i

(2.37)
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Mechanics
 (R̂) = aeI + be�I (1.6)

where I = iS is the action evaluated at R̂. For the case when one of the two exponentials dominate,
the transition rate can be written in terms of a di↵erence between two actions, similar to (1.1) but
as we will see they di↵er in important ways.

V

!"

-1

!"1 !"2

State A Barrier State B

V

!"

-1

!"1=0
!"2

Barrier State B

Figure 1: Two realisations of the potential for the bubble wall R̂. On the left, a bubble is materialised in region
A and grows until it reaches the turning point R̂1 and classically bounces but quantum mechanically can tunnel to
region B at the second turning point to continue expanding. The WKB approximation can be used in all the regions
of the potential outside and inside the barrier. This is a typical situation for black hole geometries. On the right
there is only one turning point (the first turning point has moved to zero) and the bubble materialises directly in
state B. This is a typical potential for pure dS or AdS that can be obtained by setting the black hole mass to zero
from the black hole geometry.

fig:potentialRhat

In the next sections we will provide a short summary of this prescription and its application to
explicitly compute the transition rates between vacuum states. Let us summarise our main results:

• We explicitly compute the rates for transitions between any of dS and AdS states including both
up and down tunneling and provide explicit expressions for each of the transition rates. The
cases corresponding to up-tunneling from AdS are new results whereas the others are known and
we agree with the previous results in the literature.

• We consider Minkowski spacetime M in two di↵erent limits: First, starting from pure dS with
curvature ⇤ > 0 and taking the limit ⇤ ! 0 in this case we obtain vanishing up-tunneling
transition as in the Euclidean case. Second, we start with a AdS spacetime with curvature ⇤ < 0
and take the limit ⇤ ! 0. In this case we get a finite transition amplitude. We interpret the
results by noticing that in the dS limit case, the entropy S / 1/

p
⇤ ! 1 whereas in the AdS

limit case the background contribution in AdS vanishes which corresponds to a vanishing entropy
for AdS which is inherited in the Minkowski limit.
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Also from (2.20) (with H2 ! �|H2|) we see that for down tunneling |HI |2 > HO|2, R̂0
� and R̂0

+

are both positive for small , so we get SB[R̂] = SB[0] and therefore the bulk contribution vanishes
and the total rate comes from the wall contribution: Itot = IW.

For down tunneling we then have B = 2IW:

B = � ⌘⇡

2G

"���H2

I

���
��H2

O

���2 � 2
���H2

I

��+
��H2

O

���

2
��H2

I

����H2

O

�� R0 �
 

1��H2

O

�� �
1��H2

I

��

!#
. (2.38)

Even though this looks very similar to the dS to dS transition case npte the sign di↵erences and
the fact that the bulk contribution vanishes make a major di↵erence. In particular note that for
the up-tunneling we have to change |c+| to |c�| in (2.27) but also the signs of R̂0

± are interchanged
and therefore the amplitude does not change. This means that

PAdS!AdS

up = PAdS!AdS

down , (2.39)

This is a new result and this relation is still trivially consistent with detailed balance if we assign
zero entropy to AdS.

2.4 Minkowski to AdS

First let’s look at the expression for the bubble radius (2.17) Taking the limit H0 ! 0 we get after
putting H2

I ! �|H2

I |

R0 =
2

|� |H2

I |+ 2|

✓
1� H2

0
(2 + |H2

I |)
(�|H2

I |+ 2)
+ O

�
H4

0

�◆
.

Now since R0 � 0 one should take R0 = 2/|2 � |HI |2| + O(H2
0
) but FMP ruled out the case

 > |HI | (in this case it turns out that in the limit H0 ! 0 the tunneling exponent B diverges),
so let’s focus on the case |HI | > . Taking the limit H0 ! 0 in eqn. 2.55 after the replacement
H2

I ! �|H2

I | we get for the tunneling exponent,

B = 2
�
Itot|tp � Ī

�
= � ⌘⇡

2G|HI |2


24

(|HI |2 � 2)2

�
, (2.40) {eq:MAdS}

In agreement with [3, 13].

Let us look at this in stages separating the bulk and boundary (wall) terms. First we note that for
|HI |2 > 2, R̂

0
± > 0. Thus we have IB = ⌘⇡

2G
1

H2

0

and Ī = ⌘⇡
2G

1

H2

0

so that IB � Ī = 0, so that the bulk

contribution vanishes after background subtraction and the decay rate is fully determined by the
wall contribution Ib which in this limit is:

1

2
B = Ib = � ⌘⇡

4G|HI |2


24

(|HI |2 � 2)2

�
(2.41) {eq:MAdS2}

in agreement with (2.40) as expected.
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AdS to dS

There is however a puzzling issue with regard to these transition probabilities P(M ! AdS) ⇠
e�|B|. This is the fact that the transition probability goes to unity the deeper the AdS minimum
is i.e. in the limit |HI |2 ! 1! This seems bizzare since it means the Minkowski space is unstable
to decaying to the deepest (in the EFT this would mean |⇤|1/4 . MP (or the string or KK scale if
the theory is compactified string theory).

2.5 AdS to dS/M

In order to avoid potential problems with the parametrization in this case, one needs to consider
it as uptunneling to dS (A) from an AdS black hole in the the limit M ! 0 (B). The latter is
essentially the same as that studied by FMP. Since both Minkowski and AdS have no horizon the
calculation in the Appendix (which is a reproduction of the FMP one) for the small mass case iii
applies and so from eqn. (5.4) (setting R1 = Rs = M = 0,

SBu (R2 = R0)� SBu(R1 = 0) = � i⌘⇡

G

�
H�2

A

�
. (2.42) {eq:FMP3}

In this case there is no constraint on the tension  and adding the wall term we get.

BAdS�>dS =
⌘⇡

G

(�
(|H2

B|+ H2

A)
2 + 2(�|H2

B|+ H2

A)
 

Ro

4|H2

B|H2

A

+
1

2

✓
1

H2

A

� 1

|H2

B|

◆)
, (2.43) {eq:BAdSdS}

with R0 again given by (2.17) with the substitution H2

B ! �|H2

B|.
For |H2

B| > |HA|2 and small  the factor in parentheses in the expression above for B is positive, so
choosing ⌘ = �1 we get an exponentially suppressed tunneling probability and hence an exponen-
tially enhanced lifetime and so gravitational collapse is exponentially more likely than tunneling
to dS. However this depended on the choice of ⌘ = �1 which is not what one chose for the dS to
dS case, where the issue was settled (as discussed in section 3 of [14]), by arguing that this choice
(which corresponds to the HH wave function rather than the tunneling one), gives the dominant
contribution to the wave function (and indeed was consistent with detailed balance). Here we can-
not make the same argument since that calculation depended crucially on the compactness of the
spatial sections of dS.

On the other hand detailed balance holds (see below) as in the dS to dS case for the ⌘ = 1 case. In
this case this quantum transition is exponentially more probable than the gravitational collapse of
AdS. Then we have a situation where the AdS can tunnel to a configuration of AdS separated by
a wall/brane from a dS space with the AdS eventually collapsing leaving behind a dS bounded by
a end of the world brane.

However it should be noted that the ‘Minkowski’ limit HA ! 0 is in fact divergent BAdS�>dS !
⌘⇡
2G

1

H2

A
! ±1. This is to be expected since the limit is taken from the amplitude for transition to

a dS space whose horizon and hence entropy diverges as the dS radius goes to infinity. This is in
contrast to the corresponding uptunneling from AdS to a Minkowski space (M) which is the limit
of the AdS radius going to infinity. Note that this limit has the same topology as M in contrast to
the infinite radius limit of dS which still has the topology of a sphere.
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Minkowski limit from dS blows-up but from AdS is finite!?

2.6 From nothing and back?

Now Brown and Dahlen [8] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point for the “no-boundary wave func-
tion HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
of the spatial sections of AdS)5 is not valid since as we saw earlier the FMP bulk contribution is
zero at the turning points so that the tunneling amplitude is actually finite. To see this let us
take the limit |H2

B| ! 1 first in (2.17) (with H2

O ! �|H2

B| which gives R0 ! 2/|H2

B|) and then
substituting in (2.43) we get

BAdS�>dS ! ⌘⇡

G

(�
(|H2

B|)2
 
2/|H2

B|
4|H2

B
|H2

A

+
1

2

✓
1

H2

A

+ 0

◆)
=

⌘⇡

2G

1

H2

A

.

That is if we define as nothing the limit of AdS with |HB| ! 1. We get:

BNothing�>dS =
⌘⇡

2G

1

H2

A

. (2.44)

This is precisely the (log of the) Hartle-Hawking (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1)
tunneling factor for creating a universe from nothing!

Thus, we agree with the proposal of [8] to identify the two definitions of nothing, the limit of infinite
curvature AdS as representing the bubble of nothing and the nothing of Vilenkin or Hartle-Hawking
regarding the wave function of the universe interpretation as creation from nothing. But contrary
to the claim of [8] in which creation from nothing does not happen, we can reproduce the tunneling
from nothing picture by interpreting nothing as deep AdS as they did! It is interesting to note
that even though the bubble radius goes to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.

We may question the validity of taking the limit |HB| ! 1 since the EFT is only valid up to
energies smaller than the Planck mass. But we can reproduce this result as the leading term in
an expansion in powers of "2 = H2

A/|HB|2 and �2 = 2/|HB|2 with ", � ⌧ 1 but still keeping
|HB|  MP .

Detailed balance in dS/AdS transitons.

The results of the above subsections shows that detailed balance holds for dS to and from AdS
transitions provided we (as one should expect given that empty AdS has no horizon)

PAdS�>dS

P dS�>AdS
=

eB
AdS�>dS

eBdS�>AdS
=

exp
⇣

⌘⇡
2G

1

H2

A

⌘

exp
⇣
� ⌘⇡

2G
1

H2

A

⌘ = e⌘(SdS�(SAdS=0)), (2.45) {eq:dSAdSdb}

5In any case the argument depended on not including the Gibbons-Hawking regulator term as in the Euclidean
arguments mentioned earlier.
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To Nothingness and Back?
of the spatial sections of AdS) is not valid since as we saw earlier the FMP bulk contribution is
zero at the tunning points so that the tunneling amplitude is actually finite.

Actually, the limit for HO ! 1 falls beyond the validity of the EFT. However we may consider
it formally by just assuming HO � HI, M, . Simple inspection of equations (3.12) show that the
wall contribution to the action is imaginary and therefore does not contribute to the amplitude and
we are left essentially with the transition determined by the bulk contribution:

B '
⌘⇡

2G
R2

dS =
⌘⇡

2G

1

H2
I

(6.9)

. This is precisely the (log of the) HH (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1) tunneling
factor for creating a universe from nothing!

We could have also seen this naively as follows: take the limit |H2
O| ! 1 first in (3.14) (with

H2
O ! �|H2

O| which gives R0 ! 2/|H2
O|) and then substituting in (??) we get

B !
⌘⇡

G

(�
(|H2

O|)
2
 
2/|H2

O|

4|H2
O|H

2
I

+
1

2

✓
1

H2
I

+ 0

◆)
=

⌘⇡

2G

1

H2
I

. (6.10) {eq:nothing}

Again, we do not need to just set HO ! 1 but just assume that HO � HI, M,  and perform
the integrals numerically. We illustrate this in the figures:

Add figures for this limit

Thus contrary to the claim of [5] we can reproduce the tunneling from nothing picture of HH
and V/L by interpeting nothing as deep AdS as they did! It is interesting to note that even
though the bubble radius goes to zero in this limit (which normally would have been interpreted
as signalling the absence of tunneling) there is a cancellling singularity in B resulting in a finite
tunneling probability.

7 The brane trajectory after nucleation

The metric on the brane is
ds2 = �dt2 + R̂2(t)d⌦2 (7.1) {eq:brane-metric}

The first (energy) integral of the equation of motion for the brane is (from now on we’ll drop the
hat on R in this section since we are just discussing the brane motion),

Ṙ2 + V = �1, (7.2) {eq:brane-eom}

where the potential may be written as

V = �
1

(2R)2
�
(AI � AO) + 2R2

�
+ AI � 1. (7.3) {eq:V}

In the case of interest (i.e, AdS black hole to dS),

AI = 1� H2
I R2, AO = 1�

2GM

R
+ H2

OR2,
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The same as Vilenkin, Hartle-Hawking wave functions!
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This is the central claim of this paper. We spend the remainder of this section justifying

this claim, first by showing that this limit is smooth, and, second by showing that this is not

a special feature of the 6D Einstein-Maxwell theory and in fact holds in all compactifications

that admit a bubble of nothing.

extra dimensions

r

extra dimensions

r

extra dimensions

r

extra dimensions

r

Figure 6: A sequence of tunneling instantons that discharge di↵erent amounts of flux. The more charged
branes in the stack, the more units of flux are discharged, and the smaller the size of the extra dimensions
inside the bubble. In the limit that all the flux is discharged, the area-radius of the bubble stays nonzero,
but the size of the extra dimensions inside the bubble goes to zero. This is the bubble of nothing, and can
be compared with Fig. 1. The exact instanton profiles are computed numerically in [10]; this figure shows
the qualitative behavior.

2.2.3 Bubbles of next-to-nothing

The bubble of nothing is the limit of flux tunneling in which all the flux is discharged; despite

being topology-changing, it is the limit of a family of transitions that are topology-preserving.

In what sense is this limit smooth?

For thin branes, the flux tunneling instantons amongst the vacua of the 6D Einstein-

Maxwell model break up into three parts: a false-vacuum exterior, a true-vacuum interior,
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For SAdS to dS

2.6 From nothing and back?

Now Brown and Dahlen [8] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
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interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.

We may question the validity of taking the limit |HB| ! 1 since the EFT is only valid up to
energies smaller than the Planck mass. But we can reproduce this result as the leading term in
an expansion in powers of "2 = H2

A/|HB|2 and �2 = 2/|HB|2 with ", � ⌧ 1 but still keeping
|HB|  MP .

Detailed balance in dS/AdS transitons.

The results of the above subsections shows that detailed balance holds for dS to and from AdS
transitions provided we (as one should expect given that empty AdS has no horizon)

PAdS�>dS

P dS�>AdS
=

eB
AdS�>dS

eBdS�>AdS
=

exp
⇣

⌘⇡
2G

1

H2

A

⌘

exp
⇣
� ⌘⇡

2G
1

H2

A

⌘ = e⌘(SdS�(SAdS=0)), (2.45) {eq:dSAdSdb}

5In any case the argument depended on not including the Gibbons-Hawking regulator term as in the Euclidean
arguments mentioned earlier.
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SAdS to dS

This can be easily seen by the conditions coming from the expression of the potential at the turning
points ÂI = 1 � H2

I R2 > 0 implying RI,O  RdS and ÂO = 1 � 2GM/R + H2
OR2 > 0 which by

looking at the coe�cients determining the single root of the cubic, it can seen that it implies
RS  RI,O.

Also to define the domains for the integration parameter M we compute it first for the case
R0

+ = 0, V = �1 which implies gives the value for M :

M = MS =
H2

O + H2
I + 2

2G
�
H2

I + 2
�3/2 , for R0

+ = 0, V = �1 (6.6)

For the case R0
� = 0, V = �1 we get

M = MD =
H2

O + H2
I � 2

2GH3
I

, for R0
� = 0, V = �1 (6.7)

Notice that for HO = 0 this reduces to the FMP results as it should. It is also easy to prove that,
as in the FMP case, MD  MS.

Therefore we have the same situation as in the Schwarzschild to dS transition in which the bulk
contribution to the transition rate is determined by:
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����
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⌘ IB

����
RO

RI

=

8
><

>:

⌘⇡
2G(R

2
O � R2

I ) , M > MS ,
⌘⇡
2G(R

2
O � R2

S) , MS > M > MD ,
⌘⇡
2G(R

2
dS � R2

S) , MD > M .

(6.8) {eq:SB3}

Add figures to explain these results

As in FMP we are interested in the latest case MD > M to take the small M limit. As in there
we may take the limit M ! 0 which actually means M ! Mp which is when we can have a black
hole in the EFT regime.

So we have explicitly a non zero transition rate from AdS black hole to dS which is interesting
by itself. The interesting questions to ask is how the whole transition rate depends on the values
of the parameters M, HI, HO, . In particular if it prefers transitions to smaller or higher values of
HI for a fixed HO or viceversa. Also analyse the transition rate in the extreme cases H~mI,O ! Mp

from below and M ! Mp from above. This should be done numerically combining the bulk and
the wall contributions to the transition rate.

Insert here Francesco’s plots on the numerical integrations...

6.3 Up-tunneling and Creation from Nothing

Now Brown and Dahlen [5] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point fort the “no-boundary wave
function HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
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Need numerical estimates for wall contribution but the transition is 
allowed however detailed balance is OK only for MD>M (?)

2.6 From nothing and back?

Now Brown and Dahlen [8] have suggested interpreting ’nothing’ as the infinitely curved AdS space
(to which their flux compactified 6D theory decays to). This interpretation is actually consistent
with the mini-superspace “nothing” which was the starting point for the “no-boundary wave func-
tion HH or the tunneling wave function of Vilenkin and Linde tunneling from nothing. However
their argument that uptunneling from AdS to dS/M is prohibited (based on the non-compactness
of the spatial sections of AdS)5 is not valid since as we saw earlier the FMP bulk contribution is
zero at the turning points so that the tunneling amplitude is actually finite. To see this let us
take the limit |H2

B| ! 1 first in (2.17) (with H2

O ! �|H2

B| which gives R0 ! 2/|H2

B|) and then
substituting in (2.43) we get

BAdS�>dS ! ⌘⇡

G

(�
(|H2

B|)2
 
2/|H2

B|
4|H2

B
|H2

A

+
1

2

✓
1

H2

A

+ 0

◆)
=

⌘⇡

2G

1

H2

A

.

That is if we define as nothing the limit of AdS with |HB| ! 1. We get:

BNothing�>dS =
⌘⇡

2G

1

H2

A

. (2.44)

This is precisely the (log of the) Hartle-Hawking (for ⌘ = +1) or the Vilenkin-Linde (for ⌘ = �1)
tunneling factor for creating a universe from nothing!

Thus, we agree with the proposal of [8] to identify the two definitions of nothing, the limit of infinite
curvature AdS as representing the bubble of nothing and the nothing of Vilenkin or Hartle-Hawking
regarding the wave function of the universe interpretation as creation from nothing. But contrary
to the claim of [8] in which creation from nothing does not happen, we can reproduce the tunneling
from nothing picture by interpreting nothing as deep AdS as they did! It is interesting to note
that even though the bubble radius goes to zero in this limit (which normally would have been
interpreted as signalling the absence of tunneling) there is a cancelling singularity in B/2 resulting
in a finite tunneling probability.

We may question the validity of taking the limit |HB| ! 1 since the EFT is only valid up to
energies smaller than the Planck mass. But we can reproduce this result as the leading term in
an expansion in powers of "2 = H2

A/|HB|2 and �2 = 2/|HB|2 with ", � ⌧ 1 but still keeping
|HB|  MP .

Detailed balance in dS/AdS transitons.

The results of the above subsections shows that detailed balance holds for dS to and from AdS
transitions provided we (as one should expect given that empty AdS has no horizon)
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5In any case the argument depended on not including the Gibbons-Hawking regulator term as in the Euclidean
arguments mentioned earlier.
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Summary

• Schwarzschild M=0 to dS allowed
• AdS Schwarschild M=0 to (A)dS also allowed
• Entropy of Minkowski/AdS is 0 or ∞
• Transition from 𝜦 → −∞ to dS same as 

HH/Vilenkin universe from nothing!
• Universe after transition open or closed!
• Detailed balance OK for small bh mass (?)



On classical dS solutions on 6D 
supergravity and their uplift



6D Supergravity (Salam-Sezgin)

dictate. These are then used in the results of Section II to more directly relate the n-dimensional

curvature to the power-law dependence of the bulk fields in the near-brane limit. Finally, Section

IV specializes to 6D supergravity compactified to 4 maximally-symmetric dimensions, and shows

how to use the previous two sections to generalize the class of 6D solutions to include those having

de Sitter-like and anti-de Sitter-like 4-dimensional slices.

II. THE CURVATURE-ASYMPTOTICS CONNECTION

In this section we summarize the field equations of interest, which are the bosonic parts of the

equations of motion for many higher-dimensional supergravities. We also here specialize the fields

appearing in these equations to the most general configurations which are maximally symmetric

in (3+1) non-compact dimensions, as is appropriate for describing the warped compactifications of

interest. We allow these solutions to have singularities (more about which below) at various points

within the extra dimensions corresponding to the positions of various branes having co-dimension

≥ 2. Our goal in so doing is to establish a general connection, eq. (8), between the curvature of

the noncompact 4D geometry and the asymptotic behaviour of the bulk fields in the vicinity of the

various branes.

A. The Field Equations

Our starting point is the following action in D spacetime dimensions

S = −
∫

dDx
√
−g

[

1

2κ2
gMN

(

RMN + ∂Mϕ∂Nϕ
)

+
1

2

∑

r

1

(pr + 1)!
e−prϕF 2

r +A eϕ
]

, (1)

where κ2 = 8πG denotes the higher-dimensional Newton constant and A is a dimensional constant.

The fields Fr are the (pr + 1)-form field strengths for a collection of pr-form gauge potentials, Ar,

and F 2 = FM1..Mpr+1
FM1..Mpr+1 . When A = 0 this is sufficiently general to encompass the bosonic

parts of a variety of higher-dimensional, ungauged supergravity lagrangian densities [14]. When

A ≠ 0 the dilaton potential has the form found in chiral 6D supergravity [15].

The field equations obtained from this action are:

!ϕ− κ2A eϕ + κ2
∑

r

pr
2(pr + 1)!

e−prϕF 2
r = 0 (dilaton)

∇M

(

e−prϕ FMN...Q
r

)

+ (CS terms) = 0 (pr-form) (2)

RMN + ∂Mϕ∂Nϕ+ κ2
∑

r

1

pr!
e−prϕ

[

F 2
r

]

MN
+

2

D − 2
(!ϕ) gMN = 0 (Einstein) ,

5

D=6, r=2, A>0

• Positive potential (evades Maldacena-Nunez theorem)

• Chiral

• No maximally symmetric solution in 6D

• Maximally symmetric in 4D

• Maximally symmetric smooth solution: Minkowski x S2, N=1 SUSY.



General 4D Solutions

where ‘(CS terms)’ denotes terms arising from any Chern-Simons terms within the definition of

F(r), and we define

[

F 2
]

MN
= F P ...R

M FNP...R . (3)

The ability to write the term proportional to gMN in the Einstein equation in terms of !ϕ is a

consequence of the particular powers of eϕ which pre-multiply each of the terms in the action,

(1). This choice corresponds to the existence of a scaling symmetry of the classical field equations,

according to which

gMN → ω gMN and eϕ → ω−1 eϕ , (4)

with constant ω and the field strengths, Fr, not transforming. Although this is not a symmetry

of the action, which transforms as S → ω(D−2)/2S, it does take solutions of the classical equations

into one another.

B. Maximally-Symmetric Compactifications

We seek solutions to these equations for which n dimensions are maximally symmetric and

d = D − n are not. In most applications we have in mind n = 4, corresponding to having

3+1 maximally-symmetric directions and d = D − 4 static, compact euclidean dimensions. But

our analysis is general enough also to include (with minor modifications) situations of interest to

cosmology for which there are n = 3 maximally-symmetric spatial dimensions and d = D − 4

time-dependent, compact dimensions.

To this end divide the D coordinates xM , M = 1...D, into n maximally-symmetric coordinates,

xµ, µ = 1...n, and the remaining d = D−n coordinates, yi, i = n+1...d. We use the metric ansatz

which follows from maximal symmetry:

ds2 = ĝMN dxM dxN = W 2(y) gµν(x) dx
µ dxν + g̃ij(y) dy

idyj , (5)

where gµν is an n-dimensional maximally symmetric metric and g̃ij a generic d-dimensional metric.

Throughout this section, we use the convention that hats denote objects constructed from the full

D-dimenional metric ĝMN , while tildes denote objects constructed from the metric g̃ij . Tensors

without hats or tildes are constructed from the metric gµν .

With these conventions the Einstein equation, eq. (2), specialized to the maximally-symmetric

directions reads

R̂µν +
2

D − 2
(!̂ϕ)ĝµν = 0 , (6)

6

where we use that maximal symmetry implies ∂µϕ = 0 and FµN..P
r = 0 (and so

[

F 2
r

]

µν
= 0).

C. Relating Curvature to Bulk Asymptotics

Using the metric ansatz, (5), we may write

ĝµν = W 2gµν , R̂µν = Rµν +
1

n
(W 2−n∇̃2W n) gµν and !̂ϕ = W−n∇̃i(W

ng̃ij∂jϕ) , (7)

where ∇̃2 = g̃ij∇̃i∇̃j . Since maximal symmetry implies Rµν = (R/n) gµν , these equations allow

eq. (6) to be simplified to

1

n
W n−2R = −∇̃i

[

W ng̃ij∂j

(

lnW +
2ϕ

D − 2

)]

. (8)

This last equation represents the main result of this section, and is a generalization to arbitrary

dimensions of a similar result in 6 dimensions derived in ref. [12].

The significance of eq. (8) is most easily seen once it is integrated over the compact d dimensions

and Gauss’ Law is used to rewrite the right-hand side as a surface term:

1

n

∫

M
ddy

√

g̃ W n−2R = −
∑

α

∫

Σα

dd−1y
√

g̃ Ni

[

W ng̃ij∂j

(

lnW +
2ϕ

D − 2

)]

, (9)

where Ni is an outward-pointing normal, with g̃ijNiNj = 1. (If time is one of the d dimensions

then the surface terms must include spacelike surfaces in the remote future and past, for which

g̃ijNiNj = −1.) If there are no singularities or boundaries in the dimensions being integrated then

the right-hand side vanishes, leading to the conclusion that the product W n−2R integrates to zero.

Since R is constant and W n−2 is strictly positive, this immediately implies R = 0, as concluded

for 6D in ref. [12].

Our interest in what follows is the case where the right-hand side of eq. (8) does have singularities

corresponding to the presence of various source branes situated throughout the extra dimensions.

In this case eq. (8) still carries content provided we excise a small volume about the positions of each

singularity, thereby leaving a co-dimension-1 boundary, Σα, which surrounds each of the various

brane positions. In this case eq. (9) directly relates the curvature of the maximally-symmetric d

dimensions to the sum over the contributions to the right-hand side of the boundary contributions

from each surface Σα. Since these surfaces are chosen to be close to the source branes, these

surface contributions can be simplified using the asymptotic forms taken by the bulk fields in the

immediate vicinity of these sources. After a brief digression concerning the possible existence of

horizons in these geometries, we return in the next section to identify what these asymptotic forms

must be.

7
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Asymptotic Near Brane solutionsA. Asymptotic Near-Brane Geometries

To this end we assume that the dilaton field, ϕ, and the metric near the brane have the form

ϕ ≈ q ln r and ds2 ≈ r2w gµν(x) dx
µ dxν + dr2 + r2αfab(z) dz

adzb , (10)

where w, α and q are constants. With respect to our initial metric ansatz, eq. (5), we see that this

corresponds to the choices

W (y) = rw and g̃ijdy
idyj = dr2 + r2αfabdz

adzb, (11)

where {yi} = {r, za}. If the supergravity of interest is regarded as describing the low-energy limit

of a perturbative string theory then our conventions are such that eϕ → 0 represents the limit of

weak string coupling. We see that if q < 0 then the region of small r lies beyond the domain of

the weak-coupling approximation.

We imagine the brane location to be given by r = 0 and the coordinate r is then seen to represent

the proper distance away from the brane. With this choice a surface having proper radius r has

an area which varies with r like rα(d−1), and so this area only grows with increasing r if α > 0.

The geometry in general has a curvature singularity at r = 0, except for the special case α = 1 for

which the singularity can be smooth (or purely conical).

Finally, we specialize for simplicity to the case where there is only one non-vanishing gauge flux

which we take to be for a p-form potential whose field strength is F . With a Freund-Rubin ansatz

[19] in mind we also specialize to p = d − 1 and take F proportional to the volume form of the

d-dimensional metric g̃ij . Near r = 0, we assume

F ra1...ap ∼ rγ . (12)

With these assumptions, we now determine the powers α, w, q and γ by solving the field

equations in the region r ≈ 0. We do so by neglecting the contributions of fluxes or the dilaton

potential in the dilaton and Einstein equations, and by neglecting any Chern-Simons contributions

to the equations for the background p-form gauge potential. Once we find the solutions we return

to verify that the neglect of these terms is indeed justified.

The p-form equation gives the condition

0 = ∂r
(

√

ĝe−pϕF rz1...zp
)

∼ ∂r
[

rwn+α(d−1)−pq+γ
]

(13)

which leads (when p = d− 1) to the condition γ = (q − α)(d − 1)− wn, and so

F 2 ∼ r2q(d−1)−2wn . (14)
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[19] in mind we also specialize to p = d − 1 and take F proportional to the volume form of the

d-dimensional metric g̃ij . Near r = 0, we assume

F ra1...ap ∼ rγ . (12)

With these assumptions, we now determine the powers α, w, q and γ by solving the field

equations in the region r ≈ 0. We do so by neglecting the contributions of fluxes or the dilaton

potential in the dilaton and Einstein equations, and by neglecting any Chern-Simons contributions

to the equations for the background p-form gauge potential. Once we find the solutions we return

to verify that the neglect of these terms is indeed justified.

The p-form equation gives the condition

0 = ∂r
(

√

ĝe−pϕF rz1...zp
)

∼ ∂r
[

rwn+α(d−1)−pq+γ
]

(13)

which leads (when p = d− 1) to the condition γ = (q − α)(d − 1)− wn, and so

F 2 ∼ r2q(d−1)−2wn . (14)
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Consider next the dilaton equation. We first note that

!̂ϕ =
1√
ĝ
∂M

(

√

ĝ ĝMN ∂Nϕ
)

∼ q[nw + α(d− 1)− 1] r−2. (15)

For comparison, the other terms in the dilaton equation of motion depend on r as follows:

e−pϕF 2 ∼ rq(d−1)−2wn and eϕ ∼ rq. (16)

Thus, provided q > −2 and q(d− 1)− 2wn > −2 (whose domains of validity we explore below) all

of the terms in the dilaton equation are subdominant to !̂ϕ, and so may be neglected. The dilaton

therefore effectively satisfies !̂ϕ = 0 near r = 0, and so from eq. (15) we see that this requires

nw + α(d− 1) = 1. (17)

Next consider the rr-component of the Einstein equation. Given the assumed asymptotic form

for the metric, we calculate

R̂rr = [−wn+ nw2 + (α2 − α)(d − 1)] r−2

= [nw2 + α2(d− 1)− 1] r−2. (18)

As before, we find that the F 2 term is subdominant if q(d − 1) − 2wn > −2. The rr-Einstein

equation therefore gives the additional constraint

nw2 + α2(d− 1) + q2 = 1. (19)

Notice that this equation restricts the ranges of w, α and q to be

−
1√
n
≤ w ≤

1√
n
, −

1√
d− 1

≤ α ≤
1√
d− 1

and − 1 ≤ q ≤ 1 . (20)

In particular it allows a regular solution (or one having a conical singularity) – i.e. one having

α = 1 – only if d = 2 and q = w = 0.

The Einstein equations in the maximally symmetric dimensions can be similarly evaluated

using the assumed asymptotic form for the metric. The contribution of the induced n-dimensional

curvature tensor contributes to this equation subdominantly in r, and so is not constrained to

leading order. (In general, evaluating this equation to subdominant order in r relates the n-

dimensional curvature to the time-evolution of the exponents α, w and q.) The leading term

vanishes as a consequence of eq. (17), and so does not impose any new conditions. Neither do the

Einstein equations in the za directions.
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ĝ ĝMN ∂Nϕ
)

∼ q[nw + α(d− 1)− 1] r−2. (15)

For comparison, the other terms in the dilaton equation of motion depend on r as follows:

e−pϕF 2 ∼ rq(d−1)−2wn and eϕ ∼ rq. (16)

Thus, provided q > −2 and q(d− 1)− 2wn > −2 (whose domains of validity we explore below) all

of the terms in the dilaton equation are subdominant to !̂ϕ, and so may be neglected. The dilaton

therefore effectively satisfies !̂ϕ = 0 near r = 0, and so from eq. (15) we see that this requires

nw + α(d− 1) = 1. (17)

Next consider the rr-component of the Einstein equation. Given the assumed asymptotic form

for the metric, we calculate

R̂rr = [−wn+ nw2 + (α2 − α)(d − 1)] r−2

= [nw2 + α2(d− 1)− 1] r−2. (18)

As before, we find that the F 2 term is subdominant if q(d − 1) − 2wn > −2. The rr-Einstein

equation therefore gives the additional constraint

nw2 + α2(d− 1) + q2 = 1. (19)

Notice that this equation restricts the ranges of w, α and q to be

−
1√
n
≤ w ≤

1√
n
, −

1√
d− 1

≤ α ≤
1√
d− 1

and − 1 ≤ q ≤ 1 . (20)

In particular it allows a regular solution (or one having a conical singularity) – i.e. one having

α = 1 – only if d = 2 and q = w = 0.

The Einstein equations in the maximally symmetric dimensions can be similarly evaluated

using the assumed asymptotic form for the metric. The contribution of the induced n-dimensional

curvature tensor contributes to this equation subdominantly in r, and so is not constrained to

leading order. (In general, evaluating this equation to subdominant order in r relates the n-

dimensional curvature to the time-evolution of the exponents α, w and q.) The leading term

vanishes as a consequence of eq. (17), and so does not impose any new conditions. Neither do the

Einstein equations in the za directions.

10

Kasner constraints
(BKL: Belinsky et al)

n=4, d=2

Consider next the dilaton equation. We first note that

!̂ϕ =
1√
ĝ
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Flat Solutions

Two of the corresponding Einstein equations become

(µν) :
W ′′

W
−

(W ′)2

W 2
− 3H2a2W 6 +

1

2
ϕ′′ = 0 (31)

(θθ) :
a′′

a
−

(a′)2

a2
+ κ2Q2 a2eϕ +

1

2
ϕ′′ = 0 (32)

while use of the ηη component of the Einstein tensor

Ĝηη =
2

aW 2

[

3H2a3W 8 − 2Wa′W ′ − 3 a(W ′)2
]

, (33)

allows the third to be written

(ηη) : 6H2a2W 6 −
4 a′W ′

aW
−

6(W ′)2

W 2
+

1

2
(ϕ′)2 +

κ2

2
Q2 a2eϕ −

κ2ĝ2

8
a2W 8eϕ = 0 . (34)

For numerical purposes we use eqs. (29), (31) and (32) to determine ϕ′′, a′′ and W ′′ as a function

of ϕ, a, W , ϕ′, a′ and W ′, and by stepping forward in η generate a solution as a function of η.

By contrast, eq. (34) must be read as a constraint rather than an evolution equation because it

contains no second derivatives. The consistency of this constraint with the evolution equations is

guaranteed (as usual) by general covariance and the Bianchi identities. Evaluating this constraint

at the ‘initial’ point, η = η0, gives H in terms of the assumed initial conditions.

B. Solutions

A general class of solutions to the field equations obtained using these ansätze is found in

ref. [12], which (using their conventions for which κ2 = 1
2 and ĝ = 4g/κ2 = 8g) has the form

eϕ = W−2e−λ3η

W 4 =

(

Qλ2

4gλ1

)

cosh[λ1(η − η1)]

cosh[λ2(η − η2)]
(35)

a−4 =

(

gQ3

λ3
1λ2

)

e−2λ3η cosh3[λ1(η − η1)] cosh[λ2(η − η2)]

and F =

(

Qa2

W 2

)

e−λ3η dη ∧ dθ .

Here λi, ηi and q̂ are integration constants, which are subject to the constraint λ2
2 = λ2

1 + λ2
3. For

all of these solutions the 4D metric is flat: qµν = ηµν .

These solutions have at most two singularities, and these are located at η → ±∞. Locally

changing coordinates to the local proper distance, η → r± with dr± = ∓aW 4 dη, brings the

singularities at η → ±∞ to r± = 0, and shows that these solutions have the asymptotic form
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ungauged supergravities [23], while A = 2g2/κ4 ≡ ĝ2/8 for chiral gauged supergravity [15]. For

the remainder of this section we focus on compactifications to 4 dimensions in the chiral gauged

case in the presence of a 2-form flux, FMN , for which d = 2, n = 4 and p = 1.

The equations of motion obtained with these choices are

!ϕ+
κ2

4
e−ϕFMNFMN −

κ2ĝ2

8
eϕ = 0 (24)

∇M
(

e−ϕFMN
)

= 0 (25)

RMN + ∂Mϕ∂Nϕ+ κ2e−ϕFMPF
P
N +

1

2
(!ϕ)gMN = 0. (26)

Following ref. [12] we now make the following ansatz for the metric

ds2 = ĝMN dxMdxN = W 2qµν dx
µdxν + a2dθ2 + a2W 8dη2, (27)

where the coordinates (η, θ) parameterize the 2 internal dimensions and qµν is a maximally-

symmetric 4D metric. (In what follows we take qµν to be the 4D de Sitter metric having Hubble

constant H. The anti-de Sitter case can be obtained from the final results by taking H2 → −H2.)

We assume axial symmetry by requiring W , a and ϕ to be functions only of η. The gauge potential

is taken to have the monopole form A = Aθ(η) dθ, and so the only nonzero component of F is

Fηθ(η).

We next write the ordinary differential equations which determine the unknown functions ϕ, a

and W and the unknown constant H. To this end, writing the (Maxwell) equation for FMN as

∂M (
√
−g e−ϕFMN ) = 0 implies (e−ϕFηθ/a2)′ = 0, where primes denote differentiation with respect

to η. Integrating gives

Fηθ = Qa2eϕ, (28)

where Q is an integration constant, and so in particular FMNFMN = 2Q2e2ϕ/W 8.

Using !̂ϕ = ϕ′′/(a2W 8) the equation of motion for the dilaton similarly becomes

ϕ′′ +
κ2

2
Q2a2eϕ −

κ2ĝ2

8
a2W 8eϕ = 0. (29)

Finally, the Einstein equations are obtained using the following expression for the nonzero

components of the Ricci tensor:

R̂µν = qµν

[

1

a2W 8

[

WW ′′ − (W ′)2
]

− 3H2

]

R̂θθ =
aa′′ − (a′)2

a2W 8
(30)

R̂ηη =
1

a2W 2

[

aW 2a′′ + 4a2WW ′′ −W 2(a′)2 − 8 aWa′W ′ − 16 a2(W ′)2
]

.
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Numerical de Sitter solution

In terms of these variables the Lagrangian becomes

L = (x′)2 − (y′)2 + (z′)2 − κ2Q2 e2x +
ĝ2κ2

4
e2y − 12H2 e2y+z . (40)

We have set N = 1 but continue to keep in mind its role in determining the constraint. The

‘potential’ terms simplify further if we also redefine

X =
1

2
ln(κ2Q2) + x

Y =
1

2
ln(ĝ2κ2/4) + y (41)

Z = ln(48|H2|/ĝ2κ2) + z

and so

L = (X ′)2 − (Y ′)2 + (Z ′)2 − e2X + e2Y − ϵe2Y+Z . (42)

where ϵ = +1 for de Sitter and −1 for anti-de Sitter solutions. We now integrate the equations

of motion obtained from this lagrangian to obtain explicit solutions for the extra-dimensional

geometries. Since X has the equation of motion

X ′′ + e2X = 0 (43)

it decouples from the other variables. Its equation can be directly integrated to give

(X ′)2 + e2X = λ2
1, (44)

and so e−X = λ−1
1 cosh[λ1(η − η1)]. The remaining two nontrivial equations of motion become in

these variables

Y ′′ + e2Y − ϵe2Y+Z = 0

Z ′′ +
ϵ

2
e2Y+Z = 0 , (45)

along with the constraint λ2
1 − (Y ′)2 + (Z ′)2 − e2Y + ϵe2Y+Z = 0, whose solutions we obtain

numerically below.

In terms of these variables the asymptotic behaviour of the solutions assumed in previous

sections near the singularities is linear in η. For example, using eqs. (39) and (41) to write X in

terms of ϕ and W , and then using the asymptotic forms given by eqs. (10) and (11), we see

2X = ϕ+ 2 ln a+ ln
(

κ2Q2
)

≈ (q± + 2α±) ln r± ≈ ∓(q± + 2α±)η, (46)
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FIG. 1: Typical behaviour of Y as a function of η for de Sitter solutions (ϵ = +1). The function interpolates

between two asymptotically linear regimes. The gradient is always positive as η → −∞ and negative as

η → +∞.
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FIG. 2: Typical behaviour of Z as a function of η for de Sitter solutions (ϵ = +1). The solutions are

asymptotically linear with different gradients. For a suitable choice of initial data the gradient can change

sign as in Fig. 1.
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6D Supergravity from F-theory

where Kc is the Kähler potential for the complex structure deformations zκ and we have expanded

PΛA
B in terms of the Pauli matrices as

PΛA
B = P x

Λσ
x
A
B , (2.35)

for x = 1, 2, 3 . We note that for the SU(3) structure reductions we have considered this gives

PΛA
B =

ie
1
2Kc

16
√
V
eKΛ(Z

K + Z̄K)σ1A
B +

e
1
2Kc

16
√
V
eKΛ(Z

K − Z̄K)σ2A
B +

i

8V
eKΛξ

Kσ3A
B , (2.36)

where ZK are the scalars that appear in the expansion of Ω such that we may chose a basis in which

ZK = {1, zκ}.

To close this section let us also add the terms arising from a nontrivial background flux Gflux
4 .

Combining the gaugings (2.20) with the gauging induced by the non-vanishing eKΛ one finds

Dqu =

⎧

⎪

⎨

⎪

⎩

dΦ + 2AΛθΛ , if qu = Φ ,

dξ̃K +AΛeKΛ , if qu = ξ̃K ,

dqu , if qu ≠ Φ, ξ̃K .

(2.37)

The total potential may then be derived from (2.34) and (2.21). The modifications (2.37) encode the

deviations from a standard Calabi-Yau reduction of M-theory. In the next sections we will demonstrate

the up-lift of this five-dimensional gauged supergravity theory to six-dimensions. This will then be

interpreted as performing the M-theory to F-theory limit.

2.3 Circle reduction of gauged 6D supergravity

Having derived the 5D gauged supergravities obtained by M-theory compactifications we will now

turn to the F-theory side. The starting point will be a general 6D (1, 0) gauged supergravity [44, 45].

We will dimensionally reduce this theory on a circle and then determine the couplings by comparison

with the M-theory reduction.

The 6D theory is specified by a “pseudo action” in the sense that self-duality conditions for three-

form field strengths need to be imposed by hand after variation of the action. In the following we will

indicate 6D quantities by a ˆ. The 6D tensor multiplets contain a scalar ĵα and a two-form B̂α with

field strength Ĝα as bosonic degrees of freedom. The bosonic fields of the 6D hypermultiplets describe

four scalars q̂U each. The bosonic components of the 6D vector multiplets contain only the vectors

ÂI . These are in general non-Abelian with field strength F̂ I = dÂI + 1
2f

I
JKÂJ ∧ ÂK . At lowest order

in derivatives the pseudo-action is given by

S(6) =

∫

M6

[

1

2
R̂∗̂1− 1

4
ĝαβĜ

α ∧ ∗̂Ĝβ − 1

2
ĝαβdĵ

α ∧ ∗̂dĵβ − 1

2
ĥUV D̂q̂U ∧ ∗̂D̂q̂V

− 2Ωαβ ĵ
αbβCIJ F̂

I ∧ ∗̂F̂ J − Ωαβb
αCIJ B̂

β ∧ F̂ I ∧ F̂ J − V̂ (6)∗̂1̂
]

, (2.38)
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Then for the potential induced by the flux gaugings in 5D where (2.24) applies the 6D potential is

given by

V̂
(6)
flux =

1

32Ωαβ ĵαbβV̂2
C−1ijθiθj . (2.62)

This potential has a runaway direction for the scalars ĵα and V̂ and as a result the 6D theory effective

theory has no maximally symmetric solutions. We will discuss the non-maximally symmetric solution

which replace this in the next section.

We can also up-lift the gaugings induced in the reduction on the SU(3) structure manifold. As

before we compare the gaugings that are arise in the circle reduction (2.46) with (2.33) to find that

the only non-vanishing killing vectors of the 5D hypermultiplet target space are k
ξ̃K
i = eKi with all

other components of the killing vectors vanishing.

We can also consider the F-theory duals of these lifted SU(3) structure deformations. Here we find

that the gaugings of the 6D effective theories are caused in the IIB reduction by the presence of extra

massive U(1) symmetries. To see this we can note that when these symmetries are included there will

be an additional term of the from
∫

D7

ˆ̂C6 ∧ Tr( ˆ̂F ), (2.63)

where ˆ̂C6 is the Ramond-Ramond 6-form and these extra U(1) branes wrap new cycles Si on the base

B2. To reduce these extra terms to 6D we expand ˆ̂C6 = ẐK
4 ∧ iηαK , where η is a vector that projects

αK to a 2-form on the base, and then integrate over Si. This then gives rise to extra terms in the 6D

action of the form
∫

D7

ˆ̂C6 ∧ Tr( ˆ̂F ) =

∫

M6

ẐK
4 ∧ F̂ i

∫

Si

iηαK =

∫

M6

ẐK
4 ∧ F̂ ieiK . (2.64)

When the 4-form ẐK
4 is dualized to give the scalar ˆ̃

ξK this term then gives rise to gaugings present in

our 6D effective theory. We note from this that if we make the gauge choice as described in section

2.2 and expand αK into α0 and ακ then, as iηα0 is a (2, 0)-form and Si is a (1, 1)-cycle, we see that

e0i = 0 for the F-theory gaugings we describe here. These are then dual to a restricted set of SU(3)

structure deformations which also satisfy this constraint.

As before we can also compare the scalar potentials find that in this case

V̂
(6)
U(1) =

1

32Ωαβ ĵαbβ
C−1ij(

1

V2
eκieλjξ

κξλ +
eKc

V eκieλjz
κz̄λ) . (2.65)

When interpreted as coming from D7-branes the potential arises by expanding the Dirac-Born-Infeld

action. The first term of the potential depends on the Wilson line scalars, while the second term

depends on the D7-brane deformations. The latter indicates that certain D7-brane deformations are

actually massive since they require it to wrap a non-supersymmetric cycle.
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From 6D to 4D

Using Einstein’s equations (like 4Rµ⌫ = ⇤'gµ⌫ ) we can compute the RHS of the equations

using also the equation for '00 and get the constraint equation:

6H2
e
2⌦+6��4⌦0�0�6�02+

1

2
'
02+

1

4
�
02+2Ce

�'�2⌦+2��02�Ṽ e
'�2�+2⌦+8��k

2

16
e
�2�+8�+2� = 0

(6.20)

I am not confident on the coe�cient and sign of the C and Ṽ terms. The rest look OK

and similar to Cli↵’s paper. A way to check the constraint is correct is to consider the

following Lagrangian for the fields ',�,⌦,�,� and the lapse function N :
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Varying with respect to N and setting N = 1 reproduces the constraint. Varying with

respect to each of the fields ',�,⌦,�,� reproduces all the equations above as long as we

identify the last term in the � equation to change C/40 to �1/32C (to check!).

So the equations we get are:
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This together with the constraint above and the general result from the second deriva-

tive equations, namely:

�
00 = 2⌦00 � 3'00 (6.28)

and the asymptotic behaviour at large ⌘ should simplify the numerical solutions.

7 Appendix
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Asymptotic Solutions

where we have used that

j
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2v2
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0
I = 0 , V =

Ṽ

Zv2
, (FF̃ )MN = CIJF

I R

M F
J

NR . (2.8)

Note that we get an overall minus sign on the right hand side of Eq. (2.4) with respect

to [2] due to the di↵erent convention used.

3 Maximally symmetric compactifications

The results of this section should be the same as in [2].

4 Near brane solutions

We assume, near the brane

' = q ln r , � = s ln r , ds
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2w
gµ⌫dx

µ
dx

2
nu+ dr

2 + r
2↵
f(z)dzdz , (4.1)

where q, s, w,↵ are constants and (r, z) are the coordinates of the two extra-dimensions.

Note that the last of Eq. (4.1) implies that the warp factor takes the form W = r
w. We

also assume that for the 2-forms near the brane

F
ra ⇠ r

�
. (4.2)

We can then determine the constants by solving the equations of motion in the near the

brane region. We start from the 2-form equation of motion that gives, as in [2]
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From the equation of motion for ':

⇤' ⇠ q(4w + ↵� 1)r�2
, (4.5)

while
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. (4.7)

The requirement that both the potential and the flux terms are subleading in the limit

r ! 0 with respect to ⇤' implies

q � 2s > �2 , q � 8w > �2 . (4.8)
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If the constraints in Eq. (4.8) hold, then ⇤' = 0, which from Eq. (4.5) implies
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Furthermore, from the rr-component of the Einstein equation, as in [2]
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which, recalling that ⇤' ⇠ 0 and that the flux term is subleading if the constraints in

Eq. (4.8) are satisfied, give the following constraint [FM: to get +s
2 here we need to be

careful with the signs and numerical factors in Eq. (2.4)]

4w2 + ↵
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1
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The last constraint implies that
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5 de Sitter solutions

Following [2] we will look for 4D de Sitter solutions with the following metric ansatz.

ds
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2
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8
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2 (5.1)

where (⌘,') parametrise the 2d metric, qµ⌫ is the maximally symmetric 4d metric with

curvature R4d = 3H2 for de Sitter space. The 2d axial symmetry requires W,a to be

functions only of ⌘.

The only non-vanishing component of FMN allowed by the symmetries is F⌘✓. Its

equation of motion implies (e�'
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2)0 = 0 and therefore.
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' (5.2)

with Q an integration constant and then F
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/(2W 8).

The scalar field equations become:
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2
W

8
e
'�2� (5.4)

3

Kasner constraints
(BKL: Belinsky et al)
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Near brane solutions:



Numerical dS Solutions
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Singularities? Stay tuned…



THANK YOU !



General 6D Equations from F-theory

3 Vacua and reductions to 4D

In this section we will find and comment on certain vacua of the 6D effective theories that result

from the F-theory compactifications we have described. In doing this we will approach the effective

theories that result from 7-brane fluxes and massive U(1) symmetries separately. In Section 3.1 we will

describe the vacua of the 6D theory deformed by fluxes. As this effective theory has a potential with

runaway directions a maximally symmetric solution is not possible and is replaced by vacua which

locally describe 4D flat space times a 2D compact internal space. In Section 3.2 we will consider the

4D effective theories that result from a reduction on the compact 2D part of the solution. In Section

3.3 we will describe the vacua and reductions of the 6D effective theories that result from additional

massive U(1) symmetries.

3.1 Vacua of 6D F-theory with 7-brane fluxes

As we have mentioned the 6D gauged supergravity that represents our F-theory reduction with D7-

brane flux has no maximally symmetric solution. For this reason it is interesting to investigate what

the vacua are. These vacua must solve the 6D equations of motion combined with the pseudo action

constraint which are given by

R̂MN = +
1

4
ĝαβĜ

α
M

RSĜβ
NRS − 1

24
ĝαβĜ

αRST Ĝβ
RST ĝMN

+ 4Ωαβ ĵ
αbβCIJ F̂

I
M

RF̂ J
NR − 1

2
Ωαβ ĵ

αbβCIJ F̂
IRS F̂ J

RS ĝMN

+ ĝαβ∂M ĵα∂N ĵβ + ĥUV D̂M q̂U D̂N q̂V +
1

2
V̂ (6)ĝMN ,

d(ĥUV ∗̂D̂q̂V ) =
1

2
∂U ĥVW D̂q̂V ∧ ∗̂D̂q̂W + ĥVW∂U k̂

V
I Â

I ∧ ∗̂D̂q̂W + ∂U V̂ (6)∗̂1 ,

d(Ωαβ ĝβγ ∗̂dĵγ) = ĵβĜ
α ∧ ∗̂Gβ + 2ĵβdĵ

α ∧ ∗̂dĵβ + 2bαCIJ F̂
I ∧ ∗̂F̂ J − 1

Ωβγ ĵβbγ
bαV̂ (6)∗̂1 ,

D̂(4Ωαβ ĵ
αbβ ∗̂F̂ I) = −ĥUV C

−1IJ k̂UJ ∗̂D̂q̂V − 4bαĝαβF̂
I ∧ ∗̂Ĝβ

− 2Ωαβb
αbβCJKÂI ∧ F̂ J ∧ F̂K + 4Ωαβb

αbβCJKF̂ I ∧ ω̂cs ,

d(Ωαβ ĝβγ ∗̂Ĝγ) = 2bαCIJ F̂
I ∧ F̂ J , ĝαβ ∗̂Ĝβ = ΩαβĜ

β . (3.1)

This set of equations includes both the fields that correspond to the Coulomb branch, which we have

a good understanding of from the M-theory reduction, as well as the large set of additional degrees

of freedom that arise from branes warping shrinking cycles when the F-theory limit is taken. This

second set of fields is more mysterious, owing to its non-perturbative origins and consequently we do

not know the exact details of the associated couplings. However, when looking for vacua this is not

a problem as we know that these additional fields can be consistently truncated out of the theory,

leaving only the fields and couplings for which the details are known. For this reason we will only

consider vacua which have non-trivial dependence on the Coulomb branch fields.
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