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Based on work with:

Flavio Tonioni Hung V. Tran
UW-Madison Physics UW-Madison Math

* G. Shiu, F. Tonioni, H.V. Tran, Accelerating universe at the end of time,’" [arXiv:2303.03418]
* G. Shiu, F. Tonioni, H.V. Tran, "Late-time attractors and cosmic acceleration,” [arXiv:2306.07327]

[See also Flavio Tonioni’s parallel talk on Thursday]



A plea to the theorists

/ ‘, / / O/

Photo: Roy Kaltschmidt. Courtesy: Photo: Belinda Pratten, Australian Fhoto: Homewood Photography
Lawrence Berkeley National Laboratory  National University

Nobel Prize 2011 Saul Perimutter Brian P. Schmidt Adam G. Riess

But Riess suspects that the mystery can't be solved by observations alone. "We won't really resolve it until
some brilliant person, the next Einstein-like person, is able to get the idea of what's going on," he said.

So he issued a plea to the theorists: "Keep working," he said. "We need your help. ... It's a very juicy
problem, it's hard, and you'll win a Nobel Prize if you figure it out. In fact, I'll give you mine."

Oct 4, 2011 https://www.nbcnews.com/science/cosmic-log/physics-prize-highlights-puzzles-flna6c10402772



Dark Energy in String Theory

Simplest possibility is /A > O . Sophisticated string theory scenarios for realizing dS vacua have
been developed (KKLT, LVS, ...), but a fully explicit construction remains elusive.

Root of the challenge: source of cosmic acceleration should be derived (not just postulated) in a
UV complete theory of gravity.

It is a formidable task to demonstrate that the microphysics which stabilizes all moduli would lead
to a theoretically controlled metastable de Sitter vacuum.

The Dine-Seiberg problem highlights the difficulty in finding parametrically weakly-coupled vacua.

V(o) V(o) V(o)

V(g) ~ae ®+... \ V() = —ae™? +be™? + ... V() = ae™® — be™*? + ce™? + ...




Asymptotic runaway potentials

This makes runaway to the boundary of field space an interesting possibility.

Cosmic acceleration can be realized with: V().

* a de Sitter critical point, or

. a runaway potential with ¢ = 77 <1
Argument for asymptotic
Related to the “deceleration parameter” g: 0 exponential fall-off
¥
q = —da/a? e=14q. \i

|Y

Criterion for acceleration is in general unrelated to
potential gradient. An aim or our work is to find the link
(& the conditions for the link to exist)



IS our current universe in the asymptotic region of the landscape?

The small numbers & approximate symmetries
observed in nature are consistent with the
current universe approaching an asymptotic
region where couplings are weak, global
symmetries are restored, and V — 0.

This possibility has recently been explored in
various forms

As In many dynamical systems, the late-time
regime exhibits some universal behaviors. This
allows us to prove bounds on acceleration

Like large N expansion for QCD, studying the
asymptotically late-time behavior may teach us
about our current (old) universe

(weak couplings, approximate
symmetries, ...)



Summary of Results

We bound the rate of time variation of the Hubble parameter at late time
and in the recent work, we further turn this into a bound on y = |VV|/V

The proper diagnostic for cosmic acceleration should be stated in terms of € rather than potential
gradient commonly used in Swampland criteria.

Our bound when applied to string theoretic constructions imposes a generic obstacle to
acceleration if the dilation is one of the rolling fields. We also suggest several ways out.

We prove the conditions under which scaling solutions are late-time attractors. Moreover, we
prove that scaling solutions saturate our bound on €.

For scaling solutions: 1) we can express ¢ = — H/H” in terms of a directional derivative y.. of the
potential, w/o assuming that a single potential term dominates or whether the kinetic or potential
term dominates; 2) y = 7. = 2\/6/(61’ — 2). Butin general, y and y: are unrelated to acceleration.

Our results go beyond previous no-goes as we allow for quantum effects and we encompass
vacua and rolling solutions (irrespective of whether the kinetic term is negligible or not).



Asymptotic late-time cosmologies



Multi-exponential potentials

In the asymptotic region, the non-compact scalars when canonically normalized to ¢“, a = 1,...,n

have a potential that takes the form (also argument by ):
™m
V = Z A, G_Kd%a’qba :
i=1

where A, y;, depend on the microscopic origin of V;, k;, = d-dim. gravitational coupling. The sources
of potential include e.g. internal curvature, fluxes, branes/O-planes, Casimir-energy.

The set of scalars ¢ includes minimally the d-dimensional dilaton 6 and a radion & that controls the
string-frame volume unless these fields are stabilized at high energy scales.

The field space metric is not always flat, e.g., the axio-dilaton and the Kahler modulus have constant
curvature. Obstruction to canonical normalization?

Asymptotically, saxion-axion mixings & axion kinetic terms are exponentially suppressed in the
EOMs. Consistent to stabilize the axions and work with canonically normalized saxions.

More involved arguments for asymptotic limit of complex structure moduli



Cosmological Equations

Non-compact d-dim. spacetime is characterized by the FLRW metric:

ds; = —dt® + a”(t) dlza_,

7 H
Hubble parameter: H = —. The proper diagnostic for cosmic acceleration is € = — 7] <1
a

o d—2 ([ VV\’
to be distinguished from the slow-roll parameter ¢, = 1 v .

Scalar field equations and Friedmann equations:

. : oV

“+(d—1)Ho" = 0,

6+ (A= DHY" + 5

d—1)(d— 2 1. . ]

( )( )HQ_K/?Z _¢a¢a_|_v :O,
2 2 ]

: k2 [1 . - 1 d-—1

H — d - aa_ H2
i—2 (2% ~ V|




Cosmological Autonomous System

It IS convenient to work with the rescaled variables:

a’: K/d éa y: /{d\/i "/;
Vd—1vd—2 H 7" Jd—1vd—2 H

X

The cosmological equations can be formulated in terms of an autonomous system of ODEs
given schematically as follows:

dz S .
E:é’(z) : where 7= (x',...,x"y', ..,y", H)

Among the above ODEs is ¢ = — H/H* = (d — 1)x?; strategy is to bound the kinetic energy.

Friedmann equation also takes a simple form:

®’+ (y) =1



Bound on Late-time Cosmic Acceleration

An accelerating universe can only be achieved if the total scalar potential is positive; we
therefore focus on scenarios in which V' > 0 at least asymptotically.

Individual potential terms can be positive or negative: our proof covers general cases but for
clarity, let us first show how we bound the case when A; > 0

Rank order the exponents:

e, v* = min; ;% > 0
0, v <0

Then we derived analytically a late-time acceleration bound:

d— 2




Visualizing the Acceleration Bound

Define vectors m vectors u;, one for each potential term with components (y;) , = 7;,

/yoo2/
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Optimizing the Acceleration Bound

The bound In as stated is naively basis-dependent, but it is clear that we
can find an optimal bound by an O(n) rotation:

d— 2

> 2
7002/\
’u 2 3/001
Ho
TN DS .
2 y U1
3/002
L\




Dilaton Obstruction and General Remarks

String-theoretical potentials take the form:

G — _/ (A, A *1,9Ar] Avo.r o~ ko—xg® _ _/ %1 g1 A ofal75(Xe)0—5(Xg,7,k)0]
X

1,9 X1,d-1

RR fields are not weighed by e 7 put would not affect our argument.

Universal couplings for the canonically normalized d-dimensional dilaton o :

s € >

|
<L
o
|
N\
)
<
&3
<
2
|
)
\
<
o
|
)
|
L
|
)
)
8
o
|
o
|
N\
2
S N
|
S—

Ways out: 1) O is stabilized; 2) O is rolling but not in the asymptotic regions; 3) V' contains at
least three terms, not all of the same sign (e.g., from loop corrections).

Non-universal couplings for other moduli: can use our bound to constrain compactifications.

Non-negligible kinetic terms unless ygo ~ (). Hence slow-roll generally does not hold.



Scaling Solutions



Scaling Solutions

The cosmological autonomous system admits scaling solutions (¢ = constant > 0):
scale factor takes a power law form: a(t) ~ ¢’
critical points of the autonomous system: x* = 0O

Analytic solution: for rank y,, = m

- m

field space trajectory:  ¢%(t) = & > (MY In—, Mij = YiaV;®

-i=1 j=1

| 4 m m i
scale factor: p=-— ZZ(M )i

i=1 j=1

The kinetic term & every potential term have the same parametric dependence in time:

2 2
No slow-roll: T(r) = 1(ty) (%) , V() = V(1) (%)



Scaling Solutions: Relevance

Late time scale factor is bounded by power-law behavior

d— 2
d—1>¢€> 7 (7.,)% ore=d—1

Scaling solutions are perturbative late-time attractors (linear stability)

New result . we can analytically prove that if

all potential terms are positive definite, i.e., A; > 0, and

m

A= Z(M—l)"j >0, subjectto Y A >o0. [noapparent subleading terms]

j=1 1=1

then scaling solutions are late-time attractors, irrespective of initial conditions!



Scaling Solutions: Trajectory

Straight line in field space: 1
o \
1 t
PL(t) = d5 + — a” In —
d too
go — &
Jod e
/
| | _ . ) 12 ¢
Field space rotation such that P4 (t) = ¢% B.(t) = Foo + = - In —
d [x e
1 oV ] 2
Normalized directional derivative: . = 0, L) = €
k V(px) " Ka 00¢ (@ )_ Vd—2 ve




Criteria for Cosmic Acceleration



Criteria for Cosmic Acceleration

The proper criterion for acceleration is time variation of Hubble: ¢ = — H/H? < 1

For scaling solutions, we found an exact relationship of € with the directional derivative:

1 oV 2

V*:__V(¢*) egl{da¢i”(¢*)_ — \/d_z\/E

Potential gradient norm is often used in Swampland studies:

V69, VoV

Y iV 7

Scaling solutions are special y = 7« = 2\/2/\/ d — 2 = € measures potential gradient.



General Case

» In general y. and y are unrelated to acceleration though y > 7. is general due to triangle
inequality

e Directional derivative:

2./ | 1
] et e rd IR R0}

. Introduce a normal vector v¢ = — 9’1/\/ 6,,0,° and define a non-geodesity factor £2:

éfj’ = Qv rate of turning of field space trajectory

» Potential gradient norm:




Convex Hull

« Given the set of vectors (u;) , = 7, , define the convex hull of exponential couplings
CH({u ) = {vy= Y &uda (&) € R D &=1)
=1 =1

« Similar to how it arises in multi-field generalization of the WGC and the distance conjecture.

. Two notion of distances: CH distance p-y = inf \/yazf‘ and distance of the CH hyperplane: i
veCH
o024 42 1 42 8
¢a — ¢ 7¢ 021 a
V22 B Pt = (/blv ng
Via = (711 712) f2 (11 M2
721 722 ”Y22 ............. V’LCL T ,y21 ,y22
’712 """""""""" """""""""""""""""" //Ll ’7/12 ........................ ,Ul

> Vool




Convex Hull Criterion

o If all potential terms are positive, our optimal bound on € coincides with the CH distance:

d—2 d—2

€ 2> 1 (’3/00)2 — 1 HCH-

* Note that for potentials involving terms of both signs (but overall potential is positive), our
optimal bound still holds, but the CH distance may be an overestimation:

A \2 ~\ 2
N%}H > (/Yoo) > (:u)
« What is the significance of i= the distance of the CH hyperplane from the origin?

» /i appears in a new bound on € we found in our paper 2!

o if u~y = |, we show that the above bound (in paper 1) is saturated by scaling solutions!



Saturation by Scaling Cosmologies

We show that i gives the e-parameter for scaling solutions (which are late-time attractors)!

1
>N Sap (v HH(yHY
i=1 j=1

Our (first) €-bound is saturated by scaling cosmology whenever the hyperplane distance
vector intersects with the CH,

(f2)°

d—2 d—9 d—92
€= — (Foo)? = Hon = (1)

It not, we show that there are subdominant potential terms, and no guarantee of
convergence at late-time to scaling solutions.



Swampland Conjectures & String Theory Examples



Swampland Conjectures & String Examples

» Various values for the O(1) constant in the de Sitter Conjecture y > y,¢ have been proposed.
Our bound informs us whether (& which of) these criteria have to do with cosmic acceleration.

. (VV)? =0 implies either a de Sitter vacuum (V # 0) or pure kination (V = 0), which
saturates our bound:

1 1
2 (d—1)—¢€

727*2?)/00 1

Our bound is in some sense optimal.

* We can test the conditions under which there is separation of scales, by tracking the time-
dependence of moduli.

 We applied our scaling solution results and bounds to string theory examples (F-theory and
type Il string with fluxes, heterotic O(16)xO(16) string with curvature & Casimir energy).



Summary



Summary of Results

We bound the rate of time variation of the Hubble parameter at late time
and in the recent work, we further turn this into a bound on y = |VV|/V

The proper diagnostic for cosmic acceleration should be stated in terms of € rather than potential
gradient commonly used in Swampland criteria.

Our bound when applied to string theoretic constructions imposes a generic obstacle to
acceleration if the dilation is one of the rolling fields. We also suggest several ways out.

We prove the conditions under which scaling solutions are late-time attractors. Moreover, we
prove that scaling solutions saturate our bound on €.

For scaling solutions: 1) we can express ¢ = — H/H” in terms of a directional derivative y.. of the
potential, w/o assuming that a single potential term dominates or whether the kinetic or potential
term dominates; 2) y = 7. = 2\/6/(61’ — 2). Butin general, y and y: are unrelated to acceleration.

Our results go beyond previous no-goes as we allow for quantum effects and we encompass
vacua and rolling solutions (irrespective of whether the kinetic term is negligible or not).



Backup Slides



String Theory Example 1

Asymptotic limit of the complex structure moduli space of F-theory on CY 4-fold:

Vo= Ay s V28 —ra /3 LN g ra VIS ra VG A1, A >0

assuming the Einstein frame volume is stabilized w/0 affecting the above potential (big if!).

Y2

251

Voo2

Y12

N

¢ = ¢!, ¢
= (711 712) _ —V/2 %
e Y21 Y22 V2 —/6

Y22

S Y - 7
oo d—2 o, 4-2 < 2 2)2 ( \/6)2 1
> () = (-2 ) + (-
4 4 7 7 7

(A1, 1%) = (3/4, — 1/4) together with A, A, > 0 =>
1

converges to scaling solutions at late-time, € = —

2 1



String Theory Example 2

O(16) X O(16) heterotic string with positive internal curvature (A, < ) & Casimir energy:

2 2 ~

V = Ap e ilvisd—vio=atl | A, oralviss 0+V10-dd]

- d
€ =d— 1 because 0= T —>  (=)?=4/(d-2)+12> 4(d—1)/(d - 2),
7" =10 —d,

. If internal curvature is negative, Ay, A~ > 0, we have a scaling solution as an attractor

. . 112—-d t

04 (1) = dg — 10 \/d—21n%a with € — ! > 1.
¢ t 3(d — 2)

7. (t) = 0 - V10 — d In — 1

o+ ka 10 to’ 25

No acceleration for both cases as expected since 0 is rolling



String Theory Example 3

Type |l compactification with RR p-form and g-form fluxes:

K}[ d5|10d2q] [ d5|10d2p0_]
V:Ale lVad V10 —|—A2€ Vd V10

)

We showed that scaling solutions are attractors if g < (10 — d)/2 and p > (10 — d)/2:

- .1 2yd—2 . ¢ d?
0.(t) =6 In — e=— >1
( ) V K d d N t() 4
0+(t) = 0o, No acceleration as expected since O is rolling
e Separation of scales:
t KK length grows less
Ly = L (to) — g 3

to’ quickly than Hubble length.
t\a
IkK,d = lkK.d(to) (t_) : L, /(1) = ls,d(fo)(%>

0

2
d



