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QFTs from geometry

String theory associates Quantum Field Theories (QFTs) T [X] to
(singular, non-compact) manifolds X.

To any given theory T [X] we can associate a “symmetry TFT”
Symm[T [X]], a TFT in one dimension higher encoding symmetries
and anomalies of the theory, and all its gaugings.

It turns out that Symm[T [X]] is significantly easier to understand
than T [X] itself, so our goal will be to construct
Symm[X] := Symm[T [X]] directly from the geometry.
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Why

Given a Lagrangian description of T [X] it is in principle possible
(but subtle) to find its symmetries, and in this way reconstruct
Symm[X].

Nevertheless, in the context of geometric engineering having a
Lagrangian description of T [X] is more the exception than the rule:
what we know is the topology (and sometimes metric) of X.

It is precisely in the cases where we don’t know a Lagrangian that
the information about symmetries and anomalies is most valuable.
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Why
Categorical symmetries can be used in similar ways to ordinary
symmetries:

Constraints on the spectrum of physical theories coupled to
gravity. [IGE, Montero ’18], [McNamara, Vafa ’19], [Heidenreich,
McNamara, Montero, Reece, Rudelius, Valenzuela ’21],
[Blumenhagen, Cribiori ’21], [Blumenhagen, Cribiori, Kneissl,
Makridou ’22], . . .

’t Hooft anomaly matching (from a more modern viewpoint:
Symm[T ] matching), for instance for testing duality [Del Zotto,
IGE, Hosseini ’20], [Lee, Ohmori, Tachikawa ’21], . . . , and
restricting IR behaviour ([Gaiotto, Kapustin, Komargodski,
Seiberg ’17], . . . )
Using representation theory to constrain the Hilbert space.
[Komargodski, Ohmori, Roumpedakis, Seifnashri ’20], . . .
Generalised Goldstone theorems. (For continuous symmetries.)
[Lake ’18], [Hofman, Iqbal ’18], [IGE, Iqbal ’22],
[García-Valdecasas ’23]
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Why

A more formal reason to care about the geometric engineering
version of the problem is that it hints towards a geometric version
of the Landau paradigm: as we will see the map X → Symm[X] is
very sensitive to the details of X.

Geometric Landau question
Can we reconstruct X (modulo string dualities) given Symm[X]?

There is a categorical version of this question, where we ask about
some category associated to X instead. For instance, in some cases
we can associate a cluster category to X. The Grothendick group
of this cluster category is easy to read from Symm[X]. [Caorsi,
Cecotti ’17], [Del Zotto, IGE, Hosseini ’20], [Del Zotto, IGE ’22].
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Geometric engineering

For reasons of analytic control we want to impose restrictions on
the manifolds X that we consider. These are:

X is non-compact, to decouple gravity. To make our life
simpler I’ll assume that X is a real cone over some base B.

In order for the field theory to be supersymmetric, we assume
that X has reduced holonomy (Calabi-Yau, for instance).

For instance, if X is a complex two-fold, we will assume that it is
an ALE space of the form C2/Γg, with Γg ⊂ SU(2). This is a cone
over S3/Γg, with Γg acting freely on S3. On C2 the origin is fixed
by all elements of Γg, so we have an orbifold singularity there.

If we place IIB string theory (10d) on this geometry we obtain a
(2, 0) SCFT g(2,0) in six dimensions, arising from modes at the
singularity. These theories are believed to be indexed by Γg, or
equivalently by an algebra g of type an, dn, e6, e7 or e8.
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The (2, 0) theory in 6d

This is a theory of a very strange kind: it is an interacting
conformal theory in six dimensions.

The existence of such theories is fairly surprising from a Lagrangian
point of view: by dimensional reasons any d-dimensional gauge
theory becomes free as we go to large distances. The (2, 0) SCFTs,
on the other hand, remain interacting at all scales.

One important property of the (2, 0) theory with algebra g is that
upon reduction on T 2 with complex structure τ it gives rise to 4d
N = 4 SYM with algebra g and complexified gauge coupling τ . Let
me call this object g4.
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g4 as a relative theory
What I have just described fully specifies the behaviour of local
operators, but it does not fully fix the theory. For example it does
not fully fix the partition function on K3: for a generic coupling τ ,
SU(2) and SO(3) SYM have different partition functions on K3.
[Vafa, Witten ’94]

A good way of thinking about g4 is as a “relative theory” [Freed,
Teleman ’12]: in physical terms it is a set of boundary gapless modes for
a TFT in one dimension higher (4 + 1 = 5 here). This TFT includes
information about the potential symmetries, anomalies and gaugings of
all theories with local dynamics given by g4. We refer to this TFT as
Symm[g4].
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The absolute N = 4 theories

We can obtain more familiar objects by introducing a second
gapped interface ρ between Symm[g4] and an invertible TFT, the
anomaly theory.

Colliding ρ and g4 we obtain what we usually think of as N = 4
SYM theories in d = 4. The symmetries of the resulting SYM
theory are those topological operators of Symm[g4] that do not
become trivial when restricted to ρ.
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An example: g4 = so(4k)

Take for instance g4 = so(4k). Some of the possible “global forms”
(choices of ρ) for this theory are [Witten ’98], [Aharony, Seiberg,
Tachikawa ’13], [Tachikawa ’14], [Tachikawa ’17], [IGE, Heidenreich,
Regalado ’19], [Bhardwaj, Bottini, Schäfer-Nameki, Tiwari ’22],
[IGE ’22], [Bergman, Hirano ’22], [Etheredge, IGE, Heidenreich,
Rauch ’23], [Apruzzi, Bonetti, Gould, Schäfer-Nameki ’23]:

Spin(4k): 2-group symmetry

SO(4k): 1-form and 0-form symmetry, with mixed ’t Hooft
anomaly.

Ss(4k): 1-form symmetries and non-invertible 0-form symmetries.

Symm[so(4k)] is the same in all cases, and the problem of studying the
different theories becomes a problem in representation theory. [Freed,
Moore, Teleman ’22], [Bhardwaj, Schäfer-Nameki], [Bartsch, Bullimore,
Ferrari, Pearson]
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Back to 10d

Our starting point was not directly the 4d theory g4 on M4, but
rather 10d string theory on M4 × T 2 × C2/Γg.

How do we
reproduce the previous discussion from the string theory
perspective? Where is Symm[g4]?

My goal will be to derive Symm[g4] (*) without using any
knowledge about the Lagrangian of N = 4.

(*) In this talk I will explain how to work out some aspects of the
symmetry theories, and make a conjecture for what the general
prescription is.
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The geometric engineering perspective

In this talk I will work in the M-theory (D = 11) and IIB (D = 10)
duality frames. In either frame, the basic picture is the same.

We place the string theory on X2n ×MD−2n, where X2n is a
Calabi-Yau manifold of complex dimension n, which is also a real
cone with base B2n−1. There is a singularity at the base of the
cone, where we have a field theory T [X2n] on MD−2n.
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Dynamical states and branes

In the context of geometric engineering we treat the background
geometry X2n ×MD−2n as given, and ignore its dynamics. All the
dynamical field theory behaviour comes from p-branes and their
associated fluxes moving in the given geometry.

These are the dynamical states, but for understanding the
symmetry of the theory we are more interested in the behaviour of
extended defect operators.
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Heavy branes

We can view these as infinitely heavy objects inserted into our
configuration.

The mass of the object, for the wrapped brane, is
proportional to the volume wrapped in X. So defects will arise from
branes wrapping non-compact cycles ending on the singular point.
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Charge operators
Now we have a geometric characterisation of the defect operators
(generalised Wilson/’t Hooft lines) in the field theory as branes
wrapping non-compact cycles. These are in general not topological.

The symmetry operators are rather the flux operators [*] measuring
which non-compact lines we have in our configuration:

[*] The full story is more subtle: understanding non-invertible
symmetries requires thinking of the symmetry generators as bona
fide branes. [Apruzzi, Bah, Bonetti, Schäfer-Nameki ’22], [I.G.E. ’22],
[Heckman, Hübner, Torres, Zhang ’22], [. . . ]
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Boundary conditions and flux non-commutativity

In order to define the string theory fully on the non-compact space
X2n ×MD−2n we need to specify the boundary conditions at
infinity, which is (assuming MD−2n compact) of the form
B2n−1 ×MD−2n.

In the field theory these boundary fluxes appear as background
fluxes for higher form symmetries.

We do this by giving a state in the Hilbert space associated to
B2n−1 ×MD−2n. There are many subtleties in making this
statement precise, but the crucial one for us is due to flux
non-commutativity [Moore ’04], [Freed, Moore, Segal ’06], due to the
fact that the non-compact brane wraps a torsional cycle of B2n−1 (the
base of X2n), and therefore the flux sourced by it should be measured on
a torsional cycle.
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Non-commutativity of fluxes in M-theory
Let us put M-theory on M11 = N10 ×R. We will try to understand
the Hilbert space H(N10), or more precisely its grading by flux.
This was done in [Freed, Moore, Segal ’06].

M-theory contains 3-form gauge fields C3. The magnetic charge is
measured by the topological class of C3. To measure the electric charge,
recall that in the Hamiltonian formulation of the theory the canonical
momentum ΠC3 conjugate to C3 is ⋆G4. This is what we integrate to
measure the electric charge. If we express states in H(N10) in terms of
their wavefunctions ψ(C3), then a state of definite electric charge is an
eigenstate of momentum:

ψ(C3 + λ) = e
2πi

∫
N10

Qeλψ(C3)

for all flat λ. Here Qe ∈ H7(N10) is the electric charge.

So we cannot simultaneously measure electric and magnetic charges, if
there are flat topologically non-trivial λ. This is the case iff
TorH4(N10) ̸= 0.
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Non-commutativity of fluxes in M-theory

This can be restated in terms of the flux operators, as follows: for
every σ ∈ TorH6(N10;Z) = TorH4(N10;Z) there is a unitary flux
operator Φσ. Similarly for any
σ′ ∈ Tor(H3(N10;Z)) = TorH7(N10;Z).

These operators in general do not commute:

ΦσΦσ′ = e2πi L(σ,σ
′)Φσ′Φσ

where L(σ, σ′) is the linking pairing on N10: choose n ∈ Z such
that nσ = ∂D. Then

L(σ, σ′) =
1

n
D · σ′ mod 1 .
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Non-commutativity of fluxes in M-theory

The pairing L(·, ·) is perfect, which implies that for each torsional
σ ̸= 0 there is some σ′ such that L(σ, σ′) ̸= 0, and thus

ΦσΦσ′ = e2πi L(σ,σ
′)Φσ′Φσ ̸= Φσ′Φσ .

What this all implies, it that whenever Tor(H3(N10;Z)) ̸= 0 it is
not possible to simultaneously diagonalize all Φσ. In particular, it is
not consistent to take the simple “fluxless” choice Φσ = 1 for all σ.
We need to turn on some flux at infinity!
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Maximal isotropic subspaces

The final algebraic structure is fairly simple: we have a Hilbert
space, and a set of non-commuting operators acting on it.

We can specify a state in the Hilbert space as usual: by choosing a
maximal subspace I ⊂ Tor(H3(N10);Z)× Tor(H6(N10);Z) such
that the corresponding group of operators {Φx} for x ∈ I is
abelian, and imposing that

Φx |0;L⟩ = |0;L⟩ ∀x ∈ I

In our M-theory setting, this corresponds to setting to zero on the
boundary as many fluxes as possible. (This is the sector with
vanishing Φx flux, for non-zero background flux for the higher form
symmetries choose non-zero eigenvalues.)
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Fluxes and global forms

Classification
The possible global forms of the d = 7 theories on M7 are given by
maximal commuting subspaces of H2(M7; Γ

ab
g )×H5(M7; Γ

ab
g ),

with commutators worked out in [IGE, Heidenreich, Regalado ’19].

The background fields for the symmetries of a given theory are
determined by the flux at infinity.

This result agrees with what one obtains from applying the ideas in
[Gaiotto, Moore, Neitzke ’10], [Aharony, Seiberg, Tachikawa ’13].

Related ideas apply in many other contexts: [Morrison, Schäfer-Nameki,
Willett ’20], [Albertini, Del Zotto, IGE, Hosseini ’20], [Closset,
Schäfer-Nameki, Wang ’20], [Del Zotto, IGE, Hosseini ’20], [Apruzzi,
Dierigl, Lin ’20], . . .
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Relative theories
A high level summary of the previous discussion is that in geometric
engineering we have something like a “QFT on a singularity relative
to the string theory bulk”: the full theory is only defined only after
specifying boundary values for the supergravity fields, even in the
deep IR limit where dynamical excitations for the bulk decouple.

In general this relates a D − 2n-dimensional field theory to a
D-dimensional supergravity bulk, with n > 1. I would now like to
relate this picture to the “SymTFT” picture discussed before:
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How symmetry theories appear in string theory
The derivation in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure.
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theory associated to the field theory: dimensional reduction on the link of
the singularity: [Apruzzi, Bonetti, IGE, Hosseini, S. Schäfer-Nameki ’21]
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How symmetry theories appear in string theory
The derivation in [IGE, Heidenreich, Regalado ’19] uses a modified
asymptotic structure. This suggests a strategy for deriving the symmetry
theory associated to the field theory: dimensional reduction on the link of
the singularity: [Apruzzi, Bonetti, IGE, Hosseini, S. Schäfer-Nameki ’21]

In this picture the boundary conditions at infinity that we need to specify
in string theory correspond to ρ, so the object that arises naturally is the
symmetry theory. (“Symmetry inflow” instead of “anomaly inflow”.)
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An example

As an example, for 5d SCFTs the resulting symmetry theory is:

SSym =

∫
W6

(
KijB

(i)
2 ∪ δC(j)

3 +ΩijkB
(i)
2 ∪B(j)

2 ∪B(k)
2

+ΥijαB
(i)
2 ∪B(j)

2 ∪ F (α)
2

)
where the K, Ω, Υ coefficients are classical spin-Chern-Simons
invariants on the (5d) link.

We can compute these geometrically
using differential cohomology (see also [Cvetič, Dierigl, Lin,
Zhang ’21]), and in cases where there is a geometric interpretation we can
compare against field theory predictions. For instance, for SU(p)q we get

K11 = gcd(p, q) ; Ω111 =
q p (p− 1) (p− 2)

6 gcd(p, q)3
; Υ111 =

p (p− 1)

2 gcd(p, q)2

in agreement with [Gukov, Pei, Hsin ’20].
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The SymTFT from self-dual fields
Upcoming work with S. Hosseini

This approach to deriving the SymTFT, while workable, had some
unsatisfactory aspects:

The anomaly was obtained by reducing the topological sector

S11d = . . .− 1

6
C3 ∧G4 ∧G4 + C3 ∧X8

in the M-theory action.

Relatively straightforward, but what
about anomalies coming from the chiral sector? What does it
mean to “integrate the topological sector of string theory”?
The BF coupling were obtained from non-commutativity of
the flux operators. How do the CS terms affect the
non-commutativity argument?

The problem in obtaining a unified treatment is that it is not clear
how to reduce in a way that keeps both electric and magnetic
degrees of freedom manifest. We want a formulation where we can
think of (F, ⋆F ) as a single (self-dual) field!
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The SymTFT from self-dual fields
Upcoming work with S. Hosseini

Such a framework was introduced by [Witten ’96] for studying the M5
brane partition function (with important elaborations by [Belov,
Moore ’06] and [Hsieh, Tachikawa, Yonekura ’20]): we think of the theory
of the self-dual field as the set of boundary modes for a Chern-Simons like
in one dimension higher, with appropriate (gapless) boundary conditions.

X
L×

X Y
L×

Integrate on L

X YX

See [Apruzzi, Bah, Bonneti, Schäfer-Nameki ’22], [Lawrie, Yu,
Zhang ’23], [Apruzzi, Bonetti, Gould, Schäfer-Nameki ’23] for recent
work taking a similar approach.
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The SymTFT from self-dual fields
Upcoming work with S. Hosseini

X
L×

X Y
L×

Integrate on L

X YX

“
∫
Y×L

A ∧ dA ” =
∫
Y×L

ă · ă =
∑
ij

∫
Y×L

(b̆it̆i) · (b̆j t̆j)

=
∑
ij

(∫
L
t̆i · t̆j

)
︸ ︷︷ ︸

Kij

∫
Y
dbidbj =

∑
ij

Kij

∫
X
bidbj .
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The SymTFT from self-dual fields
Upcoming work with S. Hosseini

We can also include the anomaly sector: recall that this came from∫
L SGS in the original theory (without extending to a bulk).

It was
shown in [Belov, Moore ’06] that using the differential K-theory
Chern-Simons theory SK

CS defined in [Hopkins, Singer ’02] we obtain the
usual type II Chern-Simons couplings “for free”. (Brane insertions are also
naturally included here, although there are some subtleties with how to
include the worldvolume path integral on the brane.)

Conjecture (type II and type I)

Given a QFT T [X] arising from string theory on X, we have∫
∂Y

Symm[T [X]] =

∫
Y

∫
∂X

SK
CS

(Perhaps the methods of [Fiorenza, Sati, Schreiber ’19] together with
[Hopkins, Singer ’02] would allow us to define the analogue of SK

CS for
M-theory.)
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The SymTFT from self-dual fields
Upcoming work with S. Hosseini

We can also include the anomaly sector: recall that this came from∫
L SGS in the original theory (without extending to a bulk). It was
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Conclusions

SymTFTs seem to be fairly fundamental objects when talking
about modern ideas of symmetry, and they appear very naturally in
string theory, basically from “dimensional” reduction.

Many threads are pointing towards (differential) K-theory being the
right framework to think about symmetries in theories engineered
from string theory. This entails some important conceptual
differences with respect to the (now) standard picture.
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