AXION PHOTON COUPLINGS IN TYPE IIB STRING THEORY

based on [2308.xxxxx] with Naomi Gendler, Doddy Marsh, and Liam McAllister

07/07/2023 at String Phenomenology 2023
Institute for Basic Science, Daejeon 야콥 모리츠 (Jakob Moritz, Cornell University)

AXIONS AND STRING THEORY

Axions are a hallmark of weak coupling limits in string theory:

$$
\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g^{2}} \quad \text { and } \quad \delta V \sim e^{2 \pi i \tau}+c . c .
$$

Perturbative shift symmetry $\theta \rightarrow \theta+$ const forbids large non-derivative couplings:

- naturally light
- evade fifth force constraints

And: can solve strong CP problem via PQ mechanism!
Unique portal to UV physics via dimension five coupling

AXIONS AND STRING THEORY

Axions are a hallmark of weak coupling limits in string theory:

$$
\tau=\frac{\theta}{2 \pi}+i \frac{4 \pi}{g^{2}} \quad \text { and } \quad \delta V \sim e^{2 \pi i \tau}+c . c .
$$

Perturbative shift symmetry $\theta \rightarrow \theta+$ const forbids large non-derivative couplings:

- naturally light
- evade fifth force constraints

And: can solve strong CP problem via PQ mechanism!
[Peccei, Quinn'77]

Unique portal to UV physics via dimension five coupling

$$
g_{a \gamma \gamma} \varphi \frac{1}{2} F \wedge F
$$

Axions are actively being searched for: [https://github.com/cajohare]

In Calabi-Yau compactifications, usually get large number of axions, the famous axiverse.
[Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell'09]

Important goal: Understand axiverse predictions! [Demirtas, McAllister, Rios-Tascon'18][Demirtas, Gendler, Long, McAllister, JM'2]] [Cicoli, Hebecker, Jaeckel, Wittner'22][Cicoli, Guidetti, Righi, Westphal'21]...

Axions are actively being searched for: [https://github.com/cajohare]

In Calabi-Yau compactifications, usually get large number of axions, the famous axiverse.
[Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell'09]

Important goal: Understand axiverse predictions!
[Demirtas, McAllister, Rios-Tascon'18][Demirtas, Gendler, Long, McAllister, JM'21]
[Cicoli, Hebecker, Jaeckel, Wittner'22][Cicoli, Guidetti, Righi, Westphal'21]... +see Michele's \& Sang Hui's talks!

KEY TAKE HWAYS

We develop machinery to compute axion-photon and axion-axion couplings in generic regime of hierarchical axion masses, at large number of axions.

Key lesson: The axiverse is hard to see. Most (non-)abelian gauge groups couple at most to a few axions.

- Exponential mass hierarchies suppress axion couplings.
- Sparse graph of divisor intersections in CY threefolds suppresses couplings (in type IIB axiverse of C_{4}-axions).

KEY TAKE HWAYS

We develop machinery to compute axion-photon and axion-axion couplings in generic regime of hierarchical axion masses, at large number of axions.

Key lesson: The axiverse is hard to see. Most (non-)abelian gauge groups couple at most to a few axions.

Two effects conspire:

- Exponential mass hierarchies suppress axion couplings.
[cf. Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell'09]
[cf. Agrawal, Nee, Reig'22]
- Sparse graph of divisor intersections in CY threefolds suppresses couplings (in type IIB axiverse of C_{4}-axions).
[cf. Halverson, Long, Nelson, Salinas'19]
Also: we apply our tools to the type IIB axiverse of C_{4} axions, to study astrophysical constraints and cosmic birefringence.

PLAN

1. Hierarchies in axion interactions (in type IIB string theory)
2. Astrophysical bounds in an ensemble of semi-realistic models
3. Conclusions

PLAN

1. Hierarchies in axion interactions (in type IIB string theory)
2. Astrophysical bounds in an ensemble of semi-realistic models
3. Conclusions

DIHGONAL TOYMODEL

Start with an oversimplified toymodel. Assume an EFT of

- N axions $\phi^{a} \simeq \phi^{a}+2 \pi$, with diagonal kinetic terms

$$
\mathcal{L} \supset-\sum_{a=1}^{N} \frac{f_{a}^{2}}{2}\left(\partial \phi_{a}\right)^{2}
$$

- N "basis" instantons generating a potential

$$
V(\phi)=\sum_{a} \Lambda_{a}^{4}\left(1-\cos \left(\phi_{a}\right)\right), \quad \Lambda_{a} \geq \Lambda_{a+1}>0
$$

- E\&M coupling to a single QED-axion $\theta=\phi_{a^{*}}$:

$$
\mathcal{L} \supset \alpha_{E M} \cdot \frac{\theta}{2 \pi} \cdot \frac{1}{4} F_{\mu \nu} \tilde{F}^{\mu \nu} .
$$

DIAGONAL TOYMODEL (continued)

This theory is almost trivial. We get

- N mass eigenstates $\varphi^{a}=f_{a} \cdot \phi_{a}$ with masses $m_{a}^{2}=\frac{\Lambda_{a}^{4}}{f_{a}^{2}}$
- only axion self interactions

a single axion coupling to E\&M

This model is of course too naïve!

STRUCTURELESS MODEL

Generically one would expect to find far more general EFTs in string theory, i.e.

- Arbitrary kinetic terms

$$
\mathcal{L} \supset-\sum_{a} \frac{1}{2} K^{a b} \partial \phi_{a} \partial \phi_{b} .
$$

- $N+k$ instantons with generic integer charges \vec{q}_{I}, generating a potential

$$
V(\phi)=\sum_{I=1}^{N+k} \Lambda_{I}^{4}\left(1-\cos \left(2 \pi \vec{q}_{I} \cdot \vec{\phi}\right)\right), \quad \Lambda_{I} \geq \Lambda_{I+1}>0
$$

- E\&M coupling to a general linear combination $\theta_{E M}=2 \pi \vec{q}_{E M} \cdot \vec{\phi}$ with generic integer charge vector $\vec{q}_{E M}$:

$$
\mathcal{L} \supset \alpha_{E M} \cdot \frac{\theta_{E M}}{2 \pi} \cdot \frac{1}{4} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

STRUCTURELESS MODEL (continued)

Generally, understanding the large N axiverse would seem to be tedious. One has to

- go to canonical normalization, $K^{a b}=e^{c a} e^{c b}$,

$$
\hat{\varphi}^{a}=e^{a b} \phi_{b} .
$$

- Numerically find an axion vacuum $\left\langle\hat{\varphi}^{a}\right\rangle$,
- Numerically identify the eigenmodes $\varphi^{a}=\mathcal{O}^{a}{ }_{b} \hat{\varphi}^{b}$ of the Hessian $\mathcal{H}_{a b}=\left\langle\partial_{\hat{\varphi}^{a}} \partial_{\hat{\varphi}^{b}} V\right\rangle$.
- Compute axion photon couplings by expanding

No particular structure is evident in the $g_{a \gamma \gamma}$ or axion-axion

STRUCTURELESS MODEL (continued)

Generally, understanding the large N axiverse would seem to be tedious. One has to

- go to canonical normalization, $K^{a b}=e^{c a} e^{c b}$,

$$
\hat{\varphi}^{a}=e^{a b} \phi_{b} .
$$

- Numerically find an axion vacuum $\left\langle\hat{\varphi}^{a}\right\rangle$,
- Numerically identify the eigenmodes $\varphi^{a}=\mathcal{O}^{a}{ }_{b} \hat{\varphi}^{b}$ of the Hessian $\mathcal{H}_{a b}=\left\langle\partial_{\hat{\varphi}^{a}} \partial_{\hat{\varphi}^{b}} V\right\rangle$.
- Compute axion photon couplings by expanding

$$
\frac{\theta_{E M}}{2 \pi}=\vec{q}_{E M} \cdot \vec{\phi} \equiv \overrightarrow{\hat{\mathrm{q}}} E M \cdot \overrightarrow{\hat{\phi}} \equiv \overrightarrow{\mathrm{q}}_{E M} \cdot \vec{\varphi}, \quad g_{a \gamma \gamma}=\alpha_{E M} \mathrm{q}_{E M}^{a}
$$

No particular structure is evident in the $g_{a \gamma \gamma}$ or axion-axion interactions...

SIMPLICITY HT LARGE N

Somewhat surprisingly, it turns out that type IIB orientifold models are almost like the naïve diagonal model!

The first "emergent" simplification occurs for hierarchical mass scales $\Lambda_{a} \gg \Lambda_{a+1}$ (Numerically unstable!).

One proceeds as follows:

- Canonically normalize kinetic terms.
- Select the leading N instantons $\overrightarrow{\hat{\mathbf{q}}}_{a}$, by cleleting those with charges $\overrightarrow{\hat{\mathrm{q}}}_{I}$ contained in the linear span of the $\overrightarrow{\mathrm{q}}_{1, \ldots, I-1}$.
- Apply the Gram-Schmidt process to the $\overrightarrow{\hat{q}}_{a}$ to find an axion basis, s.t. instanton charge matrix is lower triangular:

SIMPLICITY AT LARGE N

Somewhat surprisingly, it turns out that type IIB orientifold models are almost like the naïve diagonal model!

The first "emergent" simplification occurs for hierarchical mass scales $\Lambda_{a} \gg \Lambda_{a+1}$ (Numerically unstable!).

One proceeds as follows:

- Canonically normalize kinetic terms.
- Select the leading N instantons $\overrightarrow{\hat{q}}_{a}$, by deleting those with charges $\overrightarrow{\hat{\mathrm{q}}}_{I}$ contained in the linear span of the $\overrightarrow{\hat{\mathrm{q}}}_{1, \ldots, I-1}$.
- Apply the Gram-Schmidt process to the $\overrightarrow{\hat{q}}_{a}$ to find an axion basis, s.t. instanton charge matrix is lower triangular:

$$
\mathrm{q}_{a b}=\left(\begin{array}{ccccc}
\mathrm{q}_{11} & 0 & 0 & \ldots & 0 \\
\mathrm{q}_{21} & \mathrm{q}_{22} & 0 & \ldots & 0 \\
\vdots & & \ddots & & \\
\mathrm{q}_{N 1} & & \ldots & & \mathrm{q}_{N N}
\end{array}\right)
$$

SIMPLICITY AT LARGE N (continued)

Now the instanton term with smallest action depends only on the first axion φ^{1} :

$$
\mathcal{L}=-\frac{1}{2} \partial \varphi^{a} \partial \varphi^{a}-\Lambda_{1}^{4}\left(1-\cos \left(2 \pi \mathrm{q}_{11} \varphi^{1}\right)\right)+\ldots
$$

In limit $\frac{\Lambda_{2}}{\Lambda_{1}} \rightarrow 0$ the axion φ^{1} is a mass eigenstate.
Integrating out φ^{1}, get EFT of $N-1$ axions with upper triangular instanton charge matrix, so by induction:

$$
\text { "Gram-Schmidt" basis }=\text { Mass eigenbasis }+\mathcal{O}\left(\frac{\Lambda_{a}^{4}}{\Lambda_{a+1}^{4}}\right) .
$$

SOME CONSEQUENCES

- Axion masses: $m_{a}^{2} \approx \frac{\Lambda_{a}^{4}}{f_{a}^{2}}$ with $f_{a}:=\left(2 \pi \mathrm{q}_{a a}\right)^{-1}$.

$$
V(\varphi)=\sum_{a=1}^{N} \Lambda_{a}^{4}\left(1-\cos \left(\sum_{b} \theta_{a b} \frac{\varphi^{b}}{f_{b}}\right)\right)
$$

with hierarchical mixing angles $\theta_{a b}$:

- Mass suppressed mixing angles

$$
\begin{aligned}
& \theta_{a b} \approx \frac{\mathrm{q}_{a b}}{\mathrm{q}_{b b}} \text { for } b \leq a \\
& \theta_{a b} \approx-\frac{\Lambda_{b}^{4}}{\Lambda_{a}^{4}} \frac{\mathrm{q}_{b a}}{\mathrm{q}_{a a}} \ll 1 \text { for } b>a
\end{aligned}
$$

Light axions do not mix into "heavy" theta angles.

SOME CONSEQUENCES (continued)

- If $\overrightarrow{\mathrm{q}}_{E M}$ also contributes an instanton term to potential,

$$
V(\varphi) \supset \Lambda_{\mathrm{EM}}^{4}\left(1-\cos \left(2 \pi \overrightarrow{\mathrm{q}}_{E M} \cdot \vec{\varphi}\right)\right),
$$

axions lifted by instantons with $\Lambda_{a} \ll \Lambda_{E M}$ do not couple to EM:

$$
g_{a \gamma \gamma} f_{a}=\mathcal{O}\left(\frac{\Lambda_{a}^{4}}{\Lambda_{E M}^{4}}\right)
$$

- Mixed quartics suppressed by lightest mass scale:

$$
\lambda_{a \leq b \leq c<d} \sim \frac{\Lambda_{d}^{4}}{f_{a} f_{b} f_{c} f_{d}} \theta_{d a} \theta_{d b} \theta_{d c}
$$

Axions preferentially decay to their mass neighbors.

KINETIC DECOUPLING IN TYPE IIB AXIVERSE

So far: discussed suppression of couplings in ratios of mass scales Λ_{a}.
\Rightarrow pure QFT effect

Next: Planck-suppression of axion interactions from kinetic decoupling at large $N \equiv h_{+}^{1,1}$

We will study Calabi-Yau hypersurfaces X in toric fourfolds V at large $h^{1,1}$, i.e. the KS-database.
Axions given by $h_{+}^{1,1}$ zero modes of C_{4}, lifted by D3-brane instantons wrapped on four-cycles.

ASSUMPTIONS AND APPROXIMATIONS

- All BPS D3-brane instantons contribute to W.
- SUSY is broken at low enough scales s.t. BPS instantons dominate over non-BPS instantons, i.e.

$$
m_{\frac{3}{2}} \ll M_{P}
$$

- The Kähler and CS moduli of X are stabilized at high scales compared to the axion masses $m_{a}=\Lambda_{a}^{2} /\left|f_{a}\right|$.
- No two-form axions, i.e. $h_{-}^{1,1}=0$.
- Standard model realized on (intersecting) 7-branes.
- Approximate the cone of effective divisors by the one inherited from toric ambient variety.

AXION FIELD SPHCE METRIC

The smallest irreducible divisors in a CY X are the prime toric divisors:

$$
D_{i}:=\left\{x_{i}=0\right\} \cap X, \quad i=1, \ldots, h^{1,1}(X)+4
$$

Letting D_{a} be basis of $H^{2}(X)$ furnished by subset of smallest linearly independent $h^{1,1}$ prime toric divisors:

$$
q_{a b}=\delta_{a b}
$$

AXION FIELD SPACE METRIC

The smallest irreducible divisors in a CY X are the prime toric divisors:

$$
D_{i}:=\left\{x_{i}=0\right\} \cap X, \quad i=1, \ldots, h^{1,1}(X)+4
$$

Letting D_{a} be basis of $H^{2}(X)$ furnished by subset of smallest linearly independent $h^{1,1}$ prime toric divisors:

$$
q_{a b}=\delta_{a b}
$$

Their overlap, measured by inverse Kähler metric is

$$
\begin{gathered}
K_{a b}=\left\langle D_{a}, D_{b}\right\rangle=2 \mathcal{V}\left(c_{a b}+\frac{\operatorname{Vol}\left(D_{a}\right) \operatorname{Vol}\left(D_{b}\right)}{\mathcal{V}}\right) \\
\text { with } c_{a b}=0 \text { if } D_{a} \cap D_{b}=\emptyset
\end{gathered}
$$

Off-diagonal terms $K_{a b}$ from non-intersecting divisors are Planck-suppressed, i.e. $\propto 1 / \mathcal{V}$.

HXION FIELD SPACE METRIC (continued)

Crucial: At large $h^{1,1}$ divisor intersections are sparse!
[cf. Halverson, Long, Nelson, Salinas'19]
Reason: Toric ambient variety arises from triangulating reflexive polytope Δ°. A pair of divisors $\left(D_{a}, D_{b}\right)$ intersects iff points $\left(p_{a}, p_{b}\right)$ in Δ° are in same two-face of Δ° and connected by triangulation:

(largest two-face of Δ° with $h^{1,1}=491$, Delaunay triangulation)

LOCALIZATION OF AXION WHVEFUNCTION

In absence of off-diagonal terms we would be back to our naïve toy model with trivial mixing angles $\theta_{a b}=0$ for $a \neq b$. Every mass eigenstate overlaps precisely with one basis divisor.

This gets corrected by

- Cross terms $c_{a b}$ for intersecting divisors \Rightarrow Local in intersection graph.
- Planck suppressed off-diagonals $\frac{\operatorname{Vol}\left(D_{a}\right) \operatorname{Vol}\left(D_{b}\right)}{\mathcal{V}}$
\Rightarrow Non-local in intersection graph, negligible for small pairs of divisors.

LOCALIZATION OF AXION WAVEFUNCTION

In absence of off-diagonal terms we would be back to our naïve toy model with trivial mixing angles $\theta_{a b}=0$ for $a \neq b$. Every mass eigenstate overlaps precisely with one basis divisor.

This gets corrected by

- Cross terms $c_{a b}$ for intersecting divisors \Rightarrow Local in intersection graph.
- Planck suppressed off-diagonals $\frac{\operatorname{Vol}\left(D_{a}\right) \operatorname{Vol}\left(D_{b}\right)}{\mathcal{V}}$
\Rightarrow Non-local in intersection graph, negligible for small pairs of divisors.

Mixing angles $\theta_{a b}$ are

- localized around $a=b$ in intersection graph,
- and mass suppressed for $a<b$.

LOCALIZATION OF AXION WAVEFUNCTION

> Example at $h^{1,1}=491$, at "tip of the stretched Kähler cone": $\mathcal{V} \approx 1.7 \times 10^{12}$ QED on smallest divisor: $\operatorname{Vol}(D)=0.5$

LOCALIZATION OF AXION WAVEFUNCTION

> Example at $h^{1,1}=491$, at "tip of the stretched Kähler cone": $\mathcal{V} \approx 1.7 \times 10^{12}$ QED on 20 th divisor: $\operatorname{Vol}(D)=11$

LOCALIZATION OF AXION WAVEFUNCTION

> Example at $h^{1,1}=491$, at "tip of the stretched Kähler cone": $\mathcal{V} \approx 1.7 \times 10^{12}$ QED on 50 th divisor: $\operatorname{Vol}(D)=23$

LOCALIZATION OF AXION WAVEFUNCTION

> Example at $h^{1,1}=491$, at "tip of the stretched Kähler cone": $\mathcal{V} \approx 1.7 \times 10^{12}$ QED on 100 th divisor: $\operatorname{Vol}(D)=63$

LOCALIZATION OF AXION WAVEFUNCTION

> Example at $h^{1,1}=491$, at "tip of the stretched Kähler cone": $\mathcal{V} \approx 1.7 \times 10^{12}$ QED on 200 th divisor: $\operatorname{Vol}(D)=655$

LOCALIZATION OF AXION WAVEFUNCTION

Example at $h^{1,1}=491$,
at "tip of the stretched Kähler cone": $\mathcal{V} \approx 1.7 \times 10^{12}$
QED on 343 th divisor: $\operatorname{Vol}(D)=6.8 \times 10^{6}$

IS AN AXIVERSE INVISIBLE ?

Even at very large $h^{1,1}$ most standard models realized on (intersecting) seven-branes couple to few axions:

PLAN

1. Hierarchies in axion interactions (in type IIB string theory)
2. Astrophysical bounds in an ensemble of semi-realistic models
3. Conclusions

HXION HELIOSCOPES

How relevant are the suppression effects for real world experiments?
One of the most stringent bounds on axion photon couplings: axion helioscopes

Effective coupling probed:

$$
g_{\mathrm{eff}}=\sqrt{\sum_{m_{a}<1 \mathrm{eV}}\left(g_{a \gamma \gamma}\right)^{2}}=\sqrt{\sum_{m_{a}<1 \mathrm{eV}}\left(\frac{\alpha_{E M}}{2 \pi f_{a}} \theta_{\mathrm{EM}, a}\right)^{2}}
$$

Bound from CAST: $g_{\text {eff }} \lesssim 10^{-10}(\mathrm{GeV})^{-1}$.
Without mixing suppression, i.e. $\theta_{\mathrm{EM}, a}=\mathcal{O}(1)$,
get dominated by smallest f_{a}.

TYPE IIB HXIVERSE EXCLUSIONS (naïve)

Under this assumption, significant part of the type IIB axiverse would seem to be excluded: [Demirtas, Gendler, Long, McAllister, JM'21]

Key fact: f_{a} vary over a few orders of magnitude
[Demirtas, McAllister, Rios-Tascon'20]

But: With significant mixing suppression, expect

$$
g_{e f f} \sim \frac{\alpha_{\mathrm{EM}}}{2 \pi\left\langle f_{a}\right\rangle} \ll \frac{\alpha_{\mathrm{EM}}}{2 \pi \min _{a}\left(f_{a}\right)}
$$

MASSES AND COUPLINGS

Including mixing suppression, bounds are significantly relaxed:

- effective coupling for Chandra (similar for CAST) drops off as volume of EM divisor drops below ~ 32 : axions heavier than QED axion outside of Chandra mass range.

MASSES AND COUPLINGS

Including mixing suppression, bounds are significantly relaxed:

- effective coupling for Chandra (similar for CAST) drops off as volume of EM divisor drops below ~ 32 : axions heavier than QED axion outside of Chandra mass range.

COSMIC BIREFRINGENCE

Currently there is $\sim 3.6 \sigma$ evidence for cosmic birefringence in CMB $:=$ non-zero rotation of polarization plane by angle β between CMB and today.

$$
\beta=(6.0 \pm 1.6) \times 10^{-3}
$$

[Minami, Komatsu'20][Eskilt, Komatsu'22] + Donghui's talk!
Possible explanation:
[Carroll, Field, Jackiw'90]
relaxes to minimum from generic initial field displacement φ_{0}

COSMIC BIREFRINGENCE

Currently there is $\sim 3.6 \sigma$ evidence for
cosmic birefringence in CMB $:=$ non-zero rotation of polarization plane by angle β between CMB and today.

$$
\beta=(6.0 \pm 1.6) \times 10^{-3}
$$

[Minami, Komatsu'20][Eskilt, Komatsu'22] + Donghui's talk!
Possible explanation:
[Carroll, Field, Jackiw'90]
axion φ with $10^{-33} \mathrm{eV} \sim H_{\text {now }}<m<H_{\mathrm{CMB}} \sim 10^{-28} \mathrm{eV}$
relaxes to minimum from generic initial field displacement φ_{0}

$$
\beta \approx g_{a \gamma \gamma} \varphi_{0}=\frac{\alpha_{\mathrm{EM}}}{2 \pi} \theta_{\mathrm{EM}, a} \frac{\varphi_{0}}{f_{a}} \approx 3 \times 10^{-3} \times \theta_{\mathrm{EM}, a} \quad \text { for } \quad \varphi_{0} \sim \pi \cdot f_{a}
$$

COSMIC BIREFRINGENCE (continued)

To account for this, need axion(s) with $\mathcal{O}(1)$ mixing angle to standard model.

We find this to be possible only if QED-axion itself falls in correct mass window, $\operatorname{Vol}\left(D_{Q E D}\right) \gtrsim 40$:

Incidentally, standard model

COSMIC BIREFRINGENCE (continued)

To account for this, need axion(s) with $\mathcal{O}(1)$ mixing angle to standard model.

We find this to be possible only if QED-axion itself falls in correct mass window, $\operatorname{Vol}\left(D_{Q E D}\right) \gtrsim 40$:

Incidentally, this gives correct GUT scale $U(1)_{Y}$ coupling in standard model $\frac{4 \pi}{g^{2}\left(10^{16} \mathrm{GeV}\right)} \sim 40 \ldots$

COSMIC BIREFRINGENCE (continued)

To account for this, need axion(s) with $\mathcal{O}(1)$ mixing angle to standard model.

This appears to be possible only if QED-axion itself falls in correct mass window, $\operatorname{Vol}\left(D_{Q E D}\right) \gtrsim 40$:

Incidentally, this coincides with GUT scale $U(1)_{Y}$ coupling in standard model $\frac{4 \pi}{g^{2}\left(10^{16} \mathrm{GeV}\right)} \sim 40 \ldots$

CONCLUSIONS

We have developed tools to systematically compute axion photon couplings in large axiverses with large separation of scales.

We have learned that a true axiverse is almost invisible: QED realized on a small divisor couples to $\mathcal{O}(1)$ axions even in models with many axions. This significantly reduces constraints from astrophysical processes.

WIP not mentioned: dark matter abundances from misalignment, freeze-in/out, constraints from decaying dark matter, moduli problem, dark radiation...

Macaulay2, Computational Algebraic Geometry and String Theory

$T=C *\left(R^{\wedge} 1 / \mathrm{g}\right)$

To be held at the University of Utah

May 28th - June 1st, 2024 (School)
June 3rd - June 5th, 2024 (Conference)

$$
\text { May 28-June 5, } 2024
$$

Organizers: D. Eisenbud, D. Grayson, A. Leykin,
A. Lukas, L. McAllister, K. Schwede, M. Stillman

감사합니다

