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AXIONS AND STRING THEORY

Axions are a hallmark of weak coupling limits in string theory:

τ =
θ

2π
+ i

4π

g2
and δV ∼ e2πiτ + c.c.

Perturbative shift symmetry θ → θ + const
forbids large non-derivative couplings:

▶ naturally light
▶ evade fifth force constraints

And: can solve strong CP problem via PQ mechanism!
[Peccei, Quinn’77]

Unique portal to UV physics via dimension five coupling
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Axions are actively being searched for: [https://github.com/cajohare]

In Calabi-Yau compactifications, usually get large number of
axions, the famous axiverse.

[Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell’09]

Important goal: Understand axiverse predictions!
[Demirtas, McAllister, Rios-Tascon’18][Demirtas, Gendler, Long, McAllister, JM’21]

[Cicoli, Hebecker, Jaeckel, Wittner’22][Cicoli, Guidetti, Righi, Westphal’21]...
+see Michele’s & Sang Hui’s talks!
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KEY TAKE AWAYS

We develop machinery to compute axion-photon and
axion-axion couplings in generic regime of hierarchical axion

masses, at large number of axions.

Key lesson: The axiverse is hard to see. Most (non-)abelian
gauge groups couple at most to a few axions.

Two effects conspire:
▶ Exponential mass hierarchies suppress axion couplings.

[cf. Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell’09]

[cf. Agrawal, Nee, Reig’22]

▶ Sparse graph of divisor intersections in CY threefolds
suppresses couplings (in type IIB axiverse of C4-axions).

[cf. Halverson, Long, Nelson, Salinas’19]

Also: we apply our tools to the type IIB axiverse of C4 axions,
to study astrophysical constraints and cosmic birefringence.
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PLAN

1. Hierarchies in axion interactions (in type IIB string theory)
2. Astrophysical bounds in an ensemble of semi-realistic

models
3. Conclusions
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DIAGONAL TOYMODEL

Start with an oversimplified toymodel. Assume an EFT of
▶ N axions ϕa ≃ ϕa + 2π, with diagonal kinetic terms

L ⊃ −
N∑
a=1

f2
a

2
(∂ϕa)

2 .

▶ N “basis” instantons generating a potential

V (ϕ) =
∑
a

Λ4
a (1− cos(ϕa)) , Λa ≥ Λa+1 > 0 .

▶ E&M coupling to a single QED-axion θ = ϕa∗ :

L ⊃ αEM · θ

2π
· 1
4
FµνF̃

µν .



DIAGONAL TOYMODEL (continued)

This theory is almost trivial. We get

▶ N mass eigenstates φa = fa · ϕa with masses m2
a = Λ4

a
f2
a

▶ only axion self interactions

 

a

▶ a single axion coupling to
E&M

 

ni

Eiga

This model is of course too naïve!



STRUCTURELESS MODEL

Generically one would expect to find far more general EFTs in
string theory, i.e.

▶ Arbitrary kinetic terms

L ⊃ −
∑
a

1

2
Kab∂ϕa∂ϕb .

▶ N + k instantons with generic integer charges q⃗I , generating
a potential

V (ϕ) =

N+k∑
I=1

Λ4
I

(
1− cos

(
2π q⃗I · ϕ⃗

))
, ΛI ≥ ΛI+1 > 0 .

▶ E&M coupling to a general linear combination
θEM = 2πq⃗EM · ϕ⃗ with generic integer charge vector q⃗EM :

L ⊃ αEM · θEM

2π
· 1
4
FµνF̃

µν .



STRUCTURELESS MODEL (continued)

Generally, understanding the large N axiverse would seem to be
tedious. One has to

▶ go to canonical normalization, Kab = ecaecb,

φ̂a = eabϕb .

▶ Numerically find an axion vacuum ⟨φ̂a⟩,
▶ Numerically identify the eigenmodes φa = Oa

bφ̂
b of the

Hessian Hab = ⟨∂φ̂a∂φ̂bV ⟩.
▶ Compute axion photon couplings by expanding

θEM

2π
= q⃗EM · ϕ⃗ ≡ ⃗̂qEM · ⃗̂ϕ ≡ q⃗EM · φ⃗ , gaγγ = αEMqaEM

No particular structure is evident in the gaγγ or axion-axion
interactions...
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SIMPLICITY AT LARGE N

Somewhat surprisingly, it turns out that type IIB orientifold
models are almost like the naïve diagonal model!

The first “emergent” simplification occurs for hierarchical mass
scales Λa ≫ Λa+1 (Numerically unstable!).

One proceeds as follows:
▶ Canonically normalize kinetic terms.
▶ Select the leading N instantons ⃗̂qa, by deleting those with

charges ⃗̂qI contained in the linear span of the ⃗̂q1,...,I−1.
▶ Apply the Gram-Schmidt process to the ⃗̂qa to find an axion

basis, s.t. instanton charge matrix is lower triangular:

qab =


q11 0 0 . . . 0
q21 q22 0 . . . 0
...

. . .
qN1 . . . qNN


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SIMPLICITY AT LARGE N (continued)
Now the instanton term with smallest action depends only on

the first axion φ1:

L = −1

2
∂φa∂φa − Λ4

1

(
1− cos

(
2πq11φ

1
))

+ . . .

In limit Λ2
Λ1

→ 0 the axion φ1 is a mass eigenstate.

Integrating out φ1, get EFT of N − 1 axions with upper
triangular instanton charge matrix, so by induction:

“Gram-Schmidt” basis = Mass eigenbasis+O
(

Λ4
a

Λ4
a+1

)
.



SOME CONSEQUENCES

▶ Axion masses: m2
a ≈ Λ4

a
f2
a

with fa := (2πqaa)
−1.

V (φ) =

N∑
a=1

Λ4
a

(
1− cos

(∑
b

θab
φb

fb

))

with hierarchical mixing angles θab:
▶ Mass suppressed mixing angles

θab ≈
qab

qbb
for b ≤ a

θab ≈ −Λ4
b

Λ4
a

qba

qaa
≪ 1 for b > a

Light axions do not mix into “heavy” theta angles.



SOME CONSEQUENCES (continued)

▶ If q⃗EM also contributes an instanton term to potential,

V (φ) ⊃ Λ4
EM (1− cos(2πq⃗EM · φ⃗)) ,

axions lifted by instantons with Λa ≪ ΛEM do not
couple to EM:

gaγγfa = O
(

Λ4
a

Λ4
EM

)

▶ Mixed quartics suppressed by lightest mass scale:

λa≤b≤c<d ∼ Λ4
d

fafbfcfd
θdaθdbθdc

Axions preferentially decay to their mass neighbors.



KINETIC DECOUPLING IN TYPE IIB AXIVERSE

So far: discussed suppression of couplings in ratios of mass
scales Λa.

⇒ pure QFT effect

Next: Planck-suppression of axion interactions from
kinetic decoupling at large N ≡ h1,1+

We will study Calabi-Yau hypersurfaces X in toric fourfolds V
at large h1,1, i.e. the KS-database.

Axions given by h1,1+ zero modes of C4, lifted by D3-brane
instantons wrapped on four-cycles.



ASSUMPTIONS AND APPROXIMATIONS

▶ All BPS D3-brane instantons contribute to W .
▶ SUSY is broken at low enough scales s.t. BPS instantons

dominate over non-BPS instantons, i.e.

m 3
2
≪ MP

▶ The Kähler and CS moduli of X are stabilized at high
scales compared to the axion masses ma = Λ2

a/|fa|.
▶ No two-form axions, i.e. h1,1− = 0.
▶ Standard model realized on (intersecting) 7-branes.
▶ Approximate the cone of effective divisors by the one

inherited from toric ambient variety.



AXION FIELD SPACE METRIC

The smallest irreducible divisors in a CY X are the
prime toric divisors:

Di := {xi = 0} ∩X , i = 1, . . . , h1,1(X) + 4

Letting Da be basis of H2(X) furnished by subset of smallest
linearly independent h1,1 prime toric divisors:

qab = δab

Their overlap, measured by inverse Kähler metric is

Kab = ⟨Da, Db⟩ = 2V
(
cab +

Vol(Da)Vol(Db)

V

)
with cab = 0 if Da ∩Db = ∅.

Off-diagonal terms Kab from non-intersecting divisors are
Planck-suppressed, i.e. ∝ 1/V.
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AXION FIELD SPACE METRIC (continued)
Crucial: At large h1,1 divisor intersections are sparse!

[cf. Halverson, Long, Nelson, Salinas’19]

Reason: Toric ambient variety arises from triangulating reflexive
polytope ∆◦. A pair of divisors (Da, Db) intersects iff points
(pa, pb) in ∆◦ are in same two-face of ∆◦ and connected by

triangulation:

(largest two-face of ∆◦ with h1,1 = 491, Delaunay triangulation)



LOCALIZATION OF AXION WAVEFUNCTION

In absence of off-diagonal terms we would be back to our naïve
toy model with trivial mixing angles θab = 0 for a ̸= b. Every

mass eigenstate overlaps precisely with one basis divisor.

This gets corrected by
▶ Cross terms cab for intersecting divisors

⇒ Local in intersection graph.
▶ Planck suppressed off-diagonals Vol(Da)Vol(Db)

V
⇒ Non-local in intersection graph,
negligible for small pairs of divisors.

Mixing angles θab are
▶ localized around a = b in intersection graph,

▶ and mass suppressed for a < b.
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LOCALIZATION OF AXION WAVEFUNCTION

Example at h1,1 = 491,
at “tip of the stretched Kähler cone”: V ≈ 1.7× 1012

QED on smallest divisor: Vol(D) = 0.5
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LOCALIZATION OF AXION WAVEFUNCTION

Example at h1,1 = 491,
at “tip of the stretched Kähler cone”: V ≈ 1.7× 1012

QED on 343th divisor: Vol(D) = 6.8× 106



IS AN AXIVERSE INVISIBLE ?

Even at very large h1,1 most standard models realized on
(intersecting) seven-branes couple to few axions:



PLAN

1. Hierarchies in axion interactions (in type IIB string theory)
2. Astrophysical bounds in an ensemble of semi-realistic

models
3. Conclusions



AXION HELIOSCOPES

How relevant are the suppression effects for real world
experiments?

One of the most stringent bounds on axion photon couplings:
axion helioscopes

Effective coupling probed:

geff =

√ ∑
ma<1eV

(gaγγ)2 =

√√√√ ∑
ma<1eV

(
αEM

2πfa
θEM,a

)2

Bound from CAST: geff ≲ 10−10(GeV)−1.
Without mixing suppression, i.e. θEM,a = O(1),

get dominated by smallest fa.



TYPE IIB AXIVERSE EXCLUSIONS (naïve)
Under this assumption, significant part of the type IIB axiverse

would seem to be excluded: [Demirtas, Gendler, Long, McAllister, JM’21]

Key fact: fa vary over a few orders of magnitude
[Demirtas, McAllister, Rios-Tascon’20]

But: With significant mixing suppression, expect
geff ∼ αEM

2π⟨fa⟩ ≪
αEM

2πmina(fa)



MASSES AND COUPLINGS

Including mixing suppression, bounds are significantly relaxed:

0.0 2.5 5.0 7.5
log10(EM Vol)

−40
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lo
g 1

0(
g
/[

G
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−

1 ])

h1,1 = 50

h1,1 = 100

h1,1 = 200

▶ effective coupling for Chandra (similar for CAST) drops off
as volume of EM divisor drops below ∼ 32: axions heavier
than QED axion outside of Chandra mass range.
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COSMIC BIREFRINGENCE

Currently there is ∼ 3.6σ evidence for

cosmic birefringence in CMB := non-zero rotation of
polarization plane by angle β between CMB and today.

β = (6.0± 1.6)× 10−3

[Minami, Komatsu’20][Eskilt, Komatsu’22] +Donghui’s talk!

Possible explanation:
[Carroll, Field, Jackiw’90]

axion φ with 10−33eV ∼ Hnow < m < HCMB ∼ 10−28eV

relaxes to minimum from generic initial field displacement φ0

β ≈ gaγγφ0 =
αEM

2π
θEM,a

φ0

fa
≈ 3×10−3×θEM,a for φ0 ∼ π ·fa
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COSMIC BIREFRINGENCE (continued)
To account for this, need axion(s) with O(1) mixing angle to

standard model.

We find this to be possible only if QED-axion itself falls in
correct mass window, Vol(DQED) ≳ 40:
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Incidentally, this gives correct GUT scale U(1)Y coupling in
standard model 4π

g2(1016GeV )
∼ 40...
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COSMIC BIREFRINGENCE (continued)
To account for this, need axion(s) with O(1) mixing angle to

standard model.

This appears to be possible only if QED-axion itself falls in
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CONCLUSIONS

We have developed tools to systematically compute axion
photon couplings in large axiverses with large separation of

scales.

We have learned that a true axiverse is almost invisible: QED
realized on a small divisor couples to O(1) axions even in

models with many axions. This significantly reduces constraints
from astrophysical processes.

WIP not mentioned: dark matter abundances from
misalignment, freeze-in/out, constraints from decaying dark

matter, moduli problem, dark radiation...






