

Quantum Gravity Constraints on Cosmic Acceleration

based on

2306.17217, J.Freigang, D. Lüst, G. Nian, MS work in progress, D. Lüst, J. Masias, M. Pieroni, MS

July 3rd, 2023 String Pheno Conference 2023 - Daejeon

Marco Scalisi | MPP

Swampland constraints tend to assume more relevance in extreme regimes of the parameter space of the theory

Swampland constraints tend to assume more relevance in extreme regimes of the parameter space of the theory

Weak Gravity Conjecture Arkani-Hamed et al 2006		small gauge coupling
Swampland Distance Conjecture Ooguri, Vafa 2006		large distances
AdS Distance Conjecture Lüst, Palti, Vafa 2019		small value of the (AdS) CC
Gravitino Conjecture Cribiori, Lüst, MS '21 - Castellano et al '21	>	small gravitino mass

Swampland constraints tend to assume more relevance in extreme regimes of the parameter space of the theory

Weak Gravity Conjecture Arkani-Hamed et al 2006		small gauge coupling
Swampland Distance Conjecture Ooguri, Vafa 2006		large distances
AdS Distance Conjecture Lüst, Palti, Vafa 2019		small value of the (AdS) CC
Gravitino Conjecture Cribiori, Lüst, MS '21 - Castellano et al '21	>	small gravitino mass

in these extreme regimes, quantum gravity cut-off decreases

 $M_{\rm P} > \Lambda_{\rm QG} \to 0$

Swampland constraints tend to assume more relevance in extreme regimes of the parameter space of the theory

Weak Gravity Conjecture Arkani-Hamed et al 2006		small gauge coupling
Swampland Distance Conjecture Ooguri, Vafa 2006		large distances
AdS Distance Conjecture Lüst, Palti, Vafa 2019	>	small value of the (AdS) CC
Gravitino Conjecture Cribiori, Lüst, MS '21 - Castellano et al '21		small gravitino mass

in these extreme regimes, quantum gravity cut-off decreases

$$M_{\rm P} > \Lambda_{\rm QG} \to 0$$

"Infinite scalar field variations Δ are always associated to (at least) an infinite tower of states becoming exponentially light" $m \sim m_0 e^{-\lambda \Delta} \qquad \Delta \to \infty$

"Infinite scalar field variations Δ are always associated to (at least) an infinite tower of states becoming exponentially light" $m \sim m_0 e^{-\lambda \Delta} \qquad \Delta o \infty$

$$\Lambda_{QG} = \frac{M_P}{\sqrt{N}}$$

quantum gravity cut-off = "**species scale**"

Dvali 2007 Dvali, Redi 2007 "Infinite scalar field variations Δ are always associated to (at least) an infinite tower of states becoming exponentially light" $m \sim m_0 e^{-\lambda \Delta} \qquad \Delta \to \infty$

see talks by Herraez, Castellano, Cribiori, D. Lüst, Wiesner, Valenzuela quantum gravity cut-off = "species scale"

Dvali 2007 Dvali, Redi 2007

SDC-Constraints on Cosmic Acceleration

Outline of the talk

Constraint on the total scalar field range

 $\Delta \lesssim -\log H$

MS, Valenzuela 2018

MS 2019

Outline of the talk

Constraint on the total scalar field range	>	$\Delta \lesssim -\log H$
MS, Valenzuela 2018		
MS 2019		
Constraint on field trajectories		Ω ($ - $)

Freigang, Lüst, Nian, MS 2023

 $\frac{\Omega}{H} < \mathcal{O}\left(\sqrt{\epsilon}\right)$

Quantum Gravity Constraints on Cosmic Acceleration

Outline of the talk

Constraint on the total scalar field range ---->

MS, Valenzuela 2018

MS 2019

Constraint on field trajectories

Freigang, Lüst, Nian, MS 2023

Constraints on particle production

Lüst, Masias, Pieroni, Scalisi - work in progress

---->

Ω	$< O(\sqrt{c})$
\overline{H}	< O(VE)

 $\Delta \lesssim -\log H$

Quantum Gravity Constraints on Cosmic Acceleration

Constraint on the total scalar field range	>	$\Delta \lesssim -\log H$
MS, Valenzuela 2018		
MS 2019		

Constraint on field trajectories		
	>	
Freigang, Lüst, Nian, MS 2023		

Constraints on particle production

---->

Lüst, Masias, Pieroni, Scalisi - work in progress

See **Terada**'s talk on **Thursday** about GC's constraint on inflationary models!

Constraint on the Field Range

 $\Delta \lesssim -\log H$

Quantum Gravity Constraints on Cosmic Acceleration

Marco Scalisi | MPP

Universal upper bound

MS, Valenzuela 2018

 $H < \Lambda_{QG} \le M_{\rm P} \ e^{-\gamma \Delta}$

consistency of EFT implication of the SDC

MS, Valenzuela 2018

Universal upper bound

consistency of EFT implication of the SDC

MS, Valenzuela 2018

Universal upper bound

upper bound on field displacement

Universal upper bound

Universal upper bound

 $H < \Lambda_{QG} \le M_{\rm P} \ e^{-\gamma \Delta}$

MS, Valenzuela 2018

see also

Etheredge, Heidenreich, Kaya, Qiu, Rudelius 2022 van de Heisteeg, Vafa, Wiesner, Wu 2023

Constraints on Field Trajectories

 $\frac{\Omega}{H} < \mathcal{O}\left(\sqrt{\epsilon}\right)$

 T^i = normalized tangent vector

 $\partial_i \log m$ = gradient of the tower mass

ł

if the gradient of the mass is aligned along geodesics (most of string theory examples)

$$\checkmark \lambda = - |\partial \log m| \cos \theta = \lambda_g \cos \theta \qquad (1)$$

 θ = angle between the trajectory and the geodesic

 λ_g = decay rate for geodesics= highest value of λ

 $\lambda = \lambda_g \cos \theta$

 $\lambda = 0$

$$\lambda_0 = \lambda_g \cos \theta_0$$

Scalar fields in **Minkowski space time**

$$\mathscr{L} = -\frac{1}{2} \eta^{\mu\nu} G_{ab} \ \partial_{\mu} \Phi^{a} \partial_{\nu} \Phi^{b}$$
$$\checkmark$$
$$\ddot{\Phi}^{a} + \Gamma^{a}_{bc} \dot{\Phi}^{b} \dot{\Phi}^{c} = 0$$

EoM = geodesic equation scalar fields will move along geodesics

Multi-field setup and trajectories in moduli space

Scalar fields in **Minkowski space time**

$$\mathscr{L} = -\frac{1}{2} \eta^{\mu\nu} G_{ab} \ \partial_{\mu} \Phi^{a} \partial_{\nu} \Phi^{b}$$
$$\ddot{\Phi}^{a} + \Gamma^{a}_{bc} \dot{\Phi}^{b} \dot{\Phi}^{c} = 0$$
$$D_{t} A^{a} \equiv \dot{A}^{a} + \Gamma^{a}_{bc} A^{b} \dot{\Phi}^{c}$$
$$\downarrow$$
$$D_{t} \dot{\Phi}^{a} = 0$$

tangent vector normal vector
Scalar fields in Minkowski space time

$$\mathscr{L} = -\frac{1}{2} \eta^{\mu\nu} G_{ab} \ \partial_{\mu} \Phi^{a} \partial_{\nu} \Phi^{b}$$
$$\overset{\bullet}{\Phi}^{a} + \Gamma^{a}_{bc} \dot{\Phi}^{b} \dot{\Phi}^{c} = 0$$
$$D_{t} A^{a} \equiv \dot{A}^{a} + \Gamma^{a}_{bc} A^{b} \dot{\Phi}^{c}$$
$$\overset{\bullet}{\Psi}$$
$$D_{t} \dot{\Phi}^{a} = 0$$

tangent vector normal vector

$$\dot{\Phi} = \sqrt{G_{ab}} \dot{\Phi}^a \dot{\Phi}^b$$

speed

turning rate

 $\Omega = |D_t T|$

 $\ddot{\Phi} = 0$ tangent projection normal projection

 $\Omega \dot{\Phi} = 0$

Scalar fields in Minkowski space time

$$\mathscr{L} = -\frac{1}{2} \eta^{\mu\nu} G_{ab} \partial_{\mu} \Phi^{a} \partial_{\nu} \Phi^{b}$$
$$\ddot{\Phi}^{a} + \Gamma^{a}_{bc} \dot{\Phi}^{b} \dot{\Phi}^{c} = 0$$
$$D_{t} A^{a} \equiv \dot{A}^{a} + \Gamma^{a}_{bc} A^{b} \dot{\Phi}^{c}$$
$$\checkmark$$
$$D_{t} \dot{\Phi}^{a} = 0$$

tangent vector normal vector

 $\dot{\Phi} = \sqrt{G_{ab}} \dot{\Phi}^a \dot{\Phi}^b \qquad \Omega = |D_t T|$

speed

turning rate

 $\ddot{\Phi} = 0$

 $\Omega = 0$

tangent projection normal projection

$$\mathscr{L} = -\frac{1}{2} \eta^{\mu\nu} G_{ab} \ \partial_{\mu} \Phi^{a} \partial_{\nu} \Phi^{b} - V(\Phi^{a})$$

$$\ddot{\Phi} + V_T = 0$$
 $\Omega \dot{\Phi} = V_N$
 $V_T \equiv T^a V_a$ $V_N \equiv N^a V_a$

$$\mathscr{L} = -\frac{1}{2} \eta^{\mu\nu} G_{ab} \ \partial_{\mu} \Phi^{a} \partial_{\nu} \Phi^{b} - V(\Phi^{a})$$
$$\ddot{\Phi} + V_{T} = 0 \qquad \Omega \dot{\Phi} = V_{N}$$
$$V_{T} \equiv T^{a} V_{a} \qquad V_{N} \equiv N^{a} V_{a}$$

Scalar fields with potential in FLRW space time

$$\mathscr{L} = \frac{1}{2} R - \frac{1}{2} g^{\mu\nu} G_{ab} \partial_{\mu} \Phi^{a} \partial_{\nu} \Phi^{b} - V(\Phi^{a})$$
$$\ddot{\Phi} + 3H\dot{\Phi} + V_{T} = 0 \qquad \Omega \dot{\Phi} = V_{N}$$

$$\epsilon \equiv -\frac{\dot{H}}{H^2} = \frac{\dot{\Phi}^2}{2H^2}$$
 acceleration $\eta \equiv \frac{\dot{\epsilon}}{H\epsilon} = 2\epsilon + 2\frac{\ddot{\Phi}}{H\dot{\Phi}}$ eta parameter

$$\frac{|\nabla V|^2}{V^2} = 2\epsilon \left(\left(1 + \frac{\eta}{2(3-\epsilon)} \right)^2 + \frac{\Omega^2}{H^2(3-\epsilon)^2} \right)$$

$$\epsilon \equiv -\frac{\dot{H}}{H^2} = \frac{\dot{\Phi}^2}{2H^2}$$
 acceleration $\eta \equiv \frac{\dot{\epsilon}}{H\epsilon} = 2\epsilon + 2\frac{\ddot{\Phi}}{H\dot{\Phi}}$ eta parameter

$$\frac{|\nabla V|^2}{V^2} = 2\epsilon \left(\left(1 + \frac{\eta}{2(3-\epsilon)} \right)^2 + \frac{\Omega^2}{H^2(3-\epsilon)^2} \right)$$

$$\epsilon < 1$$

$$\frac{|\nabla V|^2}{V^2} \simeq 2\epsilon \left(\left(1 + \frac{\eta}{6} \right)^2 + \frac{\Omega^2}{9H^2} \right)$$

Example: scaling cosmologies see talks by Shiu and Tonioni

Quantum Gravity Constraints on Cosmic Acceleration

$$\mathrm{d}\Delta^2 = G_{ab} \, \mathrm{d}\Phi^a \mathrm{d}\Phi^b = \frac{n^2}{s^2} \left(\mathrm{d}s^2 + \mathrm{d}\phi^2 \right)$$

$$\mathrm{d}\Delta^2 = G_{ab} \,\mathrm{d}\Phi^a \mathrm{d}\Phi^b = \frac{n^2}{s^2} \left(\mathrm{d}s^2 + \mathrm{d}\phi^2\right)$$

$$\mathrm{d}\Delta^2 = G_{ab} \,\mathrm{d}\Phi^a \mathrm{d}\Phi^b = \frac{n^2}{s^2} \left(\mathrm{d}s^2 + \mathrm{d}\phi^2\right)$$

1 hyperbolic plane

$$d\Delta^{2} = G_{ab} d\Phi^{a} d\Phi^{b} = \frac{n^{2}}{s^{2}} (ds^{2} + d\phi^{2})$$

$$\beta = \frac{d\phi}{ds} = \tan \theta = \text{const} \quad \text{trajectory}$$

$$\Omega = \frac{n}{s} \sqrt{(D_{t}T^{s})^{2} + (D_{t}T^{\phi})^{2}} = \frac{|\sin \theta|}{n} \dot{\Phi}$$

$$\dot{\Phi}^{2} = 2eH^{2}$$

$$\Omega = \frac{|\sin \theta|}{n} \sqrt{2e}$$

$$\dot{\Phi}^{2} = 2eH^{2}$$

Aragam, Chiovoloni, Paban, Rosati. Zavala 2021

$$d\Delta^{2} = G_{ab} d\Phi^{a} d\Phi^{b} = \frac{n^{2}}{s^{2}} (ds^{2} + d\phi^{2})$$

$$\beta = \frac{d\phi}{ds} = \tan \theta = \text{const} \quad \text{trajectory}$$

$$\Omega = \frac{n}{s} \sqrt{(D_{t}T^{s})^{2} + (D_{t}T^{\phi})^{2}} = \frac{|\sin \theta|}{n} \dot{\Phi}$$

$$\frac{\Phi^{2} = 2eH^{2}}{H} = \frac{|\sin \theta|}{n} \sqrt{2e}$$

$$\frac{\Omega}{H} = F(\theta, R)\sqrt{e} \qquad F(\theta, R) = |\sin \theta| \sqrt{-R} \qquad F < |\sin \theta_{0}| \sqrt{-R}$$

Product of 2 hyperbolic planes

$$d\Delta^{2} = \frac{n^{2}}{s^{2}} \left(ds^{2} + d\phi^{2} \right) + \frac{m^{2}}{u^{2}} \left(du^{2} + d\psi^{2} \right)$$

Product of N hyperbolic planes

$$d\Delta^{2} = \sum_{i=1}^{N} \frac{n_{i}^{2}}{s_{i}^{2}} \left(ds_{i}^{2} + d\phi_{i}^{2} \right)$$

	See
Guoen N	lian's parallel in
Oŋ	Thursday
	sudy!

$$\theta(s) \le \theta_0 \qquad < \cdots > \quad \lambda(s) \ge \lambda_0$$

Asymptotic expansion of θ

$$\theta(s) = \theta_{\infty} + \sum_{n>0} \frac{c_n}{s^n}$$

Asymptotic expansion of θ

Marco Scalisi | MPP

Constraints on **Particle Production**

corrections $\propto \left(\frac{H}{\Lambda_{\rm QG}}\right)^3$

Marco Scalisi | MPP

▶ Inflaton-gauge fields coupling Anber, Sorbo 2010

$$\mathcal{L} = -\frac{1}{2}(\partial \varphi)^2 - V(\varphi) - \varphi \ F\tilde{F}$$

Inflaton-scalar fields coupling Green, Horn, Senatore, Silverstein 2009

"Trapped inflation"

$$\mathscr{L} = -\frac{1}{2}(\partial\varphi)^2 - V(\varphi) - \frac{1}{2}\sum_n \left[(\partial\chi_n)^2 - g^2(\varphi - \varphi_{0n})^2\chi_n^2\right]$$

$$P_{\zeta}(k) = P_{\zeta}^{h} + P_{\zeta}^{s} = \frac{H^{4}}{(2\pi)^{2} \dot{\varphi}_{0}^{2}} \left(1 + 0.0025 \frac{H^{3}}{\Lambda_{QG}^{3}} \lambda^{2}\right)$$

EFT reasoning would suggest first correction as $\Lambda_{IR}/\Lambda_{UV}$

Non Gaussianities

$$f_{NL,equil} \simeq 0.0007 \frac{\lambda \dot{\varphi}}{H} (\lambda M_{\rm P})^2 \left[1 + 0.0025 (\lambda M_{\rm P})^2 \left(\frac{H}{\Lambda_{\rm QG}}\right)^3 \right]^{-2} \left(\frac{H}{\Lambda_{\rm QG}}\right)^3$$

Tensor-to-scalar ratio

$$r = 9.2 \cdot 10^7 \frac{H^2}{M_{\rm P}^2} \left[1 + 0.17 \left(\frac{H}{\Lambda_{\rm QG}} \right)^3 \right]$$

Scalar spectral tilt

$$n_{s} - 1 = (-2\epsilon - \eta) \left[1 - \left(\frac{\gamma M_{\rm P}}{20}\right)^{2} \left(\frac{H}{\Lambda_{QG}}\right)^{3} \right] - \left(5\epsilon + \sqrt{2\epsilon}\gamma M_{\rm P}\right) \left(\frac{\gamma M_{\rm P}}{20}\right)^{2} \left(\frac{H}{\Lambda_{QG}}\right)^{3}$$

We have shown that the Swampland Distance Conjecture alone sets very stringent constraints on a variety of aspects of cosmic acceleration

We have shown that the Swampland Distance Conjecture alone sets very stringent constraints on a variety of aspects of cosmic acceleration

▶ We have provided **3 explicit examples** of such **quantum gravity constraints**:

We have shown that the Swampland Distance Conjecture alone sets very stringent constraints on a variety of aspects of cosmic acceleration

▶ We have provided **3 explicit examples** of such **quantum gravity constraints**:

1

We have shown that the Swampland Distance Conjecture alone sets very stringent constraints on a variety of aspects of cosmic acceleration

▶ We have provided **3 explicit examples** of such **quantum gravity constraints**:

We have shown that the Swampland Distance Conjecture alone sets very stringent constraints on a variety of aspects of cosmic acceleration

▶ We have provided **3 explicit examples** of such **quantum gravity constraints**:

Conclusions

- We have shown that the Swampland Distance Conjecture alone sets very stringent constraints on a variety of aspects of cosmic acceleration
- ▶ We have provided **3 explicit examples** of such **quantum gravity constraints**:

thanks!

$$\Delta \leq \frac{1}{\lambda} \left[\frac{m_0}{H} \frac{1}{\sqrt{s(s-1)}} \right]$$

one-to-one correspondence between a *single* HS state and a specific maximum value for the inflaton range

infinite tower of all spins incompatible with inflation

MS 2019

Asymptotic acceleration and **bound on the turning rate**

1 hyperbolic plane

$$d\Delta^{2} = G_{ab} d\Phi^{a} d\Phi^{b} = \frac{n^{2}}{s^{2}} (ds^{2} + d\phi^{2})$$

$$\beta = \frac{d\phi}{ds} = \tan \theta = \text{const} \quad \text{trajectory}$$

$$\Omega = \frac{n}{s} \sqrt{(D_{t}T^{s})^{2} + (D_{t}T^{\phi})^{2}} = \frac{|\sin \theta|}{n} \dot{\Phi}$$

$$\frac{\phi^{2} = 2cH^{2}}{H} = \frac{|\sin \theta|}{n} \sqrt{2c}$$

$$\frac{\Omega}{H} < \frac{\sqrt{\lambda_{0}^{2} - \lambda_{g}^{2}}}{\lambda_{g}} \sqrt{Rc}$$

Moving away from the boundary of moduli space

Asymptotic expansion of θ $\theta(s) = \theta_{\infty} + \sum_{n>0} \frac{c_n}{s^n}$ consider just leading $\theta(s) \leq \theta_0$ non-constant term $\frac{c_k}{c^k} \le \theta_0 - \theta_\infty \le 2\theta_0$ $\theta(s) \simeq \theta_{\infty} + \frac{c_k}{s^k}$ $\left|\frac{\dot{\theta}(s)}{H}\right| \le 2\sqrt{2} \ \frac{k}{n} \ \theta_0 \ \sqrt{\epsilon}$ $\left|\dot{\theta}(s)\right| \approx \frac{k}{n} \frac{c_k}{s^k} \cos \theta(s) \ \dot{\Phi} \le \frac{2k}{n} \theta_0 \cos \theta(s) \ \dot{\Phi}$ ----- $\frac{\Omega}{H} \simeq \sqrt{\epsilon}$

SDC and **particle production**

$$\mathscr{L} = -\frac{1}{2}(\partial\varphi)^{2} - V(\varphi) - \frac{1}{2}\sum_{i} \left[(\partial\chi_{i})^{2} - m_{n}^{2}e^{-2\lambda\varphi}\chi_{n}^{2} \right]$$
mass of the SDC tower use conformal time $t \to \tau$
rescale modes $\chi_{n} \to \xi_{n}/a$

Equation of motion for the Fourier modes

Two-point correlation function

Multi-field cosmic acceleration

trajectory

(axion-saxion backreaction in String Theory)

Blumenhagen, Font, Fuchs, Herschmann, Plauschinn 2015 Baume, Palti 2016 Valenzuela 2016 Blumenhagen 2018

trajectory

(axion-saxion backreaction in String Theory)

Blumenhagen, Font, Fuchs, Herschmann, Plauschinn 2015 Baume, Palti 2016 Valenzuela 2016 Blumenhagen 2018

trajectory

(axion-saxion backreaction in String Theory)

Blumenhagen, Font, Fuchs, Herschmann, Plauschinn 2015 Baume, Palti 2016 Valenzuela 2016 Blumenhagen 2018

 $\lambda \to \lambda_{eff} = \frac{\lambda a}{\sqrt{1 + a^2}}$

Quantum Gravity Constraints on Cosmic Acceleration

