Non-supersymmetric heterotic strings: gauge symmetry enhancement and one-loop cosmological constant in toroidal compactifications

> Mariana Graña CEA / Saclay France

Work in collaboration with

Bernardo Fraiman, Hector Parra De Freitas, Savdeep Sethi arXiv: 2307.xxxxx

see also Bernardo's talk on Thursday

String phenomenology 2023, Daejeon

- No need to motivate SUSY breaking at high scale
- No need to motivate dS vacua

- No need to motivate SUSY breaking at high scale
- No need to motivate dS vacua (at one-loop)
- Both are possible in toroidal compactifications of non SUSY heterotic string!

- No need to motivate SUSY breaking at high scale
- No need to motivate dS vacua (at one-loop)
- Both are possible in toroidal compactifications of non SUSY heterotic string!

Dixon, Harvey 86

• Non SUSY $O(16) \times O(16)$ heterotic Alvarez-Gaume, Ginsparg, Moore, Vafa 86 -one of the three non SUSY tachyon-free 10d theories -the only tachyon-free heterotic one

- No need to motivate SUSY breaking at high scale
- No need to motivate dS vacua (at one-loop)
- Both are possible in toroidal compactifications of non SUSY heterotic string!
- Non SUSY O(16) x O(16) heterotic Alvarez-Gaume -one of the three non SUSY tachyon-free 10d theories -the only tachyon-free heterotic one
- Runaway one-loop potential for the dilaton
 - -Can be stabilized by fluxes, giving rise to AdS solutions
- Recent AdS₃ x S³ x S³ x S¹ solution

Alvarez-Gaume, Ginsparg, Moore, Vafa 86 Dixon, Harvey 86

Baykara, Robbins, Sethi 22

- No need to motivate SUSY breaking at high scale
- No need to motivate dS vacua (at one-loop)
- Both are possible in toroidal compactifications of non SUSY heterotic string!
- Non SUSY O(16) x O(16) heterotic Alvarez-Gaume,
 -one of the three non SUSY tachyon-free 10d theories
 -the only tachyon-free heterotic one
- Runaway one-loop potential for the dilaton

-Can be stabilized by fluxes, giving rise to AdS solutions

• Recent AdS₃ x S³ x S³ x S¹ solution

• Here we'll look at T^d compactifications (and in particular S¹)

Alvarez-Gaume, Ginsparg, Moore, Vafa 86 Dixon, Harvey 86

Baykara, Robbins, Sethi 22

 Rich phenomenon of gauge symmetry enhancement at special points in mod space

-for SUSY heterotic: full classification of gauge symmetries for $d \leq 4$

full rank (d + 16)Fraiman, M.G., Nuñez 18
De Freitas, Font, Fraiman, M.G., Nuñez 20reduced rank (d + 8) (CHL)De Freitas, Font, Fraiman, M.G., Nuñez 21further rank reductionDe Freitas, Fraiman, 21 & 22

 Rich phenomenon of gauge symmetry enhancement at special points in mod space

-for SUSY heterotic: full classification of gauge symmetries for $d \leq 4$

full rank (d + 16)Fraiman, M.G., Nuñez 18
De Freitas, Font, Fraiman, M.G., Nuñez 20reduced rank (d + 8) (CHL)De Freitas, Font, Fraiman, M.G., Nuñez 21further rank reductionDe Freitas, Fraiman, 21 & 22

-here: full classification for non-SUSY d = 1

 Rich phenomenon of gauge symmetry enhancement at special points in mod space

-for SUSY heterotic: full classification of gauge symmetries for $d \leq 4$

full rank (d + 16)Fraiman, M.G., Nuñez 18
De Freitas, Font, Fraiman, M.G., Nuñez 20reduced rank (d + 8) (CHL)De Freitas, Font, Fraiman, M.G., Nuñez 21further rank reductionDe Freitas, Fraiman, 21 & 22

-here: full classification for non-SUSY d = 1

• In SUSY d = 1 case: all gauge groups, point(s) in mod space & fundamental domain from Extended Dynkin Diagram Goddard, Olive 85

Cachazo, Vafa 00

 Rich phenomenon of gauge symmetry enhancement at special points in mod space

-for SUSY heterotic: full classification of gauge symmetries for $d \leq 4$

full rank (d + 16)Fraiman, M.G., Nuñez 18
De Freitas, Font, Fraiman, M.G., Nuñez 20reduced rank (d + 8) (CHL)De Freitas, Font, Fraiman, M.G., Nuñez 21further rank reductionDe Freitas, Fraiman, 21 & 22

-here: full classification for non-SUSY d = 1

• In SUSY d = 1 case: all gauge groups, point(s) in mod space & fundamental domain from Extended Dynkin Diagram Goddard, Olive 85

Cachazo, Vafa 00

• Same for non SUSY?

• Absence of supersymmetry: one-loop potential for the moduli (for S^1 : radius and Wilson line)

- Absence of supersymmetry: one-loop potential for the moduli (for S^1 : radius and Wilson line)
- Points of maximal enhancement (non-Abelian group of rank d + 16) -extrema of potential (at all loops!) Ginsparg, Vafa 87

- Absence of supersymmetry: one-loop potential for the moduli (for S^1 : radius and Wilson line)
- Points of maximal enhancement (non-Abelian group of rank d + 16) -extrema of potential (at all loops!) -the simplest one in d = 1 $[O(16) \times O(16) \times SU(2)]$ (R = 1, A = 0): positive cosmological constant at one loop

- Absence of supersymmetry: one-loop potential for the moduli (for S^1 : radius and Wilson line)
- Points of maximal enhancement (non-Abelian group of rank d + 16) -extrema of potential (at all loops!) -the simplest one in d = 1 $[O(16) \times O(16) \times SU(2)]$ (R = 1, A = 0): positive cosmological constant at one loop
- Many other extremal points: all positive c.c.?

- Absence of supersymmetry: one-loop potential for the moduli (for S^1 : radius and Wilson line)
- Points of maximal enhancement (non-Abelian group of rank d + 16) -extrema of potential (at all loops!) -the simplest one in d = 1 $[O(16) \times O(16) \times SU(2)]$ (R = 1, A = 0): positive cosmological constant at one loop
- Many other extremal points: all positive c.c.?
- Local minima, maxima or saddle points?

Non-susy heterotic string: bosonic formulation

• Start from the $E_8 \times E_8$ (susy) heterotic $\pi \in \Gamma_8 \oplus \Gamma_8$ heterotic momenta

- quotient by
$$\beta = \pm (-1)^{2 \pi \cdot \delta}$$

(breaks susy) R

 $\delta = (1,0^7; 1,0^7)$ order 2 shift $(2\delta \in \Gamma_8 \oplus \Gamma_8)$

Non-susy heterotic string: bosonic formulation

- Start from the $E_8 \times E_8$ (susy) heterotic $\pi \in \Gamma_8 \oplus \Gamma_8$ heterotic momenta
- quotient by $\beta = \pm (-1)^{2\pi \cdot \delta}$ (breaks susy) R NS: $\pi \cdot \hat{S}$

 $\delta = (1,0^7;1,0^7)$ order 2 shift ($2\delta \in \Gamma_8 \oplus \Gamma_8$)

NS: $\pi \cdot \delta \in \mathbb{Z} \equiv \Gamma^+ = \{(0; 0), (s; s)\}$

R: $\pi \cdot \delta \in \mathbb{Z} + \frac{1}{2} \equiv \Gamma^- = \{(0; s), (s; 0)\}$

Non-susy heterotic string: bosonic formulation

- Start from the $E_8 \times E_8$ (susy) heterotic $\pi \in \Gamma_8 \oplus \Gamma_8$ heterotic momenta
- quotient by $\beta = \pm (-1)^{2\pi \cdot \delta}$ (breaks susy) R

 $\delta = (1,0^7; 1,0^7)$ order 2 shift $(2\delta \in \Gamma_8 \oplus \Gamma_8)$

- NS: $\pi \cdot \delta \in \mathbb{Z} \equiv \Gamma^+ = \{(0;0), (s;s)\}$
- R: $\pi \cdot \delta \in \mathbb{Z} + \frac{1}{2} \equiv \Gamma^{-} = \{(0; s), (s; 0)\}$
- add twisted sector

R: $\Gamma^+ + \delta = \{(v; v), (c; c)\}$ NS: $\Gamma^- + \delta = \{(v; c), (c; v)\}$

• Four sectors

 $\begin{array}{ll} - \text{ untwisted sectors} & \Gamma_v = \Gamma^+ = \{(0;0),(s;s)\} \\ & \Gamma_s = \Gamma^- = \{(0;s),(s;0)\} \\ - \text{ twisted sectors} & \Gamma_c = \Gamma^+ + \delta = \{(v;v),(c;c)\} \\ & \Gamma_0 = \Gamma^- + \delta = \{(v;c),(c;v)\} \end{array}$

• Four sectors

- untwisted sectors $\Gamma_v = \Gamma^+ = \{(0; 0), (s; s)\}$

$$\Gamma_{s} = \Gamma^{-} = \{(0; s), (s; 0)\}$$

- twisted sectors $\Gamma_c = \Gamma^+ + \delta = \{(v; v), (c; c)\}$

 $\Gamma_c = \Gamma + \delta = \{(v; c), (c; v)\}$ vectors with odd norm!

• Four sectors

- untwisted sectors $\Gamma_v = \Gamma^+ = \{(0; 0), (s; s)\}$

$$\Gamma_s = \Gamma^- = \{(0; s), (s; 0)\}$$

- twisted sectors $\Gamma_c = \Gamma^+ + \delta = \{(v; v), (c; c)\}$

 $\Gamma_0 = \Gamma^- + \delta = \{(v; c), (c; v)\}$ vectors with odd norm!

• Charges are in $\Upsilon_{16} \equiv \Gamma_v \oplus \Gamma_s \oplus \Gamma_c \oplus \Gamma_0$ not even, not self-dual

• Four sectors

$$\Gamma_s = \Gamma^- = \{(0; s), (s; 0)\}$$

- twisted sectors $\Gamma_c = \Gamma^+ + \delta = \{(v; v), (c; c)\}$ $\Gamma_0 = \Gamma^- + \delta = \{(v; c), (c; v)\}$ vectors with odd norm!
- Charges are in $\Upsilon_{16} \equiv \Gamma_v \oplus \Gamma_s \oplus \Gamma_c \oplus \Gamma_0$ not even, not self-dual
- Massless states $SO(8)_R \times O(16) \times O(16)$

$$\begin{array}{l} 8_{\nu L} \otimes \otimes \left(8_{\nu}, 1 ; 1 \right) & \text{metric, B-field, dilaton} \\ \left(8_{\nu}, 120 ; 1 \right) \\ \left(8_{\nu}, 1 ; 120 \right) \end{array} \right\} & \text{gauge fields} \\ \text{of O(16) x O(16)} \end{array}$$

• Four sectors

$$\Gamma_s = \Gamma^- = \{(0; s), (s; 0)\}$$

- twisted sectors $\Gamma_c = \Gamma^+ + \delta = \{(v; v), (c; c)\}$ $\Gamma_0 = \Gamma^- + \delta = \{(v; c), (c; v)\}$ vectors with odd norm!
- Charges are in $\Upsilon_{16} \equiv \Gamma_v \oplus \Gamma_s \oplus \Gamma_c \oplus \Gamma_0$ not even, not self-dual
- Massless states $SO(8)_R \times O(16) \times O(16)$

$$\begin{array}{l} (8_{\nu L} \otimes) & (8_{\nu}, 1 ; 1 ; 1) & \text{metric, B-field, dilaton} \\ & (8_{\nu}, 120 ; 1) \\ & (8_{\nu}, 1 ; 120) \end{array} \right\} & \text{gauge fields} \\ & (8_{\nu}, 1 ; 120) \end{array} \right\} & \text{of O(16) } \times \text{O(16)} \\ & (8_{\nu}, 128 ; 1) \\ & (8_{\nu}, 1 ; 128) \end{array} \right\} & \text{``gauginos''} \end{array}$$

• Four sectors

$$\Gamma_s = \Gamma^- = \{(0; s), (s; 0)\}$$

- twisted sectors $\Gamma_c = \Gamma^+ + \delta = \{(v; v), (c; c)\}$ $\Gamma_0 = \Gamma^- + \delta = \{(v; c), (c; v)\}$ vectors with odd norm!
- Charges are in $\Upsilon_{16} \equiv \Gamma_v \oplus \Gamma_s \oplus \Gamma_c \oplus \Gamma_0$ not even, not self-dual
- Massless states $SO(8)_R \times O(16) \times O(16)$

$$\begin{array}{l} (8_{\nu L} \otimes) & (8_{\nu}, 1 ; 1 ; 1) & \text{metric, B-field, dilaton} \\ & (8_{\nu}, 120 ; 1) \\ & (8_{\nu}, 1 ; 120) \end{array} \right\} & \text{gauge fields} \\ & (8_{\nu}, 1 ; 120) \end{array} \\ & (0(16) \times O(16) \\ & (8_{\sigma}, 128 ; 1) \\ & (8_{\sigma}, 1 ; 128) \end{array} \right\} & \text{``gauginos''} \\ & (8_{c}, 16 ; 16) \end{array}$$

• Four sectors

$$\Gamma_s = \Gamma^- = \{(0; s), (s; 0)\}$$

- twisted sectors $\Gamma_c = \Gamma^+ + \delta = \{(v; v), (c; c)\}$ $\Gamma_0 = \Gamma^- + \delta = \{(v; c), (c; v)\}$ vectors with odd norm!
- Charges are in $\Upsilon_{16} \equiv \Gamma_v \oplus \Gamma_s \oplus \Gamma_c \oplus \Gamma_0$ not even, not self-dual
- Massless states $SO(8)_R \times O(16) \times O(16)$

$$(8_{vL}\otimes) (8_{v}, 1 ; 1) \quad \text{metric, B-field, dilaton}
(8_{v}, 120; 1)
(8_{v}, 1 ; 120) \\ (8_{v}, 1 ; 120) \\ (8_{s}, 128; 1) \\ (8_{s}, 1 ; 128) \\ (8_{s}, 1 ; 128) \\ (8_{c}, 16 ; 16) \\ (8_{c}, 16 ;$$

• Moduli space: R, A^I : radius and 16 components of Wilson line

$$\mathcal{M} = \frac{O(17, 1, \mathbb{R})}{O(17, \mathbb{R})} / \text{discrete symmetries}$$

• Moduli space: R, A^I : radius and 16 components of Wilson line

$$\mathcal{M} = \frac{O(17, 1, \mathbb{R})}{O(17, \mathbb{R})} \middle/$$
discrete symmetries

• Quantised charges: Non-susy heterotic momenta + momentum & winding on S^1

 $(\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{1,1}$

• Moduli space: R, A^I : radius and 16 components of Wilson line

$$\mathcal{M} = \frac{O(17, 1, \mathbb{R})}{O(17, \mathbb{R})} / \text{discrete symmetries}$$

• Quantised charges: Non-susy heterotic momenta + momentum & winding on S^1

$$(\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{1,1} \qquad \qquad \Upsilon_{16} \equiv \Upsilon_{16}^{(0)} \sim so_{16} \oplus so_{16} \\ \Upsilon_{16}^{(1)} \sim su_{16} \oplus u_1 \\ \Upsilon_{16}^{(2)} \sim 2 (e_7 \oplus su_2) \\ \Upsilon_{16}^{(3)} \sim so_8 \oplus so_{24} \end{cases}$$

$$\equiv \Upsilon_{16}^{(0)} \sim so_{16} \oplus so_{16}$$
$$\Upsilon_{16}^{(1)} \sim su_{16} \oplus u_{1}$$
$$\Upsilon_{16}^{(2)} \sim 2 (e_7 \oplus su_2)$$
$$\Upsilon_{16}^{(3)} \sim so_8 \oplus so_{24}$$
$$\Upsilon_{16}^{(4)} \sim e_8 \oplus so_{16}$$
$$\Upsilon_{16}^{(5)} \sim so_{32}$$

 $(\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{11}$

 $\Gamma_{1,1} \bigoplus \Upsilon_{16}^{(p)} \simeq \Gamma_{1,1} \bigoplus \Upsilon_{16}^{(q)}, \quad \forall p, q$

Lattice isomorphisms

• Moduli space: R, A^I : radius and 16 components of Wilson line

$$\mathcal{M} = \frac{O(17, 1, \mathbb{R})}{O(17, \mathbb{R})} / \text{discrete symmetries}$$

• Quantised charges: Non-susy heterotic momenta + momentum & winding on S^1

 $\Upsilon_{16} \equiv \Upsilon_{16}^{(0)} \sim so_{16} \oplus so_{16}$ $\Upsilon_{16}^{(1)} \sim su_{16} \oplus u_1$ $\Upsilon_{16}^{(2)} \sim 2 (e_7 \oplus su_2)$ $\Upsilon_{16}^{(3)} \sim so_8 \oplus so_{24}$ $\Upsilon_{16}^{(4)} \sim e_8 \oplus so_{16}$ $\Upsilon_{16}^{(5)} \sim so_{32}$

• Moduli space: R, A^I : radius and 16 components of Wilson line

$$\mathcal{M} = \frac{O(17, 1, \mathbb{R})}{O(17, \mathbb{R})} \middle/$$
discrete symmetries

• Quantised charges: Non-susy heterotic momenta + momentum & winding on S^1

All 6 non-susy heterotic theories (of rank 16) are dual upon circle compactification!

• $Z = (\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{1,1}$

• $Z = (\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{1,1}$

$$P_L^2 - p_R^2 = \pi^2 + 2 n \,\omega = \langle Z, Z \rangle$$

 $p_{L,16} = \pi + A\omega$

$$p_L = \frac{1}{\sqrt{2R}} \left[n - \left(-R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$
$$p_R = \frac{1}{\sqrt{2R}} \left[n - \left(R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$

$$p_{L,16} = \pi + A\omega$$

• $Z = (\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{1,1}$ $P_L^2 - p_R^2 = \pi^2 + 2n\omega = \langle Z, Z \rangle$

$$p_L = \frac{1}{\sqrt{2R}} \left[n - \left(-R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$
$$p_R = \frac{1}{\sqrt{2R}} \left[n - \left(R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$

• Mass and level-matching conditions (same as in susy theory)

$$\frac{1}{4}m^2 = \frac{1}{2}P_L^2 + N - 1 = \frac{1}{2}p_R^2 + \bar{N} - \begin{cases} \frac{1}{2} & \text{NS sector} \\ 0 & \text{R sector} \end{cases}$$

$$p_{L,16} = \pi + A\omega$$

• $Z = (\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{1,1}$ $P_L^2 - p_R^2 = \pi^2 + 2n\omega = \langle Z, Z \rangle$

$$p_L = \frac{1}{\sqrt{2}R} \left[n - \left(-R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$
$$p_R = \frac{1}{\sqrt{2}R} \left[n - \left(R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$

• Mass and level-matching conditions (same as in susy theory)

$$\frac{1}{4}m^2 = \frac{1}{2}P_L^2 + N - 1 = \frac{1}{2}p_R^2 + \bar{N} - \begin{cases} \frac{1}{2} & \text{NS sector} \\ 0 & \text{R sector} \end{cases}$$

• Massless states (with $P \neq 0$)

$$\begin{split} P_L^2 &= 2 \ ; \ p_R^2 = 0 \ , \ \begin{cases} \bar{N} = \frac{1}{2} & \text{NS sector} \quad P \in \Gamma_v \\ \bar{N} = 0 & \text{R sector} & P \in \Gamma_s \end{cases} & \text{gauge fields} \\ P \in \Gamma_s & \text{``gauginos'' (spinors of pos chirality)} \\ P_L^2 &= 2 \ ; \ p_R^2 = 0 \ , \quad \bar{N} = 0 & \text{R sector} & P \in \Gamma_c \end{cases} & \text{spinors of negative chirality} \end{split}$$

$$p_{L,16} = \pi + A\omega$$

• $Z = (\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{1,1}$ $P_L^2 - p_R^2 = \pi^2 + 2n\omega = \langle Z, Z \rangle$

$$p_L = \frac{1}{\sqrt{2}R} \left[n - \left(-R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$
$$p_R = \frac{1}{\sqrt{2}R} \left[n - \left(R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$

• Mass and level-matching conditions (same as in susy theory)

$$\frac{1}{4}m^2 = \frac{1}{2}P_L^2 + N - 1 = \frac{1}{2}p_R^2 + \bar{N} - \begin{cases} \frac{1}{2} & \text{NS sector} \\ 0 & \text{R sector} \end{cases}$$

• Massless states (with $P \neq 0$)

$$\begin{split} P_L^2 &= 2 \ ; \ p_R^2 = 0 \ , \ \begin{cases} \bar{N} = \frac{1}{2} & \text{NS sector} \quad P \in \Gamma_v \\ \bar{N} = 0 & \text{R sector} \quad P \in \Gamma_s \end{cases} & \text{gauge fields} \\ \text{"gauginos"} (\text{spinors of pos chirality}) \\ P_L^2 &= 2 \ ; \ p_R^2 = 0 \ , \quad \bar{N} = 0 & \text{R sector} \quad P \in \Gamma_c \end{cases} & \text{spinors of negative chirality} \\ P_L^2 &= 2 \ ; \ p_R^2 = 1 \ , \quad \bar{N} = 0 & \text{NS sector} \quad P \in \Gamma_c \end{cases} & \text{spinors of negative chirality} \end{split}$$

$$p_{L,16} = \pi + A\omega$$

• $Z = (\pi; n, \omega) \in \Upsilon_{16} \oplus \Gamma_{1,1}$ $P_L^2 - p_R^2 = \pi^2 + 2n\omega = \langle Z, Z \rangle$

$$p_L = \frac{1}{\sqrt{2}R} \left[n - \left(-R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$
$$p_R = \frac{1}{\sqrt{2}R} \left[n - \left(R^2 + \frac{1}{2}A^2 \right) \omega - \pi \cdot A \right]$$

• Mass and level-matching conditions (same as in susy theory)

$$\frac{1}{4}m^2 = \frac{1}{2}P_L^2 + N - 1 = \frac{1}{2}p_R^2 + \bar{N} - \begin{cases} \frac{1}{2} & \text{NS sector} \\ 0 & \text{R sector} \end{cases}$$

• Massless states (with $P \neq 0$)

$$\begin{split} P_L^2 &= 2 \ ; \ p_R^2 = 0 \ , \ \begin{cases} \bar{N} = \frac{1}{2} & \text{NS sector} \quad P \in \Gamma_v \\ \bar{N} = 0 & \text{R sector} \quad P \in \Gamma_s \end{cases} & \text{"gauginos" (spinors of pos chirality)} \\ P_L^2 &= 2 \ ; \ p_R^2 = 0 \ , \quad \bar{N} = 0 & \text{R sector} \quad P \in \Gamma_c \end{cases} & \text{spinors of negative chirality} \\ P_L^2 &= 2 \ ; \ p_R^2 = 1 \ , \quad \bar{N} = 0 & \text{NS sector} \quad P \in \Gamma_0 \qquad \text{scalars} \\ N &= 1 \ , P_L^2 = 0 \ ; \ p_R^2 = 1 \ , \quad \bar{N} = 0 & \text{NS sector} \quad P \in \Gamma_0 \qquad \text{right-moving vectors} \end{split}$$
Compactifications on S^1

$$\frac{1}{4}m^2 = \frac{1}{2}P_L^2 + N - 1 = \frac{1}{2}p_R^2 + \bar{N} - \begin{cases} \frac{1}{2} & \text{NS sector} \\ 0 & \text{R sector} \end{cases}$$

• Tachyons!

Compactifications on S^1

$$\frac{1}{4}m^2 = \frac{1}{2}P_L^2 + N - 1 = \frac{1}{2}p_R^2 + \bar{N} - \begin{cases} \frac{1}{2} & \text{NS sector} \\ 0 & \text{R sector} \end{cases}$$

- Tachyons!
 - a region of moduli space has tachyons if there are states in Γ_0 :

$$P_L^2 = 1 + p_R^2$$
; $0 \le p_R^2 < 1$ $m^2 = -2(1 - p_R^2)$

$$p_R = 0 \Rightarrow n = \left(R^2 + \frac{1}{2}A^2\right)\omega + \pi \cdot A \in \mathbb{Z}$$

$$p_R = 0 \Rightarrow n = \left(R^2 + \frac{1}{2}A^2\right)\omega + \pi \cdot A \in \mathbb{Z}$$

generic A generic R	$U(1)_L^8 \times U(1)_L^8 \times U(1)_L \times U(1)_R$ no spinors (twisted or untwisted), no massless scalars
rational <i>A</i> generic <i>R</i>	
rational <i>A</i> rational <i>R</i> ²	

$$p_R = 0 \Rightarrow n = \left(R^2 + \frac{1}{2}A^2\right)\omega + \pi \cdot A \in \mathbb{Z}$$

generic A generic R	$U(1)_L^8 \times U(1)_L^8 \times U(1)_L \times U(1)_R$ no spinors (twisted or untwisted), no massless scalars					
rational A	$G_1 \times U(1)_L^{8-k_1} \times G_2 \times U(1)_L^{8-k_2} \times U(1)_L \times U(1)_R \qquad G_1, G_2 \subseteq SO(16) \text{ ade}$					
generic <i>R</i>	maybe $\begin{cases} \text{pos. chirality spinors in (spinor, 1) of some factor of } G_1, G_2 \\ \text{negative chirality spinors in (fund, spinor)} \\ \text{no massless scalars} \end{cases}$					
rational <i>A</i> rational <i>R</i> ²						

$$p_R = 0 \Rightarrow n = \left(R^2 + \frac{1}{2}A^2\right)\omega + \pi \cdot A \in \mathbb{Z}$$

generic A generic R	$U(1)_L^8 \times U(1)_L^8 \times U(1)_L \times U(1)_R$ no spinors (twisted or untwisted), no massless scalars				
rational A generic R	$G_1 \times U(1)_L^{8-k_1} \times G_2 \times U(1)_L^{8-k_2} \times U(1)_L \times U(1)_R \qquad G_1, G_2 \subseteq SO(16) \text{ ADM}$ maybe $\begin{cases} \text{pos. chirality spinors in (spinor, 1) of some factor of } G_1, G_2 \\ \text{negative chirality spinors in (fund, spinor)} \\ \text{no massless scalars} \end{cases}$				
rational <i>A</i> rational <i>R</i> ²	$G \times U(1)_{L}^{17-k} \times U(1)_{R} \qquad G_{1} \times G_{2} \subseteq G, \text{ ADE}$ maybe maybe more negative chirality spinors massless scalars				

$$p_R = 0 \Rightarrow n = \left(R^2 + \frac{1}{2}A^2\right)\omega + \pi \cdot A \in \mathbb{Z}$$

generic A generic R	$U(1)_L^8 \times U(1)_L^8 \times U(1)_L \times U(1)_R$ no spinors (twisted or untwisted), no massless scalars				
rational A generic R	$G_1 \times U(1)_L^{8-k_1} \times G_2 \times U(1)_L^{8-k_2} \times U(1)_L \times U(1)_R \qquad G_1, G_2 \subseteq SO(16) \text{ Add}$ maybe $\begin{cases} \text{pos. chirality spinors in (spinor, 1) of some factor of } G_1, G_2 \\ \text{negative chirality spinors in (fund, spinor)} \\ \text{no massless scalars} \end{cases}$				
rational <i>A</i> rational <i>R</i> ²	$G \times U(1)_{L}^{17-k} \times SU(2)_{R} \qquad G_{1} \times G_{2} \subseteq G, \text{ ADE}$ maybe maybe maybe more negative chirality spinors massless scalars				

• Untwisted + twisted massless states

$$p_R = 0 \Rightarrow n = \left(R^2 + \frac{1}{2}A^2\right)\omega + \pi \cdot A \in \mathbb{Z}$$

generic A generic R	$U(1)_L^8 \times U(1)_L^8 \times U(1)_L \times U(1)_R$ no spinors (twisted or untwisted), no massless scalars				
rational <i>A</i> generic <i>R</i>	$G_{1} \times U(1)_{L}^{8-k_{1}} \times G_{2} \times U(1)_{L}^{8-k_{2}} \times U(1)_{L} \times U(1)_{R} \qquad G_{1}, G_{2} \subseteq SO(16) A$ maybe $\begin{cases} pos. chirality spinors in (spinor, 1) of some factor of G_{1}, G_{2} \\ negative chirality spinors in (fund, spinor) \\ no massless scalars \end{cases}$				
rational <i>A</i> rational <i>R</i> ²	$G \times U(1)_{L}^{17-k} \times SU(2)_{R}$ maybe maybe more positive chirality spinors more negative chirality spinors massless scalars	$G_1 \times G_2 \subseteq G$, ADE			

may be: tachyons in all situations

• 107 in total

- 107 in total
- Only 8 without tachyons

- 107 in total
- Only 8 without tachyons

L	R
$SO(16) \times SO(16) \times SU(2)$	U(1)
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	U(1)
$SO(16) \times SO(10) \times SU(5)$	U(1)
$SO(10) \times SO(10) \times SU(8)$	U(1)
$SO(16) \times SO(18)$	U(1)
$SO(16) \times SO(10) \times SO(8)$	U(1)
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	U(1)
$E_6 \times SU(12)$	SU(2)

- 107 in total
- Only 8 without tachyons

L	R	N_v	N_s	N_c	N_0
$SO(16) \times SO(16) \times SU(2)$	U(1)	226	256	256	0
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	U(1)	180	192	192	0
$SO(16) \times SO(10) \times SU(5)$	U(1)	172	128	160	0
$SO(10) \times SO(10) \times SU(8)$	U(1)	136	0	170	0
$SO(16) \times SO(18)$	U(1)	256	128	288	256
$SO(16) \times SO(10) \times SO(8)$	U(1)	176	208	128	256
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	U(1)	136	128	168	256
$E_6 \times SU(12)$	SU(2)	204	0	0	408

- 107 in total
- Only 8 without tachyons

when moving slightly away in mod space some become tachyonic

					V
L	R	N_v	N_s	N_c	N_0
$SO(16) \times SO(16) \times SU(2)$	U(1)	226	256	256	0
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	U(1)	180	192	192	0
$SO(16) \times SO(10) \times SU(5)$	U(1)	172	128	160	0
$SO(10) \times SO(10) \times SU(8)$	U(1)	136	0	170	0
$SO(16) \times SO(18)$	U(1)	256	128	288	256
$SO(16) \times SO(10) \times SO(8)$	U(1)	176	208	128	256
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	U(1)	136	128	168	256
$E_6 \times SU(12)$	SU(2)	204	0	0	408

In SUSY case: all gauge groups, point/region where they occur
 & fundamental domain of moduli space from Extended Dynkin Diagram

In SUSY case: all gauge groups, point/region where they occur
 & fundamental domain of moduli space from Extended Dynkin Diagram

- 19 nodes, associated to 19 Weyl reflections in $\Gamma_{17,1}$
 - Each node corresponds to a boundary in mod space (e.g. \bigcirc : $R^2 + \frac{1}{2}A^2 = 1$)
 - Allows to get fundamental region

R

In SUSY case: all gauge groups, point/region where they occur
 & fundamental domain of moduli space from Extended Dynkin Diagram

- 19 nodes, associated to 19 Weyl reflections in $\Gamma_{17,1}$ • Each node corresponds to a boundary in mod space (e.g. $\bigcirc_{c} : R^2 + \frac{1}{2}A^2 = 1$)
 - Allows to get fundamental region
 - Every non-Abelian group of rank k: delete 19-k nodes
 Surface (of codimension k) in mod space: satisfy the k eqs of remaining nodes

In SUSY case: all gauge groups, point/region where they occur
 & fundamental domain of moduli space from Extended Dynkin Diagram

- 19 nodes, associated to 19 Weyl reflections in $\Gamma_{17,1}$ • Each node corresponds to a boundary in mod space (e.g. $\bigcirc_{c} : R^2 + \frac{1}{2}A^2 = 1$) • Allows to get fundamental region
 - Every non-Abelian group of rank k: delete 19-k nodes
 Surface (of codimension k) in mod space: satisfy the k eqs of remaining nodes
- What about non-SUSY case??

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$

• 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$

Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections

- Need to add extra "root" of norm 1

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$

Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections

- Need to add extra "root" of norm $\boldsymbol{1}$
- Simplest way to get it to work

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$ Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections
 - Need to add extra "root" of norm $\boldsymbol{1}$
 - Simplest way to get it to work

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$ Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections
 - Need to add extra "root" of norm $\boldsymbol{1}$
 - Simplest way to get it to work

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$ Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections
 - Need to add extra "root" of norm $\boldsymbol{1}$
 - Simplest way to get it to work
 - Not the whole story

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$ Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections
 - Need to add extra "root" of norm $\boldsymbol{1}$
 - Simplest way to get it to work
 - Not the whole story
 - Not symmetric between the two D_8

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$

Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections

- Need to add extra "root" of norm $\boldsymbol{1}$
- Simplest way to get it to work
- Not the whole story
 - Not symmetric between the two D_8

see Fraiman and Collazuol's talk

- It does not encode the 6 decompactification limits to the 6 non-SUSY heterotic theories

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$ Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections
 - Need to add extra "root" of norm $\boldsymbol{1}$
 - Simplest way to get it to work
 - Not the whole story
 - Not symmetric between the two D_8

see Fraiman and Collazuol's talk

- It does not encode the 6 decompactification limits to the 6 non-SUSY heterotic theories
- Add an extra tachyonic node joining to 1 and 7' and also to t. Diagram becomes non-planar

- 20 nodes, associated to 20 Weyl reflections in $\Upsilon_{17,1}$ Except that... Tachyons with $P_L^2 = 1$; $p_R^2 = 0$ ($m^2 = -2$) also generate Weyl reflections
 - Need to add extra "root" of norm $\boldsymbol{1}$
 - Simplest way to get it to work
 - Not the whole story
 - Not symmetric between the two $D_{\rm 8}$

see Fraiman and Collazuol's talk

- It does not encode the 6 decompactification limits to the 6 non-SUSY heterotic theories
- Add an extra tachyonic node joining to 1 and 7' and also to t. Diagram becomes non-planar
- Not needed for all practical purposes 😅

Classification of all non-Abelian gauge symmetry from EDD

- Every non-Abelian group of rank k from deleting 21-k nodes
 - Surface (of codimension k) in mod space where a given group appears

-require the k eqs of remaining nodes (e.g. if \bigcirc_{c} remains $\Rightarrow R^2 + \frac{1}{2}A^2 = 1$)

Classification of all non-Abelian gauge symmetry from EDD

- Every non-Abelian group of rank k from deleting 21-k nodes
 - Surface (of codimension k) in mod space where a given group appears

-require the k eqs of remaining nodes (e.g. if \bigcirc_{c} remains $\Rightarrow R^2 + \frac{1}{2}A^2 = 1$)

Classification of all non-Abelian gauge symmetry from EDD

- Every non-Abelian group of rank k from deleting 21-k nodes
 - Surface (of codimension k) in mod space where a given group appears

-require the k eqs of remaining nodes (e.g. if \bigcirc_{c} remains $\Rightarrow R^2 + \frac{1}{2}A^2 = 1$)

- Every non-Abelian group of rank k from deleting 21-k nodes
 - Surface (of codimension k) in mod space where a given group appears

- Every non-Abelian group of rank k from deleting 21-k nodes
 - Surface (of codimension k) in mod space where a given group appears

- Every non-Abelian group of rank k from deleting 21-k nodes
 - Surface (of codimension k) in mod space where a given group appears

- Every non-Abelian group of rank k from deleting 21-k nodes
 - Surface (of codimension k) in mod space where a given group appears

• Non-SUSY \Rightarrow quantum potential for the moduli

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2\tau}{2\tau_2^2} \mathbf{Z}(\tau,R,A) \qquad \mathbf{Z} \sim \frac{1}{2\tau_2^2}$$

$$\sum_{Z \in \Gamma} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} \qquad q = e^{2\pi i \tau}$$

• Non-SUSY \Rightarrow quantum potential for the moduli

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2 \tau}{2\tau_2^2} \mathbf{Z}(\tau, R, A) \qquad \qquad \mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{P_R^2}{2}} \qquad \qquad q = e^{2\pi i \tau}$$

• Before computing it, look at derivatives

$$\mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{p_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} = \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2 \langle R, A \rangle}$$
$$\nabla_{R,A} \mathbf{Z} \sim \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2} \underbrace{p_R \nabla p_R}_{\mathsf{Compute \& get it's odd in } p_R}$$

• Non-SUSY \Rightarrow quantum potential for the moduli

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2 \tau}{2\tau_2^2} \mathbf{Z}(\tau, R, A) \qquad \qquad \mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} \qquad \qquad q = e^{2\pi i \tau}$$

• Before computing it, look at derivatives

$$\mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{p_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} = \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2 \langle R, A \rangle}$$
$$\nabla_{R,A} \mathbf{Z} \sim \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2} \underbrace{p_R \nabla p_R}_{\mathsf{Compute \& get it's odd in } p_R}$$

• At points in moduli space of maximal (rank d+16) enhancement

Weyl reflection

$$\forall Z \in \Gamma$$
 $Z \xrightarrow{\stackrel{i}{\Psi}} Z' \Rightarrow \nabla Z = 0 \Rightarrow \nabla \Lambda = 0$ at ALL loops!
 $p_R(Z) = -p_R(Z')$

• Non-SUSY \Rightarrow quantum potential for the moduli

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2 \tau}{2\tau_2^2} \mathbf{Z}(\tau, R, A) \qquad \qquad \mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{P_R^2}{2}} \qquad \qquad q = e^{2\pi i \tau}$$

• Before computing it, look at derivatives

$$\mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{p_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} = \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2 \langle R, A \rangle}$$
$$\nabla_{R,A} \mathbf{Z} \sim \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2} \underbrace{p_R \nabla p_R}_{\mathsf{Compute \& get it's odd in } p_R}$$

• At points in moduli space of maximal (rank d+16) enhancement

• Points of maximal enhancement $\Rightarrow \nabla \Lambda = 0$

• Non-SUSY \Rightarrow quantum potential for the moduli

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2 \tau}{2\tau_2^2} \mathbf{Z}(\tau, R, A) \qquad \qquad \mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} \qquad \qquad q = e^{2\pi i \tau}$$

• Before computing it, look at derivatives

$$\mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{p_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} = \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2 (R,A)}$$
$$\nabla_{R,A} \mathbf{Z} \sim \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2} \underbrace{p_R \nabla p_R}_{\mathsf{Compute \& get it's odd in } p_R}$$

• At points in moduli space of maximal (rank d+16) enhancement

$$\forall Z \in \Gamma \qquad Z \xrightarrow{\stackrel{\stackrel{\leftarrow}{\Psi}} Z' \qquad \Rightarrow \quad \nabla Z = 0 \quad \Rightarrow \quad \nabla \Lambda = 0 \qquad \text{at ALL loops!}$$
• Points of maximal enhancement
$$\Rightarrow \quad \nabla \Lambda = 0$$

we found counterexamples

• Non-SUSY \Rightarrow quantum potential for the moduli

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2 \tau}{2\tau_2^2} \mathbf{Z}(\tau, R, A) \qquad \qquad \mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} \qquad \qquad q = e^{2\pi i \tau}$$

• Before computing it, look at derivatives

$$\mathbf{Z} \sim \sum_{Z \in \Gamma} q^{\frac{p_L^2}{2}} \bar{q}^{\frac{p_R^2}{2}} = \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2 (R,A)}$$
$$\nabla_{R,A} \mathbf{Z} \sim \sum_{Z \in \Gamma} e^{i\pi\tau_1 \langle Z|Z \rangle} e^{-2\pi\tau_2 p_R^2} \underbrace{p_R \nabla p_R}_{\mathsf{Compute \& get it's odd in } p_R}$$

• At points in moduli space of maximal (rank d+16) enhancement

Weyl reflectionGinsparg,,Vafa 86
$$\forall Z \in \Gamma$$
 $Z \xrightarrow{\stackrel{\downarrow}{\Psi}} Z' \Rightarrow \nabla Z = 0 \Rightarrow \nabla \Lambda = 0$ at ALL loops! $p_R(Z) = -p_R(Z')$ $\nabla \Lambda = 0$ $\nabla^2 \Lambda = 0$?

we found counterexamples

£=

• One-loop cosmological constant for non susy heterotic

$$\begin{split} \Lambda_{1-\text{loop}}(R,A) &= \int_{F_0} \frac{d^2 \tau}{\tau_2^2} \, Z(\tau,R,A) \quad \text{with} \quad Z = Z^{8-d} \left(Z_s + Z_c - Z_v - Z_0 \right) \\ Z_{v,s,c,0} &\sim \sum_{P \in \Gamma_{v,s,c,0}} q^{\frac{p_L^2}{2}} \, \bar{q}^{\frac{p_R^2}{2}} \qquad q = e^{2\pi i \tau} \end{split}$$

• One-loop cosmological constant for non susy heterotic

$$\begin{split} \Lambda_{1-\text{loop}}(R,A) &= \int_{F_0} \frac{d^2 \tau}{\tau_2^2} \, Z(\tau,R,A) \quad \text{with} \quad Z = Z^{8-d} \left(Z_s + Z_c - Z_v - Z_0 \right) \\ Z_{v,s,c,0} &\sim \sum_{P \in \Gamma_{v,s,c,0}} q^{\frac{P_L^2}{2}} \, \overline{q}^{\frac{P_R^2}{2}} \qquad q = e^{2\pi i \tau} \end{split}$$

 \bullet Working out all powers of q,\bar{q}

$$Z_{v,s,c} = f(q, \bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 2)}$$
$$Z_0 = g(q, \bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 3)}$$
$$f(q) = 0$$
only positive powers

• One-loop cosmological constant for non susy heterotic

$$\begin{split} \Lambda_{1-\text{loop}}(R,A) &= \int_{F_0} \frac{d^2 \tau}{\tau_2^2} \, Z(\tau,R,A) \quad \text{with} \quad Z = Z^{8-d} \left(Z_s + Z_c - Z_v - Z_0 \right) \\ Z_{v,s,c,0} &\sim \sum_{P \in \Gamma_{v,s,c,0}} q^{\frac{P_L^2}{2}} \, \overline{q}^{\frac{P_R^2}{2}} \qquad q = e^{2\pi i \tau} \end{split}$$

 \bullet Working out all powers of q, \bar{q}

$$Z_{v,s,c} = f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 2)}$$
$$Z_0 = g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 3)}$$
$$f(q) = 0$$
only positive powers

Finite contribution from states with

$$P_L^2 + p_R^2 \ge 2$$
 for $P \in \Gamma_{v,s,c}$

$$P_L^2 + p_R^2 \ge 3 \quad \text{for } P \in \Gamma_0$$

• One-loop cosmological constant for non susy heterotic

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2\tau}{\tau_2^2} Z(\tau,R,A) \quad \text{with} \quad Z = Z^{8-d} \left(Z_s + Z_c - Z_v - Z_0 \right)$$
$$Z_{v,s,c,0} \sim \sum_{P \in \Gamma_{v,s,c,0}} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{P_R^2}{2}} \quad q = e^{2\pi i \tau}$$

 \bullet Working out all powers of q, \bar{q}

$$Z_{v,s,c} = f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 2)} e^{i\pi\tau_1(P_L^2 - p_R^2 - 2)}$$

$$Z_0 = g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 3)} e^{i\pi\tau_1(P_L^2 - p_R^2 - 1)}$$

Finite contribution from states with

$$P_L^2 + p_R^2 \ge 2 \quad \text{for } P \in \Gamma_{v,s,c}$$
$$P_L^2 + p_R^2 \ge 3 \quad \text{for } P \in \Gamma_0$$

only positive powers

• One-loop cosmological constant for non susy heterotic

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2 \tau}{\tau_2^2} Z(\tau, R, A) \quad \text{with} \quad Z = Z^{8-d} \left(Z_s + Z_c - Z_v - Z_0 \right)$$
$$Z_{v,s,c,0} \sim \sum_{P \in \Gamma_{v,s,c,0}} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{P_R^2}{2}} \quad q = e^{2\pi i \tau}$$

 \bullet Working out all powers of q, \bar{q}

$$Z_{v,s,c} = f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 2)} e^{i\pi\tau_1(P_L^2 - p_R^2 - 2)}$$

$$Z_0 = g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 3)} e^{i\pi\tau_1(P_L^2 - p_R^2 - 1)}$$

$$\bigoplus_{P \in \Gamma_{v,s,c}} e^{-\pi\tau_2(P_L^2 + p_R^2 - 3)} e^{i\pi\tau_1(P_L^2 - p_R^2 - 1)}$$

only positive powers

Finite contribution from states with

$$P_L^2 + p_R^2 \ge 2$$
 for $P \in \Gamma_{v,s,c}$

$$P_L^2 + p_R^2 \ge 3$$
 for $P \in \Gamma_0$

Infinite contribution only from tachyons

• One-loop cosmological constant for non susy heterotic

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2 \tau}{\tau_2^2} Z(\tau, R, A) \quad \text{with} \quad Z = Z^{8-d} \left(Z_s + Z_c - Z_v - Z_0 \right)$$
$$Z_{v,s,c,0} \sim \sum_{P \in \Gamma_{v,s,c,0}} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{P_R^2}{2}} \qquad q = e^{2\pi i \tau}$$

 \bullet Working out all powers of q, \bar{q}

$$\begin{split} Z_{v,s,c} &= f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 2)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 2)} \\ Z_0 &= g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 3)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 1)} \\ & \uparrow \\ & \text{only positive powers} \end{split}$$

Finite contribution from states with

$$P_L^2 + p_R^2 \ge 2$$
 for $P \in \Gamma_{v,s,c}$

$$P_L^2 + p_R^2 \ge 3$$
 for $P \in \Gamma_0$

Infinite contribution only from tachyons

• If tachyons $\Rightarrow \Lambda = -\infty$

• One-loop cosmological constant for non susy heterotic

$$\Lambda_{1-\text{loop}}(R,A) = \int_{F_0} \frac{d^2 \tau}{\tau_2^2} Z(\tau, R, A) \quad \text{with} \quad Z = Z^{8-d} \left(Z_s + Z_c - Z_v - Z_0 \right)$$
$$Z_{v,s,c,0} \sim \sum_{P \in \Gamma_{v,s,c,0}} q^{\frac{P_L^2}{2}} \bar{q}^{\frac{P_R^2}{2}} \qquad q = e^{2\pi i \tau}$$

 \bullet Working out all powers of q, \bar{q}

$$\begin{split} Z_{v,s,c} &= f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 2)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 2)} \\ Z_0 &= g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 3)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 1)} \\ & \uparrow \\ & \text{only positive powers} \end{split}$$

• If tachyons $\Leftrightarrow \Lambda = -\infty$

Finite contribution from states with

$$P_L^2 + p_R^2 \ge 2$$
 for $P \in \Gamma_{v,s,c}$

$$P_L^2 + p_R^2 \ge 3$$
 for $P \in \Gamma_0$

Infinite contribution only from tachyons

$$\begin{split} Z_{v,s,c} &= f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 2)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 2)} \\ Z_0 &= g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 3)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 1)} \end{split}$$

$$\Lambda_{1-\text{loop}} = \int_{F_0} \frac{d^2 \tau}{\tau_2^2} \, \left(Z_s + Z_c - Z_v - Z_0 \right)$$

$$\begin{split} Z_{v,s,c} &= f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 2)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 2)} \\ Z_0 &= g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 3)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 1)} \end{split} \qquad \Lambda_{1-\text{loop}} = \int_{F_0} \frac{d^2 \tau}{\tau_2^2} \left(Z_s + Z_c - Z_v - Z_0 \right) \\ \end{split}$$

• Massless states give (a priori) largest contribution (if no tachyons)

$$\begin{split} Z_{v,s,c} &= f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 2)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 2)} \\ Z_0 &= g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 3)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 1)} \end{split} \qquad \Lambda_{1-\text{loop}} = \int_{F_0} \frac{d^2 \tau}{\tau_2^2} \left(Z_s + Z_c - Z_v - Z_0 \right) \\ \end{split}$$

• Massless states give (a priori) largest contribution (if no tachyons)

$$\Lambda_{m=0} = 28.1 + 1.1 \left(N_s + N_c - N_v \right) - 0.1 N_0 + \mathcal{O}(10^{-4}) \left(N_f - N_b \right)$$

$$\begin{split} Z_{v,s,c} &= f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 2)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 2)} \\ Z_0 &= g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 3)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 1)} \\ \end{split}$$

• Massless states give (a priori) largest contribution (if no tachyons)

 $\Lambda_{m=0} = 28.1 + 1.1 \left(N_s + N_c - N_v \right) - 0.1 N_0 + \mathcal{O}(10^{-4}) \left(N_f - N_b \right)$

L	N_v	N_s	N_c	N_0	$\Lambda_{m=0}$
$SO(16) \times SO(16) \times SU(2)$	226	256	256	0	341.6
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	180	192	192	0	251.8
$SO(16) \times SO(10) \times SU(5)$	172	128	160	0	155.4
$SO(10) \times SO(10) \times SU(8)$	136	0	170	0	65.6
$SO(16) \times SO(18)$	256	128	288	256	168.7
$SO(16) \times SO(10) \times SO(8)$	176	208	128	256	168.7
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	136	128	168	256	168.7
$E_6 \times SU(12)$	204	0	0	408	-243.7

$$\begin{split} Z_{v,s,c} &= f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 2)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 2)} \\ Z_0 &= g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 3)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 1)} \\ \end{split}$$

• Massless states give (a priori) largest contribution (if no tachyons)

 $\Lambda_{m=0} = 28.1 + 1.1 (N_s + N_c - N_v) - 0.1N_0 + \mathcal{O}(10^{-4}) (N_f - N_b)$

L	N_v	N_s	N_c	N_0	$\Lambda_{m=0}$
$SO(16) \times SO(16) \times SU(2)$	226	256	256	0	341.6
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	180	192	192	0	251.8
$SO(16) \times SO(10) \times SU(5)$	172	128	160	0	155.4
$SO(10) \times SO(10) \times SU(8)$	136	0	170	0	65.6
$SO(16) \times SO(18)$	256	128	288	256	168.7
$SO(16) \times SO(10) \times SO(8)$	176	208	128	256	168.7
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	136	128	168	256	168.7
$E_6 \times SU(12)$	204	0	0	408	-243.7

• Light states can correct this quite significantly

$$\begin{split} Z_{v,s,c} &= f(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 2)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 2)} \\ Z_0 &= g(q,\bar{q}) \sum_{P \in \Gamma_{v,s,c}} e^{-\pi \tau_2 (P_L^2 + p_R^2 - 3)} e^{i\pi \tau_1 (P_L^2 - p_R^2 - 1)} \\ \end{split}$$

• Massless states give (a priori) largest contribution (if no tachyons)

 $\Lambda_{m=0} = 28.1 + 1.1 (N_s + N_c - N_v) - 0.1N_0 + \mathcal{O}(10^{-4}) (N_f - N_b)$

L	N_v	N_s	N_c	N_0	$\Lambda_{m=0}$	Λ
$SO(16) \times SO(16) \times SU(2)$	226	256	256	0	341.6	431.4
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	180	192	192	0	251.8	383.5
$SO(16) \times SO(10) \times SU(5)$	172	128	160	0	155.4	359.2
$SO(10) \times SO(10) \times SU(8)$	136	0	170	0	65.6	303.8
$SO(16) \times SO(18)$	256	128	288	256	168.7	305.0
$SO(16) \times SO(10) \times SO(8)$	176	208	128	256	168.7	305.0
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	136	128	168	256	168.7	305.0
$E_6 \times SU(12)$	204	0	0	408	-243.7	180.4

• Light states can correct this quite significantly

L	Λ
$SO(16) \times SO(16) \times SU(2)$	431.4
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	383.5
$SO(16) \times SO(10) \times SU(5)$	359.2
$SO(10) \times SO(10) \times SU(8)$	303.8
$SO(16) \times SO(18)$	305.0
$SO(16) \times SO(10) \times SO(8)$	305.0
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	305.0
$E_6 \times SU(12)$	180.4

	Λ
$SO(16) \times SO(16) \times SU(2)$	431.4
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	383.5
$SO(16) \times SO(10) \times SU(5)$	359.2
$SO(10) \times SO(10) \times SU(8)$	303.8
$SO(16) \times SO(18)$	305.0
$SO(16) \times SO(10) \times SO(8)$	305.0
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	305.0
$E_6 \times SU(12)$	180.4

- What happens at the vicinity?
- Bernardo Fraiman will show beautiful plots of the cosmological constant for 2d slices in mod space

massless scalars that get tachyonic when

moving in certain directions in mod space

		Ŵ
L	Λ	N_0
$SO(16) \times SO(16) \times SU(2)$	431.4	0
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	383.5	0
$SO(16) \times SO(10) \times SU(5)$	359.2	0
$SO(10) \times SO(10) \times SU(8)$	303.8	0
$SO(16) \times SO(18)$	305.0	256
$SO(16) \times SO(10) \times SO(8)$	305.0	256
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	305.0	256
$E_6 \times SU(12)$	180.4	408

- What happens at the vicinity?
- Bernardo Fraiman will show beautiful plots of the cosmological constant for 2d slices in mod space

massless scalars that get tachyonic when

moving in certain directions in mod space

Ginsparg-Vafa knife edge: Capitol Peak near Aspen

- What happens at the vicinity?
- Bernardo Fraiman will show beautiful plots of the cosmological constant for 2d slices in mod space

massless scalars that get tachyonic when

moving in certain directions in mod space

	¥	
Λ	N ₀	$ abla^2\Lambda imes R^2$
431.4	0	$-306^{16}, 831$
383.5	0	$-307^{15}, 544^2$
359.2	0	$-569^5, -256^8, 355^4$
303.8	0	-195^{17}
305.0	256	
305.0	256	lunife edge
305.0	256	knife edge
180.4	408	J
-	$\begin{array}{c c} \Lambda \\ 431.4 \\ 383.5 \\ 359.2 \\ 303.8 \\ 305.0 \\ 305.0 \\ 305.0 \\ 180.4 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Ginsparg-Vafa knife edge: Capitol Peak near Aspen

- What happens at the vicinity?
- Bernardo Fraiman will show beautiful plots of the cosmological constant for 2d slices in mod space

massless scalars that get tachyonic when

moving in certain directions in mod space

		¥		
L	Λ	N_0	$ abla^2\Lambda imes R^2$	
$SO(16) \times SO(16) \times SU(2)$	431.4	0	$-306^{16}, 831$	
$SO(16) \times SO(12) \times SU(3) \times SU(2)$	383.5	0	$-307^{15}, 544^2$	
$SO(16) \times SO(10) \times SU(5)$	359.2	0	$-569^5, -256^8, 355^4$	
$SO(10) \times SO(10) \times SU(8)$	303.8	0	-195^{17}	loca
$SO(16) \times SO(18)$	305.0	256		
$SO(16) \times SO(10) \times SO(8)$	305.0	256	lunifa adaa	
$SO(12) \times SO(12) \times SU(4) \times SU(2)^2$	305.0	256	knife edge	R
$E_6 \times SU(12)$	180.4	408	ノ	

maximum

Ginsparg-Vafa knife edge: Capitol Peak near Aspen

- What happens at the vicinity?
- Bernardo Fraiman will show beautiful plots of the cosmological constant for 2d slices in mod space

massless scalars that get tachyonic when

moving in certain directions in mod space

- What happens at the vicinity?
- Bernardo Fraiman will show beautiful plots of the cosmological constant for 2d slices in mod space

• Toroidal compactification of the non-susy heterotic theories give a rich landscape

- Toroidal compactification of the non-susy heterotic theories give a rich landscape
- Phenomena of gauge symmetry enhancement in S^1 : encoded in Extended Dynkin diagram

- Toroidal compactification of the non-susy heterotic theories give a rich landscape
- Phenomena of gauge symmetry enhancement in S^1 : encoded in Extended Dynkin diagram

- Toroidal compactification of the non-susy heterotic theories give a rich landscape
- Phenomena of gauge symmetry enhancement in S^1 : encoded in Extended Dynkin diagram

- Toroidal compactification of the non-susy heterotic theories give a rich landscape
- Phenomena of gauge symmetry enhancement in S^1 : encoded in Extended Dynkin diagram

• 107 maximal enhancements (delete 4 nodes from diagram on the left)

- Toroidal compactification of the non-susy heterotic theories give a rich landscape
- Phenomena of gauge symmetry enhancement in S^1 : encoded in Extended Dynkin diagram

- 107 maximal enhancements (delete 4 nodes from diagram on the left)
- Only 8 tachyon-free
• Cosmological constant extremized at points of maximal enhancement (but not only)

see Fraiman's talk

• Cosmological constant extremized at points of maximal enhancement (but not only)

see Fraiman's talk

• 8 tachyon-free points of maximal enhancement have positive cosmological constant

• Cosmological constant extremized at points of maximal enhancement (but not only)

see Fraiman's talk

• 8 tachyon-free points of maximal enhancement have positive cosmological constant

• No local minimum! (contrary to previous claims for $SO(16) \times SO(16) \times SU(2)$)

• Cosmological constant extremized at points of maximal enhancement (but not only)

see Fraiman's talk

• 8 tachyon-free points of maximal enhancement have positive cosmological constant

• No local minimum! (contrary to previous claims for $SO(16) \times SO(16) \times SU(2)$)

but in agreement with Yuichi Koga's results '22

• Cosmological constant extremized at points of maximal enhancement (but not only)

see Fraiman's talk

• 8 tachyon-free points of maximal enhancement have positive cosmological constant

• No local minimum! (contrary to previous claims for $SO(16) \times SO(16) \times SU(2)$)

but in agreement with Yuichi Koga's results '22

• Does this story change in T^2 compactifications?

• Cosmological constant extremized at points of maximal enhancement (but not only)

see Fraiman's talk

• 8 tachyon-free points of maximal enhancement have positive cosmological constant

• No local minimum! (contrary to previous claims for $SO(16) \times SO(16) \times SU(2)$)

but in agreement with Yuichi Koga's results '22

• Does this story change in T^2 compactifications?

To be continued...

Thank you!

