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• No need to motivate SUSY breaking at high scale

• Non SUSY O(16) x O(16) heterotic

 -one of the three non SUSY tachyon-free 10d theories

 -the only tachyon-free heterotic one

• Runaway one-loop potential for the dilaton

-Can be stabilized by fluxes, giving rise to AdS solutions

• Recent AdS3 x S3 x S3 x S1 solution

• Here we’ll look at Td compactifications (and in particular S1)

• No need to motivate dS vacua

• Both are possible in toroidal compactifications of non SUSY heterotic string!
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(at one-loop)
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• Points of maximal enhancement (non-Abelian group of rank  ) d + 16
 -extrema of potential (at all loops!)

• Many other extremal points: all positive c.c.?

 -the simplest one in d = 1
 [ ]  ( ): positive cosmological constant             

at one loop 
O(16) × O(16) × SU(2) R = 1, A = 0

• Local minima, maxima or saddle points?

for  compactifications of non-susy theoryTdMotivation 
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R: π ⋅ δ ∈ ℤ+ 1
2

≡ Γ− = {(0; s), (s; 0)}

- add twisted sector

Γ+ + δ = {(v; v), (c; c)}R:

NS: Γ− + δ = {(v; c), (c; v)}

(breaks susy)
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1
4

m2 =
1
2

P2
L + N − 1 =

1
2

p2
R + N̄ − {

1
2 NS sector
0 R sector

• Tachyons! 

m2 = − 2 (1 − p2
R)

- a region of moduli space has tachyons if there are states in : Γ0

P2
L = 1 + p2

R ; 0 ≤ p2
R < 1

m2 = − 2

m2 = 0

m2 < 0

m2 > 0

⋅
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Maximal (  rank 17) enhancementsG :

• 107 in total 

• Only 8 without tachyons
when moving slightly away in mod space

some become tachyonic
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• 19 nodes, associated to 19 Weyl reflections in Γ17,1

• Each node corresponds to a boundary in mod space (e.g.     :                   )  

• Every non-Abelian group of rank k: delete 19-k nodes
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Summary
• Toroidal compactification of the non-susy heterotic theories give a rich landscape 

• Phenomena of gauge symmetry enhancement in : encoded in Extended 
Dynkin diagram

S1

• 107 maximal enhancements (delete 4 nodes from diagram on the left)

• Only 8 tachyon-free

+ other tachyon node
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Summary

see Fraiman’s talk

• Cosmological constant extremized at points of maximal enhancement (but not only)

• 8 tachyon-free points of maximal enhancement have positive cosmological constant

}knife edges

}saddle points

local maximum

• No local minimum! (contrary to previous claims for )SO(16) × SO(16) × SU(2)
but in agreement with Yuichi Koga’s results ‘22

• Does this story change in  compactifications?T2

Thank you!
To be continued…



R
a2

a2a
A = (a,015) A = (a1,07, a2,07)

R2 = 1− 1
2 A2


