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Introduction

Common feature of many theories of Quantum Gravity:

1. light scalar fields ¢p* determining couplings, masses, etc.

2. towers of massive states beyond EFT.

e —— — == = —

ﬁistance Conjecture [Ooguri, Vafa '06]

Along paths in scalar field space traversing distances d > lp
an infinite tower of states becomes light in Planck units as

‘\ M(Q> ~U e_Ad(P>Q)
; Mpl

Tested in string theory in great detail: Cf. reviews [Palti’l9, van Beast, Calderon-Infante, Mirfendereski, Valenzuela ’'21;
Agmon, Bedroya, Kang, Vafa '22]
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2. towers of massive states beyond EFT.
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ﬁistance Conjecture [Ooguri, Vafa '06]

Along paths in scalar field space traversing distances d > lp
an infinite tower of states becomes light in Planck units as |

‘\ M(Q> ~U e_Ad(P>Q)
; Mpl

Tested in string theory in great detail: Cf. reviews [Palti’l9, van Beast, Calderon-Infante, Mirfendereski, Valenzuela ’'21;
Agmon, Bedroya, Kang, Vafa '22]

Question: What about light towers of states away from asymptotic regions?
(For more on infinite distance regions, see Timo and Ben’s tallk)

Problem: Would need to know the exact spectrum of the theory at any point in field space.

Way out: Instead of exact spectrum of states study the variation of the Quantum Gravity cut-off A

over field space ./ , — Species Scale!




Introduction Dyalt 071

(See talks by David Andrick, Alvaro Herraez, Alberto Castellano,

What is the species scale?
P Niccolo Cribiori, Dieter Liisk, Marco Scalisi, Irene Valenzuela, ...)

 In the presence of N effective light degrees of freedom:
entropy of any black hole needs to satisfy: $ > N

d-2
e Compare to Schwarzschild black hole  Sqpwarzschild = (rHMpl>

— radius of minimal black hole describable within EFT

~ N1/(d=2)
h H,minMpl N

 Interpretation: Higher derivative corrections break down for curvatures R ~ @(rﬁ%mn)

« Distance Conjecture: N varies over field space = A, = A (¢)




Moduli Dependent Species Scale ... ... v o es o

Questions: 1. From a pure EFT perspective: Can we give a bound on the variation of A (¢)?

2. Can we give a closed expression for A (¢)?

3. Can we use explicit form for A (¢) to bound potentials?




Moduli Dependent Species Scale ... ... v o es o

Questions: 1. From a pure EFT perspective: Can we give a bound on the variation of A (¢)?
2. Can we give a closed expression for A (¢)?

3. Can we use explicit form for A (¢) to bound potentials?

Answers: 1. Consistency of the perturbative expansion of a theory of Einstein gravity + higher
derivative corrections requires: | VA

s
< 0(1
S o)

A)

2. In theories with Type II compactifications the moduli dependence of A is

captured by the topological genus-one free energy F/. Gan be fixed in explicit examples
1 XPIICIt eX

3. Slowly varying positive potentials bounded by  V(¢) < Aexp < - Agb)
V(d—1)(d-2)

— can bound the maximal field range — including interior parts of field space)
cf. [Scalisi, Valenzuela ’'19]

(See Marco’s talk on Monday)
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Species Scale and EFT Consistency ... ... v vwes

First: Bound on the slope of the species scale as a function of moduli.

e Consider general Einstein theory of gravity + scalar field:

Md—2

S:Jddx\/—_g[ 1;1 R—%(d¢)2+...




Species Scale and EFT Consistency  ......... ve e

First: Bound on the slope of the species scale as a function of moduli.

e Consider general Einstein theory of gravity + scalar field:

Md—2

S:Jddx\/—_g [ 1;1 R—%(a¢)2+...] .

e Step 1: Integrate out heavy states — generate higher-derivative terms suppressed by A..

Md—2
S=[ddx\/—_g [ ‘; <R+Z Aff(zf;) +> —%(a¢)2+...] .




Species Scale and EFT Consistency .. ... v wwes

First: Bound on the slope of the species scale as a function of moduli.

e Consider general Einstein theory of gravity + scalar field:

Md—2

S:Jddx\/—_g [ 1;1 R—%(a¢)2+...] .

e Step 1: Integrate out heavy states — generate higher-derivative terms suppressed by A..

Md—2
S=[ddx\/—_g [ ‘; <R+Z Aff(zf;) +> —%(a¢)2+...] .

e Step 2: Integrate out small-distance modes of ¢ above A..

» Consistency requirement: Integrating out small-distance modes of a single field ¢ should not

considerably change the perturbative expansion!




Species Scale and EFT Consistency .. ... v wwes

First: Bound on the slope of the species scale as a function of moduli.

e Consider general Einstein theory of gravity + scalar field:

Md—2

S:Jddx\/—_g [ 1;1 R—%(a¢)2+...] .

e Step 1: Integrate out heavy states — generate higher-derivative terms suppressed by A..

Md—2
S=[ddx\/—_g [ ‘; <R+Z Aff(zf;) +> —%(a¢)2+...] .

e Step 2: Integrate out small-distance modes of ¢ above A..

» Consistency requirement: Integrating out small-distance modes of a single field ¢ should not
considerably change the perturbative expansion!

A single field does not significantly change the entropy of the smallest black hole
and therefore does not significantly affect the species scale!
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First: Bound on the slope of the species scale as a function of moduli.

M4 6 (R 1
S=[ddx\/—_g [ ;1 <R+Z Anf(z(;) +> —5(a¢)2+...] .

» Two operators O, and O, give rise to effective term in action:

A((¢) A(¢)
As(¢0)n_

~ Jdd xd®y M20,(x) TGy 3)0,,(y)

A(gp)r!




Species Scale and EFT Consistency  ......... ve e

First: Bound on the slope of the species scale as a function of moduli.

My O,(R 1
S=[ddx\/—_g [ ;1 <R+Z Anﬁg(;) +> —5(a¢)2+...] .

» Two operators O, and O, give rise to effective term in action:

Albo) Abo)
G,(x,y)0,
Ayt PO T

~ Jddxddy Msl(d_z) O, (x)

 Integrating out small-distance modes of ¢ < smearing the interaction over ball of radius AS_1

A—l

4 B
< Ll




Species Scale and EFT Consistency  ......... ve e

First: Bound on the slope of the species scale as a function of moduli.
My 0,(R) 1
S=|d%/ g | — R+ ) ==+ ...
[ \/_g[z < ZAH2(¢) 2

» Two operators O, and O, give rise to effective term in action:

| iy, 1g2@-2
J By My O gyt GO R S

 Integrating out small-distance modes of ¢ < smearing the interaction over ball of radius A_1

* Generate effective point-interaction:
(Adgo)” -
d-2 | jd M2
S > M) de,/_ N Omin(R)

» Consistency of effective higher-derivative expansion leads:
Ao | e
— _2 9




Asym ptOti c Be h aVi o r [van de Heisteeg, Vafa, MW '23]

First: Bound on the slope of the species scale as a function of moduli.

* Consistency of effective higher-derivative expansion leads:
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A(p) C
(%o < =y — exponential behavior A, ~ ¢~? is limiting case!
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* Asymptotic regions in field space seem to saturate the bound.

o Since A, ~ m&)wer: masses of towers predicted by distance conjecture should not decay

faster than exponential!!

Similar results in [Calderon-Infante, Castellano, Herraez, Ibanez ’23]
— see also Alberto and Alvaro’s talies

* According to Emergent string conjecture can have: [Lee, Lerche, Weigand '19]

Emergent string limits in d dimensions: Decompactification limits from d — D dimensions:
A 1 Al [ D-d
_) 7
A, d—"2 Ay (d—=2)D-2)

cf. also [Etheredge, Heidenreich, Kaya,
Qiu, Rudelius’@2]
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First: Bound on the slope of the species scale as a function of moduli.

* Consistency of effective higher-derivative expansion leads:

2
A(p) C
(%o < =y — exponential behavior A, ~ ¢~? is limiting case!

* Asymptotic regions in field space seem to saturate the bound.

e Since A ~ m&)wer: masses of towers predicted by distance conjecture should not decay

faster than exponential!!

Similar results in [Calderon-Infante, Castellano, Herraez, Ibanez ’23]
— see also Alberto and Alvaro’s talies

* According to Emergent string conjecture can have: [Lee, Lerche, Weigand '19]

Emergent string limits in d dimensions: Decompactification limits from d — D dimensions:
A 1 Al [ D-d
_) 7
A, d—"2 Ay (d—=2)D-2)

cf. also [Etheredge, Heidenreich, Kaya,
Qiu, Rudelius’@2]

— need to have an explicit expression for /A

— Universal bound? C
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about corrections?

— cannot be trusted in at strong coupling!




Explicit Expression for A ?

[van de Heisteeg, Vafa, MW ’23]

Question: Can we determine the constant c?

— need to have an explicit expression for /A

Consider again effective action:

S = Jddx\/—_g

Md—2 0 (R)
pl n
LGP v

n
zuzl
_ : — | g9y . /=5 —ER2
In d = 4 focus on term: S—Jd X\/—8 /\%R :

How can we calculate this term? — can compute it, e.g., in string perturbation theory but what

about corrections?

— cannot be trusted in at strong coupling!

However ... in Type II string compactifications there exists an R? correction that can be computed in
perturbation theory and that does not get corrected!



Moduli dependent species scale a6 Hotsteeg. Vate, MW W 5

Consider topological string with target space CY threefold:

* Effective action contains term: § D [ F(R)?
"< Topological genus-1 free energy

e Worldsheet theory described by CFT with /4 = (2,2) supersymmetry in two dimensions.

* For such a CFT can define moduli-dependent index
[Cecotti, Vafa ’92, Bershadsky, Cecotti, Ooguri, Vafa '93]

1 [ d° ;
Fy = —[ “ T [(— 1) Fp Frq'og'
F

179

(%)
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Consider topological string with target space CY threefold:

* Effective action contains term: § D J F(R)?
"< Topological genus-1 free energy

e Worldsheet theory described by CFT with /4 = (2,2) supersymmetry in two dimensions.

* For such a CFT can define moduli-dependent index
[Cecotti, Vafa '92, Bershadsky, Cecotti, Ooguri, Vafa '93]
1 d*t

Iy = _[ —1r [(—1)FFLFRQH°C_1H0]
2 F (%)

- Satisfied holomorphic anomaly equation:

_ 1
0;0,F, = Tr(=1)'C,C; — —G,; Tr(=1)",  [cecotin, vasa 2]
b 12

]\

Chiral ring structure constants Zamolodchikov metric on field space

- Holomorphic anomaly equation can be integrated to

1 1
F, =3 <3+h1’1 —i> K ——logdetGl-]-+log|f|2,

12 \2 \
Euler characteristic of ) : , N
mirror ¥ Kahler potential Holomorphic ambiguity
- Holomorphic ambiguity can be fixed by matching the behavior of /', at boundary

of moduli space. 5



F; and the number of species

[van de Heisteeg, Vafa, MW, Wu ’22]

Question: Why can F; be used to estimate the number of light species?

A first look:

e Ny, measures the accumulation of light modes in the spectrum of the theory.

e Spectrum of Laplacian A gives a measure for number of light states.
— growth of |log(det A)| would measure accumulation of light states.

e Problem: spectrum of A difficult to compute!
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[van de Heisteeg, Vafa, MW, Wu ’22]

Question: Why can F; be used to estimate the number of light species?

A first look:

e N, measures the accumulation of light modes in the spectrum of the theory.

e Spectrum of Laplacian A gives a measure for number of light states.
— growth of |log(det A)| would measure accumulation of light states.

e Problem: spectrum of A difficult to compute!

e However: exists combination of Laplacian Ap g acting on (p, g)-forms that is computable
since it is an index-like quantity.

1 3 3
b Z (— 1P+ <P - 5) <q - 5) log(det A, )
P9
[Bershadsky, Cecotti, Ooguri, Vafa '93]

e This combination can be identified with F!

* General expectation: A

s —1/2 . .. . .
~ F — reproduces right behavior in asymptotic regions

M,

black hole perspective in [Cribiori, Lust, Staudt 'Q2] 0



Asymptotic behavior of F

[van de Heisteeg, Vafa, MW '23]

How does /|, behave asymptotically?

Three kinds of infinite distance limits: [Lee, Lerche, Weigand *19]

1. Large volume limit (decompactification to 5d M-theory)

2. Emergent String limit (requires K3-fibration for CY) o

3. Decompactification to 6d (requires T2-fibration for CY)




Asymptotic behavior of F

[van de Heisteeg, Vafa, MW '23]

How does /|, behave asymptotically?

Three kinds of infinite distance limits: [Lee, Lerche, Weigand *19]

1. Large volume limit (decompactification to 5d M-theory)

2. Emergent String limit (requires K3-fibration for CY) o

3. Decompactification to 6d (requires T2-fibration for CY)

Parametrize all limits by s = oco: F, has asymptotic form [ 1 = S — f log S

— slope of A, given by [ VA, p

>a+—logs
A s .




Asymptotic behavior of F

[van de Heisteeg, Vafa, MW '23]

How does /|, behave asymptotically?

Three kinds of infinite distance limits: [Lee, Lerche, Weigand *19]

1. Large volume limit (decompactification to 5d M-theory)

2. Emergent String limit (requires K3-fibration for CY) o

3. Decompactification to 6d (requires T2-fibration for CY)

Parametrize all limits by s = oco: F, has asymptotic form [ 1 = S — f log S

— slope of A, given by [ VA, p

>a+—logs
A s .

ad=D = (D -d) 1 1 1,1 2.1
dec \/(D —hd—2) Large volume 7 Z(18 + At B2
a _ 1 : 1 1 L1, 220 _ gpll
A =\ 75 Emergent String > > (6+5h" +h 6h; )

1 1
— — (42 + 4h" + 20! — 6h11(B,))
2 12 .

6d decompactifcation




Asymptotic behavior of F

[van de Heisteeg, Vafa, MW '23]

IVA

sl
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Asymptotic behavior of F

[van de Heisteeg, Vafa, MW '23]

IVA

sl

—> slope of A, given by — a+—logs

g A)

1
Large volume = %(18 +hbt+ 2
: 1 1
Emergent String B —©+ Shtt + =t —6hlL
1 1
6d decompactifcation 3 - (42 + 4n" + 20%' — 601\ (By))

| VA

S

typically approaches asymptotic value from above!

5 (see also David’s talkk on Mondq:.j) . 1
[VA| —> universal bound ¢ =

A,o'gg \/d—2

not correct!

0.6

—> physical interpretation of

04p======eemecceccncercnncncenenecneernneena-
[ sign of log-correction?

0.2

—> Deviation from asymptotic behavior

5 10 15 20 9 away from strict asymptotic regime!
11



Species Scale and Potentials
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Species Scale and Potentials

[van de Heisteeg, Vafa, MW, Wu ’23]
Use the species scale to bound slowly varying potentials with V > 0!
— For slowly rolling field bound V(¢) < A? cf. [Hebecker, Wrase ’18, Scalisi, Valenzuela ’18]

(see Marco’s talk)
Motivation:

— dS entropy S4q ~ H ~2 should at least account for light species!
— H? < A

(alternatively: smallest black hole should fit’ into dS space!

Asymptotically: 4 2.1 2
V(¢) < A; implies: V(¢) < Aex A
As ~ Ae_ﬂAd) \/ (¢) P ’ P \/(d — 1)(d—-2) ’

Emergent String Conjecture: 1> : Same bound as TCC!!! (But independent reasoning)
\(d—1)(d-2) [Bedroya, Vafa ’19]
(Decompactification to D = d + 1)

Unlike TCC: species scale argument can be used to fix A!

(At least in cases where species scale is known everywhere and supersymmetry
is broken mildly)

— again in CY compactifications of Type II string theory!

12



Species Scale and Potentials

. . . o . . [van de Heisteeg, Vafa, MW, Wu '23]
Simple application: Type II CY compactifications with fluxes!

e Supersymmetry broken to /" = 1 — species scale still given by F,??

* Yes! Since fluxes do not affect the topological string amplitudes!

[Vafa '00]
* Effective action contains two terms: [ooguri, Vafa ‘03]
aFg 4 2 22 |
Sy_1 D Jd4xd293‘72g]\7i—, Sy Dgld*xd*0 w*F*s~VF,,
- oS, = 8
AN

For g=1 is just the same term
as in N=2!
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. . . o . . [van de Heisteeg, Vafa, MW, Wu ’23]
Simple application: Type II CY compactifications with fluxes!

e Supersymmetry broken to /" = 1 — species scale still given by F,??

* Yes! Since fluxes do not affect the topological string amplitudes!

[Vafa ’00]
* Effective action contains two terms: [ooguri, Vafa ‘03]
4. 2072 ng 4. 12 2 z2(g—1)
Svy_1D |d'xd0FEN—, Sy_1DgldxdO0 W-FF,,
N=1 i3S N=1 g
]

AN

For g=1 is just the same term
as in N=2!

We can constrain the field range over which the potential is approximately flat V ~ V,
as:

V
A¢S—\/Elog—0+b
M

\

Can we get large field distances in the interior?

13



Species Scale and Field Ranges

[van de Heisteeg, Vafa, MW, Wu ’23]
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[van de Heisteeg, Vafa, MW, Wu ’23]

We can further constrain the field range over which the potential is approximately flat V ~ V,
as. Cf. [Long, Montero, Vafa, Valenzuela '21]
“Desert point”

Split the field range in three parts (including
\A2 the interior)

Ap(Vo) = Adr (Vo) + Adpu + Adr(Vo)

Can we get large field distances in the interior?
From asymptotic expression: A? = Ae AP

—  Adr(Ve) = — ——log[Ve] + —— log[Ag]
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Species Scale and Field Ranges

[van de Heisteeg, Vafa, MW, Wu ’23]

We can further constrain the field range over which the potential is approximately flat V ~ V,

as. Cf. [Long, Montero, Vafa, Valenzuela '21]

“Desert point”

Split the field range in three parts (including
\A2 the interior)

Ap(Vo) = Adr (Vo) + Adpu + Adr(Vo)

Can we get large field distances in the interior?

From asymptotic expression: A? = Ae~ A9

I l l 1 1
— X —>  Adr(Vo) = — 51— log[Vo] + 51— log|AR]

A¢r ] AV Aor 2)‘R 2)\R

S 0(1)

Since at large distance F| — Ecz ‘Ret’ we can determine A =

1
271' Zi CZ,i




Species Scale and Field Ranges

[van de Heisteeg, Vafa, MW, Wu ’23]

We can further constrain the field range over which the potential is approximately flat V ~ V,

as. Cf. [Long, Montero, Vafa, Valenzuela '21]

“Desert point”

\ Split the field range in three parts (including
A2

the interior)

Ap(Vo) = Adr (Vo) + Adpu + Adr(Vo)

Can we get large field distances in the interior?
From asymptotic expression: A? = Ae AP

1
2\

> | - > | < > _) A¢R (% )
Ag¢r AV Adr 2)\

log[Vo] + -+ log[ARg]
R R

Since at large distance F; — Ecz’i Ret' we can determine A = < O(1)

271' Zi CZ,i

1 1 i § 1
A = — 1 —1 A — log[A A
o(Vo) (2)‘L oo 2)\3) og[Vo] + /\L oglAL] + INn og[Ag| + Adpu

_.b

o
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[van de Heisteeg, Vafa, MW, Wu ’23]

We can further constrain the field range over which the potential is approximately flat V ~ V,

as. Cf. [Long, Montero, Vafa, Valenzuela '21]

“Desert point”

Split the field range in three parts (including
\’}2 the interior)

Ap(Vo) = Adr (Vo) + Adpu + Adr(Vo)

Can we get large field distances in the interior?

From asymptotic expression: A? = Ae~ A9

1
A¢r Adbui Adr R R
Since at large distance F; — —c, ;Ret' we can determine A = < O(1)
12 ~ 27 ). Ch;
1 )
AG(%) = — ( 3= + 5 ) 10BVe] + 7 loglAr] + -~ log[A] + Ag
)= e ' 0glVo 2 Ogl/L MNn OglAR bulia
:.b
K3 x T2 Mirror quintic Mirror bi-cubic
Can check examples:
b = —~1.198 —3.798 —4.815
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Species Scale and Field Ranges

[van de Heisteeg, Vafa, MW, Wu ’23]

We can further constrain the field range over which the potential is approximately flat V ~ V,

as. Cf. [Long, Montero, Vafa, Valenzuela '21]

“Desert point”

Split the field range in three parts (including
\f the interior)

Ap(Vo) = Adr (Vo) + Adpu + Adr(Vo)

Can we get large field distances in the interior?
From asymptotic expression: A? = Ae AP

1

K - , = Adr(Vo) = —3 /\ log[Vo] + 53— log|Ar]
Ag¢r AV Agp R R
. . . . 12
Since at large distance F| - —c,;Ret’ we can determine A = < O(1)
12 27 2o
1 )
AG(%) = — ( 3= + 5 ) 10BVe] + 7 loglAr] + -~ log[A] + Ag
0} = e ' O0gl Vo /\L OglAL MNn Og|lR bulia
::b
K3 % T2 Mirror quintic Mirror bi-cubic
Can check examples:
b = —~1.198 —3.798 —4.815

— negative correction to asymptotic result
= no large field ranges hidden in interior! 14



Conclusions

In this talk:

* Discussed the moduli-dependence of the effective quantum gravity cut-off, i.e., the species
scale beyond asymptotic regimes.

: VA
« Showed a universal bound VA

< 0(1) just from consistency of the effective action!

S

* Argued that in Type II CY compactifications the topological genus-1 free energy
reliably computes the species scale everywhere in (vectormultiplet) moduli space.

o Allows to explicitly verify EFT bound in examples — naive asymptotic bound not correct!

e Species scale can be used to bound scalar potentials — leads to same constraint as TCC!

e In Type II setup: F'; robust enough to still give species scale even in 4" = 1

— allows to fix O(1) coefficients and to bound the range for approx. flat, positive potentials
(including the interior)




Thank you!!




