TADPOLES AND GAUGE SYMMETRIES

[2304.06751] with A. Braun, B. Fraiman, M. Graña, H. Parra de Fraitas

Severin Lüst

CNRS, Laboratoire Charles Coulomb Montpellier

> String Phenomenology 2023 Institute for Basic Science, Daejeon July 5

STRING THEORY LANDSCAPE

String theory (once compactified)

(too) many possibilities

String Phenomenology very difficult!

► Here: Landscape of (classical) flux vacua

FLUX COMPACTIFICATION OF IIB AND M-THEORY

► Calabi-Yau compactification with flux:

 $M_D = M_{D-2n} \times_w CY_n \qquad \qquad G_n \in H^n(\mathbb{Z})$ (related via F-theory)

► Vacuum condition:

$$\star G_n = (-i)^n G_n \quad (*)$$

→ fixes complex-structure moduli!

► GVW superpotential:

$$W = \int G_n \wedge \Omega \qquad \qquad D_i W = 0 \iff (*)$$

KÄHLER MODULI STABILIZATION

► For IIB and F-theory:

at the classical level: W independent of Kähler moduli

→ Kähler moduli not stabilized by fluxes!

► Non-perturbative quantum effects:

$$W = \int G_n \wedge \Omega + \sum_{\mathbf{k}} \mathscr{A}_{\mathbf{k}} e^{-2\pi k^{\alpha} T_{\alpha}}$$

→ potential for complex structure moduli + Kähler moduli (KKLT)

recent progress: [Demirtas, Kim, McAllister, Moritz, Rios-Tascon '21] But: tension with holographic interpretation! [SL, Vafa, Wiesner, Xu '21]

This talk: agnostic with respect to Kähler moduli stabilization!

TADPOLE IN F-THEORY

Fluxes: constrained by tadpole cancellation conditions!

 $\frac{1}{2} \int G_4 \wedge G_4 = \frac{\chi(CY_4)}{24} > 0 \ (G_4 = \star G_4)$ ► In M/F-theory:

Scaling with
$$h^{3,1}$$
:

$$\frac{\chi(CY_4)}{24} = \frac{1}{4}(8 + h^{1,1} + h^{3,1} - h^{2,1}) \propto \frac{1}{4}h^{3,1}$$

Scaling of
$$\frac{1}{2}\int G_4 \wedge G_4$$
 with $h^{3,1}$?

Notice: tadpole bound often control parameter for size of corrections [Bena, Dudas, Graña, SL '18] [Gao, Hebecker, Schreyer, Venken '22] [Blumenhagen, Gligovic, Kaddachi '22]

(see Arthur's talk)

F-theory on Calabi-Yau four-fold:

- ► large number of complex structure moduli: $h^{3,1} \gg 1$
- ▶ all stabilized by integer fluxes G_4
- ► at generic point in moduli space

The D3 charge of the fluxes satisfies:

$$Q_{D3}^{\text{flux}} = \frac{1}{2} \int G_4 \wedge G_4 \gtrsim \alpha \times h^{3,1}$$

(α : $\mathcal{O}(1)$ -constant)

For $\alpha > \frac{1}{4}$: moduli stabilization at large $h^{3,1}$ generically not possible!

LARGE COMPLEX STRUCTURE VS. INTERIOR OF MODULI SPACE

At Large Complex Structure (mirror dual to large volume):

- Evidence for the tadpole conjecture
 [Marchesano, Prieto, Wiesner '21]
 [Plauschinn '21][SL '21]

 Coudarchet, Marchesano, Prieto, Urkiola '22, '23]
 Analytic arguments in the strong asymptotic limit [Tsagkaris, Plauschinn '22]
 [Graña, Grimm, van de Heisteeg, Herraez, Plauschinn '22]
- Special, symmetric points in the deep interior of moduli space: [Giryavets, Kachru, Tripathy, Trivedi '03]

Tadpole conjecture can be avoided! [SL, Wiesner '22]

(stabilize 4932 moduli with $N_{\text{flux}} = 3$) see also:

[Braun, Valandro '20] [Blanco-Pillado, Sousa, Urkiola, Wachter '20] [Becker, Gonzalo, Walcher, Wrase '22] [Cicoli, Licheri, Mahanta, Maharana '22]

Interior of moduli space (away from symmetric points)

very difficult to study! Here: M-theory on K3xK3

M-THEORY ON K3 X K3

► Use the (special) four-fold

$K3 \times K3$

as a laboratory for flux stabilization. (first studied in [Aspinwall, Kallosh '05])

► Benefit:

no explicit knowledge of period integrals necessary

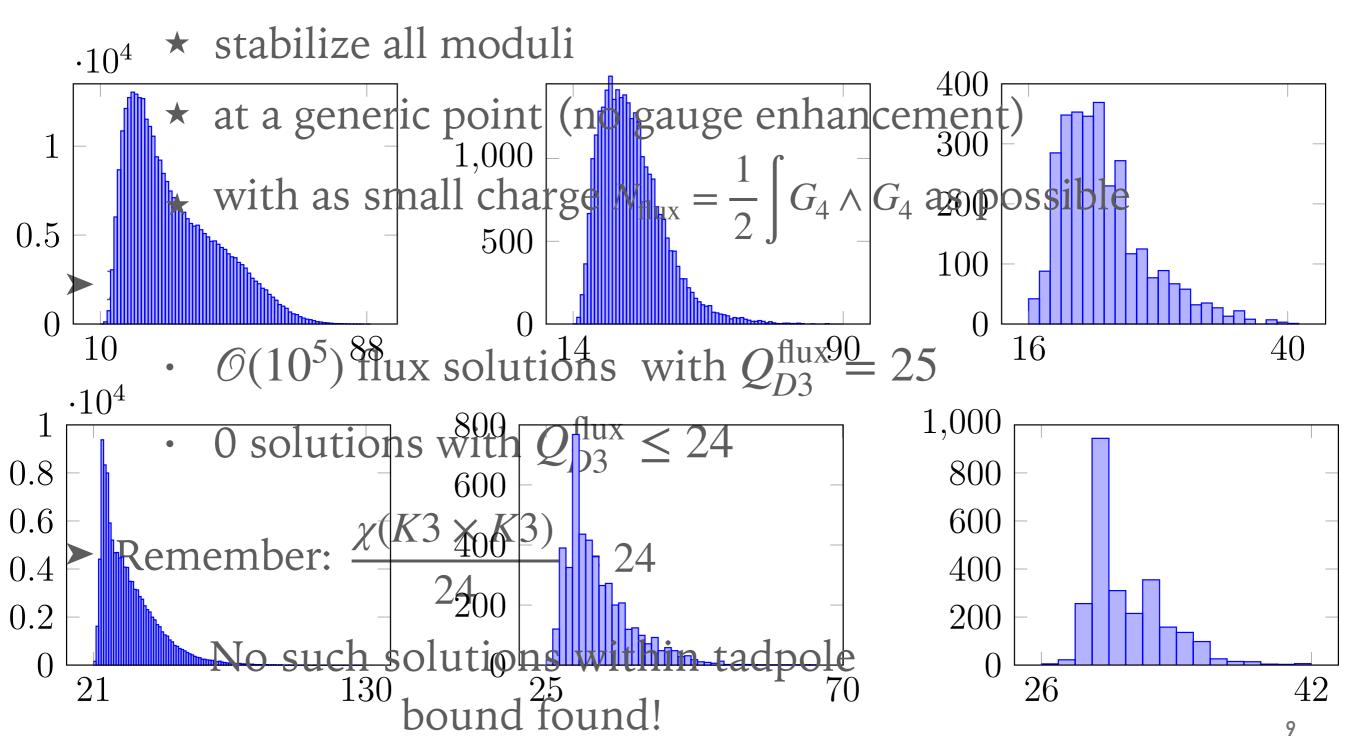
- 1. Generic, smooth K3s: using differential evolution
- 2. Attractive K3s: Systematic and exhaustive classification

DIFFERENTIAL EVOLUTION FOR K3 X K3

[Bena, Blåbäck, Graña, SL '21]

(see Andre's talk)

Find fluxes with differential evolutionary algorithms that



MODULI STABILIZATION ON ATTRACTIVE K3 X K3

Differential Evolution suggests:

Moduli stabilization at generic (smooth) point in moduli space not possible!

But: could be statistical effect...?

- ► If we assume that
 - both K3s are attractive
 - existence of F-theory uplift (elliptic fibration)

--> complete survey of flux vacua possible!

 \rightarrow lower bound on the rank of the gauge group for each $N_{flux} \leq 30$

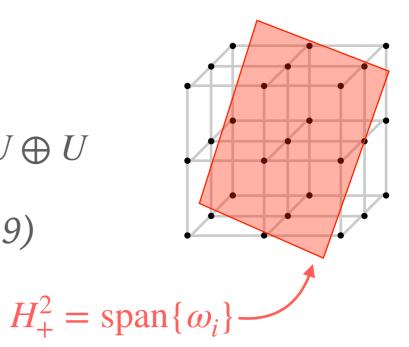
THE MODULI SPACE OF K3

➤ Middle cohomology of K3:

 $H^2(K3,\mathbb{Z}) \cong (-E_8) \oplus (-E_8) \oplus U \oplus U \oplus U$

even, self-dual lattice of sign. (3,19)

Point in moduli space:

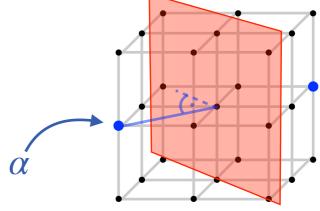


choice of *three* self-dual 3-forms $\omega_i \in H^2(K3,\mathbb{R})$, i = 1,2,3

 $\rightarrow \Omega = \omega_1 + i\omega_2$, $J \sim \omega_3$ 57 hyperkähler moduli!

Orbifold singularity:

root $\alpha \in H^2(K3,\mathbb{Z})$ ($\|\alpha\|^2 = -2$) s.t. $(\alpha, \omega_i) = 0 \quad \forall i$



PICARD LATTICE AND ATTRACTIVE K3

► Picard lattice of a K3-surface S:

 $\operatorname{Pic}(K3) = H^{1,1}(K3) \cap H^2(K3,\mathbb{Z})$

attractive K3: rank(Pic(K3)) = 20

► characterise Pic(*S*) by its orthogonal complement:

 $T = \operatorname{Pic}(K3)^{\perp}$

attractive K3:

two generators of T: $(p,q) \qquad \longrightarrow \qquad \begin{array}{c} \text{intersection pairings:} \\ \begin{pmatrix} p \cdot p & p \cdot q \\ q \cdot p & q \cdot q \end{pmatrix} = \begin{pmatrix} 2a & b \\ b & 2c \end{pmatrix}$

attractive K3s characterised in terms of 3 numbers [a, b, c]!

FLUX VACUA ON ATTRACTIVE K3 X K3

simplest possible flux: [Aspinwall, Kallosh '05]

$$G_4 = Re(\gamma \Omega_1 \wedge \overline{\Omega}_2)$$

→ both K3s are attractive!

► express Ω_i in terms of $[a_i, b_i, c_i]$: $T_i = Pic(K3_i)^{\perp}$

$$\Omega_i = p_i + \tau_i q_i \qquad \text{with} \qquad \tau_i = \frac{-b_i + i\sqrt{4a_ic_i - b_i^2}}{2c_i}$$

intersection data of

▶ integrality of G_4 and tadpole bound:

simple conditions on $[a_i, b_i, c_i]$: *complete classification possible!*

CLASSIFICATION OF ATTRACTIVE K3 X K3 FLUX VACUA:

$N_{ m flux}$	$[a_1b_1c_1]$	$[a_2b_2c_2]$	γ	N_{flux}	$[a_1b_1c_1]$	$[a_2b_2c_2]$	γ	N_{flux}	$[a_1b_1c_1]$	$[a_2b_2c_2]$	γ
24	[8 8 8]	[1 1 1]	$\gamma^{(6)}$	20	[5 0 5]	$[1 \ 0 \ 1]$	$\gamma^{(4)}$	12	$[4 \ 4 \ 4]$	[1 1 1]	$\gamma^{(6)}$
	$[6 \ 0 \ 6]$	$[1 \ 0 \ 1]$	$\gamma^{(4)}$ _		[5 0 1]	[5 0 1]	$\pm i/\sqrt{5}$		$[3 \ 0 \ 3]$	[1 0 1]	$\gamma^{(4)}$
	$[6 \ 0 \ 3]$	$[2 \ 0 \ 1]$	$\pm i/\sqrt{2}$		[3 2 2]	[3 2 2]	$\pm 2i/\sqrt{5}$		$[3 \ 0 \ 1]$	[3 0 1]	$\pm i/\sqrt{3}$
	$[6 \ 0 \ 2]$	$[3\ 0\ 1]$	$\pm i/\sqrt{3}$		[1 0 1]		$(1\pm 2i)\gamma^{(4)}$		$[3 \ 0 \ 1]$		$\gamma^{(6)}$
	$[6 \ 0 \ 2]$	[1 1 1]	$\gamma^{(6)}$	19	[5 1 1]	[5 1 1]	$\pm 2i/\sqrt{19}$		$[2 \ 2 \ 2]$		$\gamma^{(6)}$
	$[6 \ 0 \ 1]$	$[6 \ 0 \ 1]$	$\pm i/\sqrt{6}$	18	[6 6 6]		$\gamma^{(6)}$		[1 1 1]		$2\gamma^{(6)}$
	$[4 \ 4 \ 4]$	$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$	$\gamma^{(6)}_{(4)}$		$[3 \ 3 \ 3]$	$[2 \ 2 \ 2]$	$\gamma^{(6)}$	11	[3 1 1]	[3 1 1]	$\pm 2i/\sqrt{11}$
	$\begin{bmatrix} 3 & 0 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$	$\left. egin{array}{c} \gamma^{(4)} \ (1+i)\gamma^{(4)} \end{array} ight.$	16	[4 0 4]		$\gamma^{(4)}$	9	[3 3 3]		$\gamma^{(6)}$
	$\begin{bmatrix} 3 & 0 & 3 \\ [3 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 \\ 3 & 0 & 2 \end{bmatrix}$	$(1+i)\gamma$ $\pm i\sqrt{2/3}$		$[4 \ 0 \ 2]$	$[2 \ 0 \ 1]$	$\pm i/\sqrt{2}$		$[1 \ 1 \ 1]$		$\sqrt{3}i\gamma^{(6)}$
	$\begin{bmatrix} 3 & 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$	$\frac{1}{\gamma^{(6)}}$		[4 0 1]	[4 0 1]	$\pm i/2$	8	[2 0 2]		$\gamma^{(4)}$
	$\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}$ [2 2 2]	$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$	$2\gamma^{(6)}$		[4 0 1]	$[1 \ 0 \ 1]$	$\gamma^{(4)}$		$\begin{bmatrix} 2 & 0 & 1 \end{bmatrix}$		$\pm i/\sqrt{2}$
	$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$ [2 0 1]	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ [2 0 1]	$\pm 1 \pm i/\sqrt{2}$		$[2 \ 0 \ 2]$	$[2 \ 0 \ 2]$	$\gamma^{(4)}$		$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$		$(1+i)\gamma^{(4)}$
23	$[6 \ 1 \ 1]$	[6 1 1]	$\pm 2i/\sqrt{23}$				$(1+i)\gamma^{(4)}$	7	[2 1 1]		$\pm 2i/\sqrt{7}$
		[3 1 2]	$\pm 4i/\sqrt{23}$		$[2 \ 0 \ 1]$	$[2 \ 0 \ 1]$	± 1	6	[2 2 2]		$\gamma^{(6)}$
22	[6 2 2]	[3 1 1]	$\pm 2i/\sqrt{11}$		[1 0 1]		$2\gamma^{(4)}$	4			$\gamma^{(4)}$
21	[7 7 7]	[1 1 1]	$\gamma^{(6)}$	15	[5 5 5]		$\gamma^{(6)}$	3			$\gamma^{(6)}$
	$[6 \ 3 \ 3]$	$[2\ 1\ 1]$	$\pm 2i/\sqrt{7}$		[4 1 1]	[4 1 1]	$\pm 2i/\sqrt{15}$				1
	$[1 \ 1 \ 1]$	$[1 \ 1 \ 1]$	$(2\pm\sqrt{3}i)\gamma^{(6)}$		[2 1 2]	[2 1 2]	$\pm 4i/\sqrt{15}$				
				14	[4 2 2]	[2 1 1]	$\pm 2i/\sqrt{7}$				
					[2 1 1]	[2 1 1]	$\pm 1 \pm i/\sqrt{7}$				

[Braun, Kimura, Watari '14] [Braun, Fraiman, Graña, SL, Parra de Fraitas '23]

F-THEORY AND FRAME-LATTICE

► F-theory: elliptically fibered K3

corresponding lattice data:

two algebraic curves (fiber and section) with intersection:

R $\begin{pmatrix} -2 & 1\\ 1 & 0 \end{pmatrix} \simeq U$

 $E \hookrightarrow K3$

- ► Frame lattice W: $\operatorname{Pic}(S) = U \bigoplus W$ $\operatorname{root sublattice} W_{\operatorname{root}} \subset W:$ $\operatorname{Pic}(S) = U \bigoplus W$
- ► Goal: For a given M-theory flux vacuum (in terms of $[a_i, b_i, c_i]$): find all possible embeddings $U \hookrightarrow Pic(S)$

► For $T = \text{Pic}(K3)^{\perp}$: Find an embedding $T \hookrightarrow E_8$ and determine the orthogonal complement in E_8 :

lattice of signature (6,0)
$$T_0 = T^{\perp} \subset E_8$$

Theorem: $Pic(S) = U \bigoplus W \iff signature (24,0) such that T_0 \hookrightarrow N, W \hookrightarrow N$ primitively and mutually orthogonal

► Find all embeddings $T_0 \hookrightarrow N$ for all possible N and determine the orthogonal complements in N:

KNESER NICHIYAMA-METHOD

[Braun, Fraiman, Graña, SL, Parra de Fraitas '23]

► Even self-dual lattices of signature (24,0):

24 Niemeier lattices N_I

- Extensive computer search:
 - 1. Given T (in terms of [a,b,c]) find $T_0 = T^{\perp} \subset E_8$
 - 2. Determine all embeddings $T_0 \hookrightarrow N_I$ (for all I = 1,...,24)
 - 3. For each embedding:

Check for roots in the orthogonal complement $W = T_0^{\perp} \subset N_I$ \rightarrow F-theory gauge group

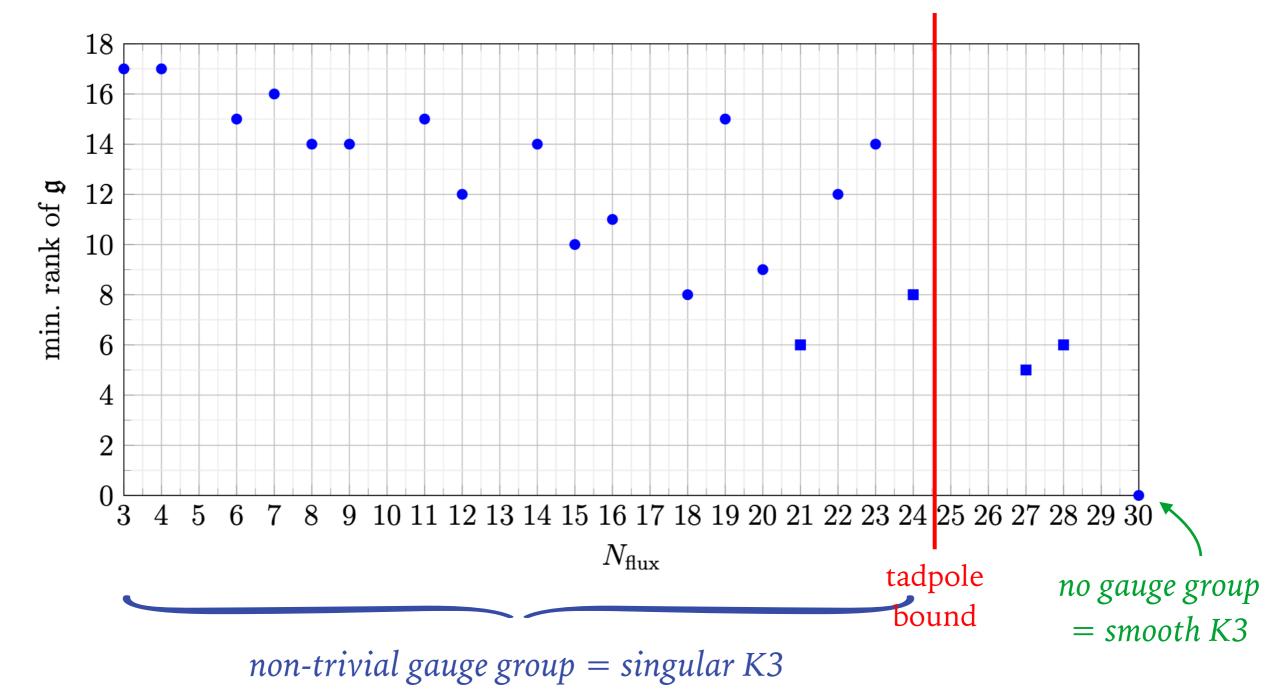
► Result:

Every flux vacuum (within the tadpole bound) has a gauge group!

KNESER-NISHIYAMA METHODS: RESULTS

[Braun, Fraiman, Graña, SL, Parra de Fraitas '23]

Rank of the minimal gauge group as a function of the tadpole charge:



CONCLUSION

M-theory on K3 x K3:

- stabilization of all moduli
- generic point in moduli space (no orbifold singularity)
- fluxes with arbitrary small M2/D3-charge ($Q \leq 24$)

→ cannot have all three!

Generalization:

fluxes with small tadpole

"special" points in moduli space

THANK YOU!