Heterotic/F theory dual $S U(5)$ model

H. Clemens \& Stuart Raby axXivil906.07238, 1908.01110, 1908.01913, 1912.06902, 2001.10047

String Pheno 2023
CTPU Daejeon, Korea

$$
\text { July 7, } 2023
$$

Outline

- Heterotic - F theory duality
- SU(b) GUT w/Wilson line breaking
- $4+1$ split $\left(S U(4) x U(1)_{x}\right)_{\text {Higgs }}$
- Vector-like exotics / bisection
- GUT breaking $\hat{\text { E Guge coupling unification }}$
- R parity / \mathbb{Z}_{4}^{R} symmetry
- Conclusions

Conclusions

- Constructed Global SU(5) F theory model with Wilson line breaking
- $3 \mathrm{SO}(10)$ families and one pair of Higgs doublets + NO vector-like exotics!
- $U(1)_{x}$ and \mathbb{Z}_{4}^{R} symmetry
- $10_{M} 10_{M} 5_{H}, 10_{M} \overline{5_{M}} \overline{5_{H}}, \Gamma_{M} \overline{5_{M}} 5_{H}, \Gamma_{M} \Gamma_{M} \Lambda$
- Complete twin sector
- Different scales!

Heterotic - F theory duality

Heterotic side

- E8 \times E8 on elliptically fibered CY_{3} - Torus fibered over base B_{2}
- E8 broken to $\left(S U(5) X U(1)_{x}\right)_{g a v g e}$ by $\left(S U(4) \times U(1)_{X}\right)_{\text {Higgs }}$ vector bundle
- Freely acting Z_{2} involution (preserving the gauge symmetry) $\pi_{1}\left(C Y_{3}\right)=Z_{2}$
- Wilson line wraps non-contractible cycle, breaks $S U(b)_{\text {gavge }}$ to $S M$
- Higgs data in semi-stable degeneration limit $\mathrm{dP}_{g} U \mathrm{dP}_{g}$ connected along elliptic fiber
- Defines the spectral cover

Heterotic side

- E8 \times E8 on elliptically fibered CY_{3} - Torus fibered over base B_{2}
- E8 broken to $\left(S U(5) X U(1)_{X}\right)_{g a v g e}$ by $\left(S U(4) \times U(1)_{X}\right)_{\text {Higgs }}$ vector bundle
- Freely acting Z_{2} involution (preserving the gauge symmetry) $\pi_{1}\left(C Y_{3}\right)=Z_{2}$ $\frac{d x}{y} \rightarrow \frac{d x}{y}$ Wilson line wraps non-contractible cycle, breaks $S U(b)_{\text {gavge }}$ to $S M$
- Higgs data in semi-stable degeneration limit $\mathrm{dP}_{g} U \mathrm{dP}_{g}$ connected along elliptic fiber
- Defines the spectral cover

F theory side

- Elliptically fibered CY_{4} over base B_{3}
- $B_{3}=$ Pl fibered over same base B_{2} $\mathrm{dP}_{g} s$ determine the Weierstrass function/Tate form

$$
\begin{aligned}
& y^{2}=x^{3}+a_{5} x y+a_{4} z x^{2}+a_{3} z^{2} y+a_{2} z^{3} x+a_{0} z^{5} \\
& a_{i}, z, t=y / x \in H^{0}\left(K_{B_{3}}^{-1}\right)^{[-1]}
\end{aligned}
$$

Z_{2} involution (freely acting on $S_{\text {GUT }}^{\wedge}=K 3$) defines $S_{G U T}^{\vee}=$ Enriques surface with $\pi_{1}\left(S_{G U T}^{\vee}\right)=\mathbb{Z}_{2}$

F theory side

- Elliptically fibered CY_{4} over base B_{3}
- $B_{3}=$ Pl fibered over same base B_{2} $\mathrm{dP}_{9} s$ determine the Weierstrass function/Tate form

$$
\begin{aligned}
& y^{2}=x^{3}+a_{5} x y+a_{4} z x^{2}+a_{3} z^{2} y+a_{2} z^{3} x+a_{0} z^{5} \\
& a_{i}, z, t=y / x \in H^{0}\left(K_{B_{3}}^{-1}\right)^{[-1]}
\end{aligned}
$$

Z_{2} involution (freely acting on $S_{\text {GUT }}^{\wedge}=K 3$) defines $S_{G U T}^{\vee}=$ Enriques surface with $\pi_{1}\left(S_{G U T}^{\vee}\right)=\mathbb{Z}_{2}$

Singular elliptic fibration

Gauge degrees of freedom on 7-branes realized in terms of ADE singularities, in codim 1 in the base B_{3} : divisor S_{GUT}

Geometrically: elliptically fibered CY4 with Weierstrass form

$$
y^{2}=x^{3}+f x+g
$$

f and g are global sections of $O\left(-4 K_{B}\right)$ and $O\left(-6 K_{B}\right)$, resp.

Singular Elliptic Fibration

Gauge degrees of freedom:
discriminant locus

$$
\Delta=4 f^{3}+27 g^{2}=0 \quad \supset \quad S_{\mathrm{GUT}}
$$

Kodaira classification ADE

SU(5) extended Dynkin diagram

Wilson line breaking : New Problems
(1) $y->-y$ breaks gauge symmetry
(2) vector-like exotics

Follow the roots

$$
y^{2}=x^{3}+a_{5} x y+a_{4} z x^{2}+a_{3} z^{2} y+a_{2} z^{3} x+a_{0} z^{5}
$$

Divide by a_{0}^{6} and $\frac{y}{a_{0}^{3}} \rightarrow y, \frac{x}{a_{0}^{2}} \rightarrow x, \frac{z}{a_{0}} \rightarrow z, \frac{a_{j}}{a_{0}} \rightarrow c_{j}$

$$
y^{2}=x^{3}+c_{5} x y+c_{4} z x^{2}+c_{3} z^{2} y+c_{2} z^{3} x+z^{5}
$$

Equivariant crepant resolution \Rightarrow sausages
Under involution 'breaks the gauge group'

$$
\begin{array}{ll}
y \rightarrow-y & c_{j}=0 \quad h_{E_{8}} \rightarrow-h_{E_{8}} \quad \text { i.e. roots } \rightarrow-\text { roots } \\
y \rightarrow-y & c_{j} \rightarrow(-1)^{j} c_{j} \quad h_{S U(5)} \rightarrow-h_{S U(5)}
\end{array}
$$

Follow the roots

Narasimhan-SeshadriTheorem:
A holomorphic vector bundle of degree zero on a Riemann surface is stable IFF it comes from an irreducible unitary representation of the fundamental group of the surface.

Freedman, Morgan \& Witten use this to define $d P_{9}$ in terms of the data of the non - flat $S U(5)_{\text {Higgs }}$ bundle on the Heterotic side.

But this requires the complex gauge group with a choice of $\pm i!!$

Summary: \mathbb{Z}_{2} involution on elliptic curve $: \mathrm{y} \rightarrow-\mathrm{y}$
Problem I - involution breaks GUT
Involution takes GUT roots $\rho^{c} \rightarrow-\rho^{c}$

Note: roots are defined in terms of the pure imaginary part of the complexified group

$$
\begin{aligned}
& \rho^{c}=i \rho \rightarrow-\rho^{c} \\
& \text { where } \rho \text { are physicist's roots }
\end{aligned}
$$

Solution to problem I

Add to involution action by conjugation

$$
\rho^{c}=i \rho \rightarrow-\left(\rho^{c}\right)^{*}=i \rho
$$

Hence i ρ and thus ρ are unchanged !!!

Clemens \&ֻ Raby axXivigo6.07238

Problem 2

Representation	Type of multiplet	Cohomology group dimension
$(8,1)_{0}$	Vector	$h^{2}\left(S_{\text {GUT }}^{v}, K_{S_{\text {CUT }}}\right)=1$
$(1,3)_{0}$	Vector	
$(1,1){ }_{0}$	Vector	$h^{2}\left(S_{\text {GUT }}^{\mathrm{V}}, K_{S_{\text {ciut }}^{\text {¢ }}}\right)=1$
$(8,1)_{0}$	Chiral	$h^{0}\left(S_{\text {GUT }}^{V}, K_{S_{\text {CUT }}^{V}}\right) \oplus h^{1}\left(S_{\text {GUT }}^{V}, K_{S_{\text {CUT }}^{V}}\right)=0$
$(1,3)_{0}$	Chiral	
$(1,1){ }_{0}$	Chiral	
$(3,2)_{-5 / 6}$	Vector	$h^{0}\left(S_{\text {GUT }}^{\text {v/ }}, \mathcal{O}_{S_{\text {GUT }}^{\text {V }}}\left(\varepsilon_{u, v}\right)\right)=0$
$(3,2)_{5 / 6}$	Vector	$h^{0}\left(S_{\text {GUT }}^{\vee}, \mathcal{O}_{S_{\mathrm{CUT}}^{\text {¢ }}}\left(\varepsilon_{u, v}\right)\right)=0$
$(3,2)_{-5 / 6}$	Chiral	$h^{1}\left(S_{\text {GUT }}^{\vee}, \mathcal{O}_{S_{\text {CUT }}^{\vee}}\left(\varepsilon_{u, v}\right)\right) \oplus h^{2}\left(S_{\text {GUT }}^{\vee}, \mathcal{O}_{S_{\text {GUT }}^{\prime}}\left(\varepsilon_{u, v}\right)\right)=1$
$\left.{ }^{(3,2}\right)_{5 / 6}$ K	Chiral	

Vector-like exotics

Beasley, Heckman ह̨ Vafa arXiv:0806.0102 section 7
Donagi ε, Wijnholt
arXiv:0802.2969
Marsano, Clemens, Pantev, Raby $\dot{\xi}$ Tseng arXiv: 1206.6132
Theorem says always occurs on elliptic fiber w/section 16

Solution to problem 2

Build $C Y_{4}=$ elliptic fiber over base B_{3}
 $$
B_{3}=\mathbb{P}^{1} \text { with } 2 \text { sections }
$$
 $$
\downarrow
$$
 $$
B_{2}
$$

Given by Tate form of Weierstrass function

$$
\begin{gathered}
\omega y^{2}=x^{3}+a_{5} \omega x y+a_{4} z \omega x^{2}+a_{3} z^{2} \omega^{2} y+a_{2} z^{3} \omega^{2} x+a_{0} z^{5} \omega^{3} \\
\varsigma\left(b_{3}\right)=\{[\omega, x, y]=[0,0,1]\} \text { first section }
\end{gathered}
$$

Tate form

$\omega, y, x=$ elliptic fiber (torus)
$z=0 \Rightarrow S_{\text {GUT }} \Rightarrow$ descriminant vanishes
z, a_{j} functions on B_{3}
Choose $a_{5}+a_{4}+a_{3}+a_{2}+a_{0}=0$
$\tau\left(b_{3}\right)=\left\{[\omega, x, y]=\left[1, z^{2}, z^{3}\right]\right\}$ second section

Tate form

$\omega, y, x=$ elliptic fiber (torus)
$z=0 \Rightarrow S_{G U T} \Rightarrow$ descriminant vanishes
z, a_{j} functions on B_{3}
Choose

$$
a_{5}+a_{4}+a_{3}+a_{2}+a_{0}=0
$$

$\tau\left(b_{3}\right)=\left\{[\omega, x, y]=\left[1, z^{2}, z^{3}\right]\right\}$ second section
Let $\omega=1, y=t^{3}, x=t^{2}, s=z / t$

$$
\begin{aligned}
C & \equiv a_{5}+a_{4} s+a_{3} s^{2}+a_{2} s^{3}+a_{0} s^{5}-\text { spectral cover } \\
& =\left(a_{5}+a_{54} s-a_{20} s^{2}-a_{0} s^{3}-a_{0} s^{4}\right)(1-s) 4+1 \text { split }
\end{aligned}
$$

Now our elliptic fibration has two sections which are invariant under the initial Z_{2} involution

In the final def. of the Involution

we include a translation by $\xi\left(b_{3}\right)-\tau\left(b_{3}\right)$
No Vector-like exotics !!
Clemens $\xi_{\text {Rabl }}$ 1908.01913

Representation	Type of multiplet	Cohomology group dimension
$(8,1){ }_{0}$	Vector	$h^{2}\left(S_{\text {GUT }}^{\vee}, K_{S_{\text {CUT }}}^{\prime}\right)=h^{0}\left(\mathcal{O}_{S_{\text {GUT }}}\right)=1$
$(1,3)_{0}$	Vector	
$(1,1){ }_{0}$	Vector	
$(8,1)_{0}$	Chiral	$h^{0}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\mathrm{GUT}}^{\vee}}\right) \oplus h^{1}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\text {SUT }}^{\vee}}\right)=0$
$(1,3)_{0}$	Chiral	$h^{0}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\mathrm{GUT}}^{\vee}}^{\wedge}\right) \oplus h^{1}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\text {CUT }}^{\vee}}\right)=0$
$(1,1){ }_{0}$	Chiral	$h^{0}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\text {GUT }}^{\vee}}^{\sim}\right) \oplus h^{1}\left(S_{\mathrm{GUT}}^{\vee}, K_{S_{\text {CuT }}^{\vee}}\right)=0$
$(3,2)_{-5 / 6}$	Vector	$h^{0}\left(\mathcal{O}_{\left.S_{\text {GuT }} \times{ }_{B_{3}^{\vee} W_{4}^{\vee}}\left(\varepsilon_{u, v} \cdot \tilde{\tau}-\varepsilon_{u, v} \cdot \tilde{\zeta}\right)\right)=0}\right.$
$(\overline{\mathbf{3}, 2})_{5 / 6}$	Vector	$h^{0}\left(\mathcal{O}_{S_{\text {GUT }}^{\text {c/ }} \times{ }_{B_{2}^{\nu} W_{4}^{\vee}}}\left(\varepsilon_{u, v} \cdot \tilde{\tau}-\varepsilon_{u, v} \cdot \tilde{\zeta}\right)\right)=0$
$(\mathbf{3 , 2})_{-5 / 6}$	Chiral	$h^{1}\left(\mathcal{O}_{\left.S_{\text {GUT }}{ }^{\text {a }}{ }_{B_{3}^{\vee} W_{4}^{\vee}}\left(\varepsilon_{u, v} \cdot \sim_{\tau}-\varepsilon_{u, v} \cdot \dot{\zeta}\right)\right) \oplus h^{2}(\ldots)=0}\right.$
$(\overline{\mathbf{3}, 2})_{5 / 6}$	Chiral	

$4+1$ split of the spectral divisor
$\left(S U(4) \times U(1)_{x}\right)_{\text {Higgs }}$ breaking
$E_{8} \rightarrow\left(S U(5) \times U()_{x}\right)_{\text {guage }}$ on GUT surface Orbifold has fixed points on B_{3} and B_{2} But freely acting on $S_{G U T}$
$4+1$ split of the spectral divisor
$\left(S U(4) x U(1)_{x}\right)_{\text {Higgs }}$ breaking
$E_{8} \rightarrow\left(S U(5) \times U(1)_{x}\right)_{\text {guage }}$ on GUT surface
Orbifold has fixed points on B_{3} and B_{2} But freely acting on $S_{G U T}$

NOTE, these fixed points are NOT crepant! AND $S_{G U T}$ is in B_{3} and avoids all fixed pts

We choose the base $B_{3}=P^{\prime} \times B_{2}$
and $B_{2}=d P_{7}$
This choice has several nice properties
I. It is the unique del Pezzo surface with
a finite discrete set of orbifold fixed points under the \mathbb{Z}_{2} involution (see Blumenhagen et al. 08II.2936) and has the following properties -
a. There are 3 families of quarks and leptons
b. $\quad d P_{7}$ has the global symmetry $S_{4} \times S_{2}$ This results in a \mathbb{Z}_{4}^{R} symmetry!

\mathbb{Z}_{4}^{R} symmetry explains low energy MSSM

SU(5)

q_{10}	$q_{\overline{5}}$	$q_{H_{u}}$	$q_{H_{d}}$
1	1	0	0

Lee, Raby, Ratz, Ross, Schieren, Schmidt-Hoberg $\underset{\text { cे Vaudrevange }}{ }$ arXiv:1009.0905, 1102.3595

$$
\begin{aligned}
\mathcal{W}_{p}= & Y_{e}^{i j} H_{d} L_{i} \bar{E}_{j}+Y_{d}^{i j} H_{d} Q_{i} \bar{D}_{j}+Y_{u}^{i j} H_{u} Q_{i} \bar{U}_{j} \\
& +\kappa_{i j}^{(0)} H_{u} L_{i} H_{u} L_{j} \\
\mathcal{W}= & \mathcal{W}_{p}+\Delta \mathcal{W}_{\text {non-perturbative }}
\end{aligned}
$$

$$
\begin{aligned}
& \langle W\rangle_{0} / M_{P l}^{2} \sim m_{3 / 2} \\
& \Delta W_{n p} \propto B_{0} m_{\frac{3}{2}} M_{P l}^{2}+m_{3 / 2} H_{u} H_{d} \\
& \quad+\frac{m_{3 / 2}}{M_{P l}^{2}}(Q Q Q L+\bar{U} \bar{U} \bar{D} \bar{E})
\end{aligned}
$$

Sufficiently suppressed to make dim 5 proton decay unobservable !

Matter Curves
$z=a_{5}=0$
$z=a_{420}=0$
$z=\left(\right.$ quadratic in $\left.a_{j}\right)=0$

$$
\begin{aligned}
& h^{0}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0)}\right|_{\Sigma_{10}^{(4)}}\right)-h^{1}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0)}\right|_{\Sigma_{10}^{(4)}}\right)=7-1=6 \\
& h^{0}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0)}\right|_{\Sigma_{5}^{(41)}}\right)-h^{1}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0)}\right|_{\Sigma_{5}^{(41)}}\right)=7-1=6 \\
& h^{0}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0,-)}\right|_{\Sigma_{\overline{5}}^{(44)}}\right)-h^{1}\left(\left.\mathcal{L}_{\text {Higgs }}^{(0,-)}\right|_{\Sigma_{\overline{5}}^{(44)}}\right)=0 .
\end{aligned}
$$

Involution -

$y \rightarrow-y$, conjugation of roots,
translation by $\xi\left(\mathrm{b}_{3}\right)-\tau\left(b_{3}\right)$, and Wilson line $\sim \mathrm{Y}$
Downstairs (after the involution) Keep only symmetric subspace

$$
\Rightarrow 6 \rightarrow 3
$$

3 families

$\Sigma_{\mathbf{1 0}}^{(4)}=\left\{a_{5}=z=0\right\}$	$C_{u, v}$	L_{Y}	$\mathcal{L}_{\text {Higgs }}$	$S U(3) \times S U(2) \times U(1)_{Y}$
$h^{0}\left(\check{\mathcal{L}}_{\mathbf{1 0}}^{(4)[\pm 1]}\right)$	+1	+1	3	$(\mathbf{1}, \mathbf{1})_{+1}$
	-1	-1		$(\mathbf{3}, \mathbf{2})_{+1 / 6}$
	+1	+1		$(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}$
$h^{1}\left(\check{\mathcal{L}}_{\mathbf{1 0}}^{(4)[\pm 1]}\right)$	+1	+1	0	$(\mathbf{1}, \mathbf{1})_{+1}$
	-1	-1		$(\overline{\mathbf{3}}, \mathbf{2})_{+1 / 6}$
	+1	+1		$(\mathbf{3}, \mathbf{1})_{+2 / 3}$

$\Sigma_{\overline{5}}^{(41)}=\left\{a_{420}=z=0\right\}$	$C_{u, v}$	L_{Y}	$\mathcal{L}_{\text {Higgs }}$	$S U(3) \times S U(2) \times U(1)_{Y}$
$h^{0}\left(\check{\mathcal{L}}_{\overline{\mathbf{5}}}^{(41)[\pm 1]}\right)$	+1	+1	3	$(\overline{\mathbf{3}}, \mathbf{1})_{+1 / 3}$
	-1	-1		$(\mathbf{1}, \mathbf{2})_{-1 / 2}$
$h^{1}\left(\check{\mathcal{L}}_{\overline{\mathbf{5}}}{ }^{(41)[\pm 1]}\right)$	+1	+1	0	$(\mathbf{3}, \mathbf{1})_{-1 / 3}$
	-1	-1		$(\mathbf{1}, \mathbf{2})_{+1 / 2}$

Clemens \& Raby 1908.01913

I pair of Higgs doublets And No Higgs triplets!

$\sum_{\overline{5}}^{(44)}=\left\{a_{4} a_{3}+a_{5}\left(a_{0}-a_{3}\right)=z=0\right\}$	$C_{u, v}$	L_{Y}	$\mathcal{L}_{\text {Higgs }}$	$S U(3) \times S U(2) \times U(1)_{Y}$
$h^{0}\left(\check{\mathcal{L}}_{\overline{\mathbf{5}}}^{(44)[+1]}\right)$	+1	+1	0	$(\overline{\mathbf{3}}, \mathbf{1})_{+1 / 3}$
$h^{0}\left(\check{\mathcal{L}}_{\overline{5}}^{(44)[-1]}\right)$	-1	-1	1	$(\mathbf{1}, \mathbf{2})_{-1 / 2}$
$h^{1}\left(\check{\mathcal{L}}_{\overline{5}}^{(44)[+1]}\right)$	+1	+1	0	$(\mathbf{3}, \mathbf{1})_{-1 / 3}$
$h^{1}\left(\check{\mathcal{L}}_{\overline{\mathbf{5}}}{ }^{(44)[-1]}\right)$	-1	-1	1	$(\mathbf{1}, \mathbf{2})_{+1 / 2}$

Clemens \& Raby 1908.01913

$U(D)_{x}$ due to $4+1$ split

$$
\omega=1, y=t^{3}, x=t^{2}, s=t / z
$$

$$
C=\left(a_{5} s^{4}+a_{54} s^{3}-a_{20} s^{2}-a_{0}(s+1)\right)(s-1) 4+1 \text { split }
$$

Intersection of 3 matter curves $=$ cubic coupling

$$
\begin{gathered}
10_{m}^{-1}, \overline{5}_{m}^{+3}, 5_{h}^{+2}+\overline{5}_{h}^{-2} \\
10_{m} \overline{5}_{m} \overline{5}_{h}, 10_{m} 10_{m} 5_{h} \\
\text { but NOT } 10_{m} \overline{5}_{m} \overline{5}_{m}
\end{gathered}
$$

Right-handed Neutrinos Clemens $\&$ Raby 2001.10047

$$
\Gamma^{-5} \equiv 1_{m}^{-5}, \quad \Lambda^{+10}
$$

$\Gamma^{-5}{ }_{m} \overline{5}_{m}^{+3} 5_{h}^{+2}$ Dirac neutrino mass allowed $\Gamma_{m}^{-5} \Gamma_{m}^{-5} \Lambda^{+10}$ also allowed

$U(1)_{X} \rightarrow \mathbb{Z}_{2}$ matter parity by involution

Defining equations for fermionic states (then SUSY gives bosons) $10, \overline{5}: \quad a_{j}, z=0$ $(5, \overline{5})_{\text {Higgs }}: \quad a_{j} a_{k}, z=0$ gauginos: $\quad z=0$

$$
\begin{aligned}
& T_{u, v}:\left\{a_{i}, z\right\}=-i\left\{a_{i}, z\right\} \\
& T_{u, v}:\{w, x, y\}=\{w,-x, i y\} \\
& T_{u, v}: \text { Tate form }=- \text { Tate form }
\end{aligned}
$$

TABLE 3: $T_{u, v}$	$T_{u, v}$-charge	space
matter fields on $\frac{\Sigma_{10}^{(4)}}{\left\{C_{u, v}\right\}}$	-1	$H^{0}\left(\frac{\Sigma_{10}^{(4)}}{\left\{C_{u, v}\right\}} ; \mathcal{L}_{\text {Figs }}^{\vee,[\pm 1]}\right)$
matter fields on $\frac{\Sigma_{\overline{5}}^{(41)}}{\left\{C_{u, v}\right\}}$	-1	$H^{0}\left(\frac{\Sigma_{5}^{(41)}}{\left\{C_{u, v}\right\}} ; \mathcal{L}_{\text {Figs }}^{\vee,[\pm 1]}\right)$
Figs fields on $\frac{\Sigma_{\overline{5}}^{(44)}}{\left\{C_{u, v}\right\}}$	$+i$	$H^{0}\left(\frac{\Sigma_{\overline{5}}^{(44)}}{\left\{C_{u, v}\right\}} ; \mathcal{L}_{\text {Figs }}^{\vee,[-1]}\right) / H^{1}\left(\frac{\Sigma_{\overline{5}}^{(44)}}{\left\{C_{u, v}\right\}} ; \mathcal{L}_{\text {Highs }}^{\vee,[-1]}\right)$
bulk matter on $\frac{S_{\mathrm{GUT}}}{\left\{C_{u, v}\right\}}$	$-i$	$H^{2}\left(K_{\left.\frac{S_{\mathrm{GUT}}}{\left\{C_{u, v}\right\}}\right)}\right.$

*Given the \mathbb{Z}_{4}^{R} charges, $\quad i^{q+1}$ for the fermionic components, then bosonic components have charge i^{q} with $\theta^{\prime}=-i \theta$

$$
\mathbb{Z}_{4}^{R} \text { - Lee, Raby, Ratz, Ross, \&̀ Schieren } 1009.0905
$$

Relative Scales - Visible vs. Hidden sector Clemens \ddagger Raby 2001.10047

$$
S_{E H} \sim M_{*}^{8} \int_{\mathbb{R}^{3}, 1 \times B_{3}} R \sqrt{-g_{\delta}} d^{10} x
$$

$$
M_{P l}^{2} \simeq M_{*}^{8} \cdot \operatorname{Vol}\left(B_{3, \delta}\right)
$$

$$
S_{\text {guage }} \sim-M_{*}^{4} \int_{R^{3,1} \times S_{i}}\left(\operatorname{Tr}\left(F_{1}^{2}\right) \sqrt{-g_{1}}+\operatorname{Tr}\left(F_{2}^{2}\right) \sqrt{-g_{2}}\right) \delta^{2}\left(z_{0}\right) d^{10} x
$$

$$
\alpha_{G}^{-1} \sim M_{*}^{4} \operatorname{Vol}\left(S_{i}\right)
$$

$$
M_{G}(i)^{-4} \sim \operatorname{Vol}\left(S_{i}\right)
$$

$$
\begin{aligned}
& B_{3,0}=B_{3}^{(1)} \cup B_{3}^{(2)}=P_{a}^{1} \times B_{2} \cup P_{b}^{1} \times B_{2} \\
& S_{1}=\left(\{a=\infty\} \times B_{2}\right) \cup\left(P_{a}^{1} \times C\right) \\
& S_{2}=\left(\{b=\infty\} \times B_{2}\right) \cup\left(P_{b}^{1} \times C\right) \\
& m_{i}=\operatorname{Vol}\left(P_{i}^{1}\right), i=a, b, \quad \operatorname{Vol}(C)=\int_{B_{2}}|q|^{2}
\end{aligned}
$$

$$
\operatorname{Vol}\left(S_{i}\right)=\operatorname{Vol}\left(B_{2}\right)+m_{i} \operatorname{Vol}(C), \quad m_{i}=\operatorname{Vol}\left(P_{i}^{1}\right), i=a, b
$$

$$
\alpha_{G}(i) M_{P l} \sim \frac{\sqrt{\left(m_{1}+m_{2}\right) \operatorname{Vol}\left(B_{2}\right)}}{\operatorname{Vol}\left(B_{2}\right)\left(1+K m_{i}\right)}
$$

Visible sector $\alpha_{G}(1)^{-1}=24, M_{G}(1)=3 \times 10^{16} \mathrm{GeV}$

$$
\alpha_{G}(2) / \alpha_{G}(1)=\frac{1+K m_{1}}{1+K m_{2}}, \quad M_{G}(2) / M_{G}(1)=\left(\frac{1+K m_{1}}{1+K m_{2}}\right)^{1 / 4}
$$

Twin sector, take $M_{G}(2)=3.9 \times 10^{16} \mathrm{GeV}, \alpha_{G}(2)^{-1}=8.7$

$$
\text { or } \frac{1+K m_{1}}{1+K m_{2}}=2.8
$$

There are at least two possible effective low energy theories

1) Twin Higgs VEV $=0 . \quad \mathrm{M}_{t G U T}>\mathrm{M}_{G U T}$ and $\alpha_{t G U T}>\alpha_{G U T}$. Thus the LE theory has a complete twin sector with twin baryons and leptons heavier then the SM baryons and leptons.*
*This assumes twin Yukawa couplings are equal to SM Yukawas.
2) Effective twin theory has $\mathrm{N}_{Q C D}=3, N_{F}=6$ and described by Seiberg electric dual $-\mathrm{i}, \mathrm{j}=1,2,3, \quad \mathrm{a}=1,2$ weak isospin

$$
\begin{aligned}
& W \propto \lambda_{i j}^{u} Q^{i a} H_{u a} \overline{Q_{j 1}}+\lambda_{i j}^{d} Q^{i a} H_{d a} \overline{Q_{j 2}} \\
& \quad \text { If }\left\langle H_{u}\right\rangle=\left\langle H_{d}\right\rangle \simeq M_{G U T} \quad \text { Flat direction }
\end{aligned}
$$

All twin quarks and charged leptons obtain mass
at $\mathrm{M}_{G U T}$ and $S U(2) \times U(1)_{Y} \rightarrow U(1)_{I E M}$.
LE theory includes tHiggs \& tHiggsinos, tphoton \& tphotino

$$
\Lambda_{\text {teCD }} \approx M_{G U T} \exp \left(-\frac{2 \pi}{9 \alpha_{G}(2)}\right) \sim 9 \times 10^{13} \mathrm{GeV},
$$

$$
\begin{aligned}
& \Lambda_{t Q C D} \approx T \exp \left(-\frac{2 \pi}{9 \alpha_{G}(2)}\right) \sim 9 \times 10^{13} \mathrm{GeV}, \\
& m_{3 / 2} \sim \frac{\Lambda_{t Q C D}^{3}}{M_{P l}^{2}} \sim 130 \mathrm{TeV}
\end{aligned}
$$

Gluino condensate

Possible μ term due to Giudice-Masiero mechanism produces a negative mass squared for the Higgs which keeps the Higgs VEV at the GUT scale.

Wilson line and the GUT scale

- The Wilson line wraps the GUT surface breaking $S U(5) \rightarrow$ SN gauge group
- $M_{\text {GUT }}=M_{C} \sim / / R_{\text {cycle }}$
- Non-local GUT breaking Precise Gauge Coupling Unification
- Complete twin world with scales fixed by the size of the twin manifold
- Mirror matter - Dark Matter candidate

Conclusions

- Constructed Heterotic/F theory dual SU(b) model with Wilson line breaking
- 3 SO(10) families and one pair of Higgs doublets + NO vector-like exotics!
- \mathbb{Z}_{2} matter parity and \mathbb{Z}_{4}^{R} symmetry
- Complete twin sector

There are many, many more open questions

For the Future

$U(1)_{x}$ anomly?
Right-handed neutrino masses
Yukawa couplings
Stabilizing moduli and SUSY breaking
Do orbifold fixed points in B_{3} break SUSY? Low energy theory?? Inflation ??

- Dark matter ε possible portal to the visible sector (see Kawamura \& Raby 2212.00840)

This model provides a virgin theoretical laboratory with many hidden possibilities !!

Ohank you

INTRODUCTION TO THE STANDARD MODEL AND BEYOND

Quantum Field Theory, Symmetries and Phenomenology

STUART RABY

Cambridge University Press

