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20 years ago …
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20 years ago …
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20 years ago …

Profound results with assumptions, e.g.:  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20 years ago …

Today: NEW route to such 
ensembles of string solutions. 
We can get actual ensembles of 
flux vacua in CY constructions 
such as Kreuzer-Skarke.

Profound results with assumptions, e.g.:  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     “ ” what’s their physics?10500
• Which relevant scales (masses, string coupling, 

scale of supersymmetry breaking, regimes for 
successful uplifts [cf. Hebecker’s talk])?


• Universal features (distribution of physical 
properties in a single geometry and in 
ensembles of geometries)?


• Do minima satisfying all UV constraints actually 
exist?

We actually know very little about this even after 20 
years, because we have not been able to look.
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Status of actual ensembles
No systematic analysis due to methodological limitations

Few examples:


• Small (Demirtas et al. 1912.10047, Alvarez et al. 2009.03325)


• P11226 (Conlon et al. 0502058), P11169 (Martinez-Pedrera et al. 1212.4530), 
some of our examples using homotopy methods (Cicoli et al. 1312.0014)


• Analytic approximations: Coudarchet et al. (2212.02533)


• …

|W0 |

5



What do we need?
Easily obtain flux vacua relevant for our physics questions:

•Many geometries, different regions of moduli space

•Different questions (e.g. SUSY, non SUSY vacua)

•Many samples (statistics, dedicated search algorithms) 

  JAXvacua→

2306.06160
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• CY orientifold compactifications of Type IIB to 4D  supergravity concentrating on 


•  complex structure moduli  ,


• axio-dilaton .

• Prepotentials at large complex structure (LCS) (Hosono et al. hep-th/9403096,hep-th/9406055); moduli values in Kähler cone








• Kähler potential and flux superpotential:







•   are choices of integer 3-form fluxes satisfying tadpole constraint.


• The 4D F-term scalar potential for the fluxes reads





" = 1
h1,2

− Zi

τ

F = − 1
6 κijk Zi Zj Zk + 1

2 aij Zi Zj + bi Zi + i
2 ξ̃ + Finst(Z) ,

Finst(Z) = − 1
(2π i)3 ∑

q∈ℳ(X̃3)
n(0)

q Li3 (exp2π i qi Zi) , Li3(x) =
∞

∑
m=1

xm

m3

K = − log[−i(τ − τ̄)] − log(− i Π† ⋅ Σ ⋅ Π) , W = (f − τh)T ⋅ Σ ⋅ Π(Z) ,

Π = (2F − ZiFi, Fi,1,Zi)T , Fi = ∂ZiF , Σ = ( 0 1
−1 0) .

f, h ∈ ℤ2(h1,2+1)

VFlux = eK (Kττ̄DτW Dτ̄W + Ki%̄DiW D%̄W) , DIW = ∂IW + W∂IK

We are interested in 
minima of this system: 

A) SUSY:  
B) Non-SUSY: 

DIW = 0
DIW ≠ 0

Which flux solutions?
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Which models?
CY orientifold data — interfacing with previous work (CYTOOLS)

We work with mirror pairs of CY3 hypersurfaces  

in toric varieties  

obtained from triangulations of 4D polytopes 

X3, X̃3

V4, Ṽ4
Δ∘, Δ

http://cy.tools

Demirtas, Rios-Tascon, McAllister 2211.03823

Computations performed with

473,800,776 reflexive polytopes in 4D 
Kreuzer, Skarke (KS) [hep-th/0002240]

κijk , c2 , GVs
CY data — our input

We construct smooth orientifolds with 

 following [Jefferson, 

Kim 2211.00210, Moritz 2305.06363]

h1,1
− = h1,2

+ = 0

We compute GV data for models with 

 using the algorithm of 

[Demirtas et al. 2303.00757]

h1,2(X3) ≤ 25
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JAXvacua
EFT module

• Flexible code (i.e. re-use for different CY data) for EFT properties with JAX 
 
 
 

• Auto-diff: machine precision derivatives; easy to implement and adapt to 
different properties.

Sampling module 
Choice of initial guesses for 

moduli and fluxes

Model construction 
CY orientifold data from 

computational tools

EFT module 
Auto-diff to construct SUGRA 
equations from prepotential

Optimisation module 
Find minima by solving  

using scipy.optimize.root
∂IV = 0

Filter module 
Check for vacua and consistent 

LCS truncation

κijk , c2 , GVs F Π, K, W V , ∂I∂JV , M3/2 , …
CY data Prepotential

Only hardcoded 
input!

auto-diffauto-diff

Periods EFT properties

Code example:

F = − 1
6 κijk Zi Zj Zk + … , ∂iF = − 1

2 κijk Zj Zk + …On paper:
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JAXvacua
Making things fast: compiled and vectorised code

• Jit automatically generates C++ code during the first evaluation, 
executable on CPU/GPU/TPU

Code example:

Sampling module 
Choice of initial guesses for 

moduli and fluxes

Model construction 
CY orientifold data from 

computational tools

EFT module 
Auto-diff to construct SUGRA 
equations from prepotential

Optimisation module 
Find minima by solving  

using scipy.optimize.root
∂IV = 0

Filter module 
Check for vacua and consistent 

LCS truncation
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JAXvacua
Making things fast: compiled and vectorised code
• Jit automatically generates C++ code during the first evaluation, executable on CPU/GPU/TPU


• Vmap automatically vectorises and parallelises code (CPU/GPU)

Advantages: 
• Avoids manual rewriting of functions which is typically rigid and messy 

•Can be used flexibly depending on the purpose

•Huge speed up

Code example:

Difference between evaluating the Hessian for  solutions in sequence or by 
using vmap and evaluate on all solutions at once.

O(104)

Sampling module 
Choice of initial guesses for 

moduli and fluxes

Model construction 
CY orientifold data from 

computational tools

EFT module 
Auto-diff to construct SUGRA 
equations from prepotential

Optimisation module 
Find minima by solving  

using scipy.optimize.root
∂IV = 0

Filter module 
Check for vacua and consistent 

LCS truncation
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JAXvacua
Making things fast: compiled and vectorised code
• Jit automatically generates C++ code during the first evaluation, executable on CPU/GPU/TPU


• Vmap automatically vectorises and parallelises code (CPU/GPU)


Orders of magnitude speed improvements!

Timing for evaluating DIW

Implementation is 
• completely modular: approach easily 

generalisable

✴ to more general flux vacua 

including e.g. conifolds (wip)

✴ to include Kähler moduli (wip)

Sampling module 
Choice of initial guesses for 

moduli and fluxes

Model construction 
CY orientifold data from 

computational tools

EFT module 
Auto-diff to construct SUGRA 
equations from prepotential

Optimisation module 
Find minima by solving  

using scipy.optimize.root
∂IV = 0

Filter module 
Check for vacua and consistent 

LCS truncation
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JAXvacua
Sampling module

Cone Sphere Box

LCS Conifold Axions

Geometry:

Use-cases:

Initial guesses for moduli VEVs Flux choices

ISD sampling: 
We sample half of the fluxes plus initial points  together. 
Then, the remaining fluxes are fixed by the ISD condition 

    (also [Tsagkaris, Plauschinn 2207.13721]) 

 

where we sample the RHS. In general, rounding is necessary 

  (ISD no longer satisfied  optimisation module) 

Effective sampling method with generically higher success rate.

Zi
0 , τ0

ISD+ : m̃J − τ0 ñJ = "JI (mI − τ0 nI)
ISD− : m̃I − τ0 ñI = "IJ (mJ − τ0 nJ)

m̃ , ñ ∈ ℝ rounding m , n ∈ ℤ →

⟨Zi⟩

Zi
0

δZi

Fluxes  uniformly sampled from  

 

(in practice ) and we impose typically 

f, h
f, h ∈ [−L, L]2(h1,2+1)

L ≲ 10
Nflux ≤ QD3

Sampling module 
Choice of initial guesses for 

moduli and fluxes

Model construction 
CY orientifold data from 

computational tools

EFT module 
Auto-diff to construct SUGRA 
equations from prepotential

Optimisation module 
Find minima by solving  

using scipy.optimize.root
∂IV = 0

Filter module 
Check for vacua and consistent 

LCS truncation
13



JAXvacua
Optimisation module

Optimisation targets:

∂IV = 0

DIW = 0 DIW ≠ 0
Dubey, SK, Schachner 

[2306.06160]
SK, Schachner 
[2307.XXXX]

• Currently, we employ scipy.optimize.root together with multiprocessing! 

• We are implementing new optimisers that are adapted to JAX parallelisation scheme (wip)

Sampling module 
Choice of initial guesses for 

moduli and fluxes

Model construction 
CY orientifold data from 

computational tools

EFT module 
Auto-diff to construct SUGRA 
equations from prepotential

Optimisation module 
Find minima by solving  

using scipy.optimize.root
∂IV = 0

Filter module 
Check for vacua and consistent 

LCS truncation
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JAXvacua
Filter module

1.) Positive string coupling and 
gauge inequivalence under SL(2,ℤ)

Z2

Z1

Z3

Zeff

2.) Extremum is minimum (positivity of Hessian) 
and absence of flat directions

3.) Validity of LCS expansion (VEVs within radius of convergence of instanton sum): 

                    in practice:  

General technique to determine radius of convergence are currently unavailable, but can 

easily be added to the module once available.

ε = |Finst |
|Fpert |

≪ 1 ε ≤ 0.01

Sampling module 
Choice of initial guesses for 

moduli and fluxes

Model construction 
CY orientifold data from 

computational tools

EFT module 
Auto-diff to construct SUGRA 
equations from prepotential

Optimisation module 
Find minima by solving  

using scipy.optimize.root
∂IV = 0

Filter module 
Check for vacua and consistent 

LCS truncation
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JAXvacua
h11=2: Results

QD3

To quantify our sampling biases, compare different samplings for optimisation

Benchmarking our performance: 

Generating solutions at fixed Nflux = 34
VS.

100 nodes each with 32 cores to find 
24,882 solutions in 75,000 hours

[Martinez-Pedrera et al. 1212.4530]

4 cores with 5GB of memory 
33,019 solutions in 45 minutes

[Dubey, SK, Schachner 2306.06160]

⟨Zi⟩ = Zi
0 + δZi , ⟨τ⟩ = τ0 + δτ
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JAXvacua
h12=4,5 — previously hard to access. Now easy

With similar computational resources of 10 CPUs:

  minima [Cicoli, Klevers, SK et al. 1312.0014]   minima5(1) → 5(106)
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ε = |Finst |
|Fpert |

Scaling behaviour at larger  h1,2

Success rate decreases rapidly because

• high dimensionality means slower evaluation time

• harder to perform numerical optimisation

• phase of Kähler cone becomes narrower 
[Demirtas et al. 1808.01282]

Important to stress: sampling with  

much harder than allowing . 

We actually looked at examples with  

and found solutions with 

Nflux ≤ QD3

Nflux → ∞
h1,2 > 100

Nflux ≫ QD3

Timing Minimisation:

JAXvacua
Numerical results — h1,2 ≤ 25
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Let’s do some interesting 
physics…
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What can we say about ?W0

Work with J. Ebelt (Master student), A. Schachner
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What can we say about ?W0




Universal behaviour


Looks Gaussian?

(Near origin: Gaussian  Uniform [Douglas])

W0 = 2/π eK/2 W

≈
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What can we say about ?W0

Gaussian distribution is a reasonable fit


Gaussian approximation  Expectation for 
smallest value for  for a given sample.


Standard deviation + sample size relevant! 

Benchmark for dedicated search algorithms.

→
|W0 |
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Can we construct SUSY breaking minima ?DIW ≠ 0

SK, Schachner WIP
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New SUSY breaking vacua
Ensemble with DIW ≠ 0

Non-SUSY solutions with : 

• interesting for their potential application to de Sitter model 
building [Saltman, Silverstein hep-th/0402135] 

• almost nothing known about solution space apart from e.g. 
for continuous fluxes [Gallego et al. 1707.01095] 

• can be searched for easily our framework by using  

for the optimisation target


We see some interesting hierarchical suppressions!

DIW ≠ 0

∂IV = 0

 solutions,  solutionsh1,2 = 2 : 171167 h1,2 = 3 : 79068
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Conclusions
A new look on flux vacua

• Efficient code to generate ensembles of flux vacua (autodiff, 
just in time compilation, vectorisation)


• First large ensembles beyond 1 & 2 moduli cases. Ensembles 
are necessary to demonstrate/disprove non-existence of 
certain types of solutions.


• Universal Gaussian behaviour across geometries


• Flexible code allows to search for different type of solutions.  
Here: Ensemble of SUSY breaking solutions. Hint for 
hierarchies


• 20 years after Douglas et al. seminal works we are now ready 
to compare with meaningful ensembles. Let’s look at their 
physics!  
Which imprint to discreteness and finiteness leave? Can we 
achieve interesting parameter regimes.
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Thank you!

2. Learn K directly
CY: Quintic in        : 

<latexit sha1_base64="GAjR+EEolYb9p+vcxKPWwGL4q7U=">AAAB+HicbVDLSgMxFL3js9ZX1aWbYBFcSJmRii6LblxWsA9ox5JJM21okhmTjFCHfofbuhK3fozg35hpZ6GtBwKHc+7lnpwg5kwb1/12VlbX1jc2C1vF7Z3dvf3SwWFTR4kitEEiHql2gDXlTNKGYYbTdqwoFgGnrWB0m/mtZ6o0i+SDGcfUF3ggWcgINlbyuwKbYRCItD55rPZKZbfizoCWiZeTMuSo90pf3X5EEkGlIRxr3fHc2PgpVoYRTifFbqJpjMkID2jHUokF1X46Cz1Bp1bpozBS9kmDZurvjRQLrccisJNZSL3oZeK5jf6f30lMeO2nTMaJoZLMj4UJRyZCWQuozxQlho8twUQxmxeRIVaYGNtV0RbhLX57mTQvKt5lxb2vlms3eSUFOIYTOAMPrqAGd1CHBhB4gleYwpvz4kydd+djPrri5DtH8AfO5w9ny5OG</latexit>

4 <latexit sha1_base64="6OtTQC4dQjbk14+yuUTFkmAKuzY=">AAACI3icbVDLSgMxFM34rPU16tJNsAiCUjK1VTdC0Y3LCvYB7Thk0kwbmnmQZIR26J+49Ufc1pWI4MJ/MZ3OQlsv5HA4515u7nEjzqRC6MtYWl5ZXVvPbeQ3t7Z3ds29/YYMY0FonYQ8FC0XS8pZQOuKKU5bkaDYdzltuoPbqd98okKyMHhQw4jaPu4FzGMEKy055sXIQY+V05FjpVhK8TzFssZOJBnULdrXpna0DK8hcswCKqK04CKxMlIAWdUc87PTDUns00ARjqVsWyhSdoKFYoTTcb4TSxphMsA92tY0wD6VdpLeN4bHWulCLxT6BQqm6u+JBPtSDn1Xd/pY9eW8NxXPXNf/z2/HyruyExZEsaIBmS3zYg5VCKeBwS4TlCg+1AQTwfR/IeljgYnSseZ1ENb82YukUSpalSK6LxeqN1kkOXAIjsAJsMAlqII7UAN1QMAzeAUT8Ga8GBPj3fiYtS4Z2cwB+FPG9w8gEKDZ</latexit>

z50 + z51 + z52 + z53 + z54 +  z0z1z2z3z4 = 0

Figure 4: � accuracies at k = 6 achieved by the dense network with one and two hidden
layers. The shaded area indicates the range of | | that was not used during training,
and thus shows the extrapolation behavior of the networks. For reference, the � accuracy
achieved by Donaldson’s algorithm for the same range of | | is shown. The dashed line
corresponds to the extrapolation of using Donaldson’s balanced metric at  = 100 over
real values of  . The error band in each case cooresponds to the maximal and minimal
value obtained respectively when evaluating the � accuracy at different angles.

of the metric will depend on the position in the CY manifold as well as on the complex
structure. In contrast to the methods presented to learn the Kähler potential, we now aim
to learn the components of the metric g directly. This has several potential advantages:

• Instead of the need of predicting N2
k values for learning the Kähler potential, the NN

always only needs to predict the independent components of the metric, i.e. d2 real
parameters for a complex CY d-fold (respectively d+1 when working in the ambient
space) [FR: why is this relevant? do we learn in the ambient space?].

• In comparison to approaches which use a general ansatz for the Kähler potential,
learning the metric directly saves two derivatives when evaluating the Monge-Ampère
loss.

To the best of our knowledge, our experiments are the first to test whether these heuristic
differences can be numerically advantageous.

However, there is also a disadvantage as compared to the method discussed in Section 2.6.
The metric g is not automatically Kähler, nor does it automatically glue nicely across
patches of d+1. So, in addition to finding a Ricci-flat metric that solves the Monge-
Ampère equation (2.3), we will need to impose that the Kähler and gluing conditions are
satisfied. As mentioned previously, the fact that the Kähler property is not ensured by
construction also allows us to apply this approach to more general (non-Kähler) SU(3)-
structure metrics. The overlap condition is important, since if we worked just on a single
patch, a trivial solution would be the flat (and hence trivially Ricci flat) metric on that
patch. [FR: Not sure to which extent this is correct in our setup (I can’t remember
whether I wrote this, but I think it’s wrong). It is correct theoretically, but a flat metric
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 =  x M4+D A4 XD(ψ)

XD

Gerdes, Krippendorf: 2211.12520

We learn the metric of extra-dimensional spaces

Highly recommended: Andreas Schachner’s talk on Thursday
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