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Motivations and Summary

• Generalized symmetries become a vibrant field, with applications in

QFT, condensed matter physics, particle phenomenology . . .

• No global symmetry swampland conjecture: any UV complete QG

theory has no exact global symmetry, including the generalized

symmetries

• The past research are almost all about bosonic symmetries

• In this talk, discuss fermionic (higher-form) symmetries, the examples

and other properties: gauging, curved space-time . . .
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p-form symmetry

• We consider a QFT in d-dimensional space-time R1,d−1

• An invertible p-form symmetry with symmetry group G is generated by

(d − p − 1)-dimensional topological operators Ug (M
(d−p−1)), g ∈ G :

(Gaiotto, Kapustin, Seiberg, Willett 14’)

Ug (M
(d−p−1))Uh(M

(d−p−1)) = Ugh(M
(d−p−1)) . (1)

and acts on p-dimensional objects(operators) V (C(p)).

Ug(M(d-p-1)) Uh(M(d-p-1))

=

Ugh(M(d-p-1))
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p-form symmetry

• Ug (M
(d−p−1)) has non-trivial action on V (C(p)) when M(d−p−1) and

C(p) are non-trivially linked. ⟨C (p),M(d−p−1)⟩ is the linking number.

R(g) is a representation of G .

Ug (M
(d−p−1))V (C(p)) = R(g)⟨C

(p),M(d−p−1)⟩V (C(p)) . (2)

M(d-p-1)

C(p)

• Example: pure 4d U(1) gauge theory

(1) U(1)
(1)
e 1-form symmetry acting on Wilson loops

(2) U(1)
(1)
m 1-form symmetry acting on ‘t Hooft loops
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Fermionic p-form symmetry

• An invertible fermionic p-form symmetry is generated by

(d − p − 1)-dimensional topological operators Uϵ(M
(d−p−1)), ϵ is a

fermionic spinor with Grassmannian components

Uϵ1(M
(d−p−1))Uϵ2(M

(d−p−1)) = Uϵ1+ϵ2(M
(d−p−1)) . (3)

and acts on p-dimensional objects(operators) V (C(p)).

• The action has the same form as the bosonic p-form symmetry

Uϵ(M
(d−p−1))V (C(p)) = R(ϵ)⟨C

(p),M(d−p−1)⟩V (C(p)) . (4)

• What is the symmetry group G? In this talk assume to be

non-compact G = Rs , s is the number of spinor components
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Fermionic 0-form symmetry

(1) Global supersymmetry acts on local operators, with supercurrent

j(d−1) and supercharge Q =
∫
M(d−1) j(d−1) (and Q̄).

Uϵ(M
(d−1)) = e i(ϵ̄Q+Q̄ϵ) . (5)

(2) Shifting symmetry of a free Dirac spinor

S =

∫
−ψ̄γµ∂µψddx . (6)

• Invariant under the shift ψ → ψ + ϵ, ∂µϵ = 0.

• Generated by the topological operator

Uϵ(M
(d−1)) = exp

(
i

∫
M(d−1)

⋆
[
ϵ̄γ(1)ψ − ψ̄γ(1)ϵ

])
, (7)

• γ(p) is the p-form γ-matrix γ(p) =
1
p!γµ1...µpdx

µ1 . . . dxµp .
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Fermionic 1-form symmetry

• How to construct fermionic higher-form symmetry?

• Naively one can construct 1d operator as an integration of γµψ over a

circle C, e. g.
V (C) =

∫
C
(η̄γµψ − ψ̄γµη)dxµ . (8)

• However there is no (d − 2)-dim. topological operator in the free

fermion theory that links C.
• One should consider theories with Rarita-Schwinger field ψµ!
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Fermionic 1-form symmetry

• Consider a free Rarita-Schwinger field ψµ (d ≥ 3)

S =

∫
−ψ̄µγ

µνρ∂νψρd
dx , (9)

with gauge symmetry δλψµ = ∂µλ.

• There is a gauge invariant operator (fermionic analog of the bosonic

Wilson loop)

Vη(C) = exp

(
i

∫
C
(η̄ψµ + ψ̄µη)dx

µ

)
. (10)

• The “charge” η is unquantized, since the gauge group is non-compact.
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Fermionic 1-form symmetry

• From the conserved 2-form current

Jµν = −γµνρψρ , (11)

one can construct (d − 2)-dim. topological operator

Uϵ(M
(d−2)) = exp

(
i

∫
M(d−2)

[
ϵ̄ (⋆J )(d−2) + (⋆J̄ )(d−2) ϵ

])
(12)

• Acts on Vη(C) as

⟨Uϵ(M
(d−2))Vη(C)⟩ = exp

(
i(ϵ̄η + η̄ϵ)⟨C,M(d−2)⟩

)
⟨Vη(C)⟩ . (13)

• The phase factor is a Grassmannian even element.
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Fermionic p-form symmetry

• Generalize to a free fermionic p-form tensor gauge field

ψ(p) =
1
p!ψµ1µ2...µpdx

µ1 . . . dxµp , with fermionic p-form symmetry

(d ≥ 2p + 1)

S =

∫
−ψ̄(p) ∧ γ(d−2p−1) ∧ dψ(p) (14)

with gauge symmetry δλψ(p) = dλ(p−1). Quantization: (Lekeu, Zhang 21’)

• Similarly, one can construct the p-dimensional gauge invariant operator

Vη(C(p)) = exp

(
i

∫
C(p)

(η̄ψ(p) + ψ̄(p)η)

)
, (15)

• (d − p − 1)-dim. topological operator acting on Vη(C(p))

Uϵ(M
(d−p−1)) = exp

(
i

∫
M(d−p−1)

[
ϵ̄ (⋆J )(d−p−1) + (⋆J̄ )(d−p−1)ϵ

])
(16)

Jµ1µ2...µp+1 ≡ γµ1...µp+1ν1...νpψ
ν1...νp , (17)
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Examples with fermionic higher-form symmetry

• A general class of examples: Lagrangian with ψ(p) fields, γ-tensor and

one derivative in each term.

• For example the “fermionic BF theory” in 4d

S =

∫
d4x

(
−χ̄µνγ

µνρσγ5∂ρψσ − ψ̄µγ
µνρσγ5∂νχρσ

)
. (18)

• Gauge transformation δϵψµ = ∂µϵ, δλχµν = 2∂[µλν]
• The gauge invariant operators

Vη(C) = exp

(
i

∮
C
(η̄ψµ + ψ̄µη) dx

µ

)
(19)

and

Wξ(S) = exp

(
i

∮
S

1

2
(ξ̄χµν + χ̄µνξ) dS

µν

)
(20)

are the charged objects under fermionic 1-form and 2-form symmetries.
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Examples with fermionic higher-form symmetry

• Vη(C) and Wξ(S) has non-trivial action on each other

⟨Vη(C)Wξ(S)⟩ = exp

(
1

2
(ξ̄η + η̄ξ)⟨S, C⟩

)
⟨Wξ(S)⟩ ,

⟨Wξ(S)Vη(C)⟩ = exp

(
1

2
(ξ̄η + η̄ξ)⟨C,S⟩

)
⟨Vη(C)⟩ ,

= exp

(
1

2
(ξ̄η + η̄ξ)⟨S, C⟩

)
⟨Vη(C)⟩ .

(21)

• Hence in d = 4, the theory is a fermionic TQFT on R1,3, in the sense

that correlation functions are given by the linking number.

• Analogous to the bosonic BF theory, it is also gapped.
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6d (4,0) theory

• Another example is 6d (4,0) theory with 32 supercharges, which is

conjectured to be the strongly coupled limit of 5d maximal supergravity

(Hull 00’)(Bertrand, Borsten, Cederwall, Gunaydin, Henneaux, Hohenegger, Hohm,

Hull, Minasian, Lekeu, Leonard, Samtleben, Strickland-Constable, Zhang. . . )

• Analogue of strongly coupled 5d N = 2 SYM → 6d (2,0) theory
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6d (4,0) theory
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6d (4,0) theory

• 6d (4,0) supermultiplet, fields organized under reps of little group

SU(2)× SU(2) and the R-symmetry group USp(8):

(1) CMNPQ : (5, 1; 1), a 4-index object with the same symmetry as the

Riemann tensor

(2) Ψa
MN : (4, 1; 8), a fermionic 2-form gauge field, in the fundamental

rep. of USp(8)

(3) B−
MN : (3, 1; 27)

(4) ϕ: (1, 1; 42)

(5) λ: (2, 1; 48)

• Even a 6d Lorentz covariant free action is not found yet

• Nonetheless, in the free limit, ΨMN fields have a fermionic 2-form

symmetry!
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6d (4,0) theory

• In the free limit, the kinetic term for ΨMN fields is

L6d = Ψ̄MNΓ
MNPQR∂PΨQR , (22)

One can construct gauge invariant surface operator charged under

fermionic 2-form symmetry

Vη(S) = exp

(
i

∮
S

1

2
(η̄ΨMN + Ψ̄MNη) dS

MN

)
. (23)

• After dimensional reduction to 5d on S1, decompose {M} = {µ, 5},
write ΨMN = (ψ̂MN , 0)

T

ψµν = ψ̂µν , ψµ = ψ̂µ5 . (24)

• 5d Lagrangian

L5d = ψ̄µνγ
µνρστ∂ρψστ + 2iψ̄µνγ

µνρσ∂ρψσ − 2iψ̄µγ
µνρσ∂νψρσ . (25)

• A fermionic 1-form symmetry and a fermionic 2-form symmetry in 5d
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Gauging of fermionic p-form symmetries

• How do we gauge such symmetries? Take the 0-form example

Sfree =

∫
Md

−ψ̄γµ∂µψddx . (26)

• Invariant under the shift ψ → ψ + ϵ, global symmetry−→ ∂µϵ = 0.

• After ϵ becomes local, the way to write down a gauge invariant action

is to introduce the dynamical gauge field ψµ,

δϵψµ = ∂µϵ . (27)

• The combination ψµ − ∂µψ is gauge invariant.

• The gauged action is

Sgauged =

∫
ddxψ̄γµ(ψµ − ∂µψ) . (28)

• Analogous to gauging shifting symmetry of a free scalar??
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Gauging of fermionic p-form symmetries

• However, the action is still not gauge invariant!

Sgauged =

∫
ddxψ̄γµ(ψµ − ∂µψ) . (29)

δϵSgauged =

∫
ddx ϵ̄γµ(ψµ − ∂µψ) (30)

• ’t Hooft anomaly: cannot cancel it by adding local counter terms.

• Uplift to (d + 1)-dim., by rewriting

Sfree ∼
∫
Md+1

∂MΨ̄ΓMN∂NΨ (31)

• Md is the boundary of Md+1

• Introduce the (d + 1)-dim. gauge field ΨM , one can write the gauge

invariant (d + 1)-dim. action

Sgauge invariant ∼
∫
Md+1

(Ψ̄M − ∂MΨ̄)ΓMN(ΨN − ∂NΨ) (32)
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Gauging of fermionic p-form symmetries

• Nonetheless, one can gauge it by introducing a more exotic gauge field

ψµ, with gauge transformation

δψµ = ∂µϵ+
1

f
γµϵ , (33)

f is a constant with the unit [M]−1. (Love 03’)

• The action

Sgauged = −
1

2

∫
ddx(ψ̄γµDµψ + ψ̄

←−
D µγ

µψ

+
1

f
ψ̄ψ − f DµψD

µψ − f Dµψγ
µνDνψ)

(34)

is gauge invariant! (Dµψ ≡ ∂µψ − ψµ)

• Similar phenomenon happens for fermionic p-form symmetry as well, in

the cases of a free fermion p-form gauge field. (Ongoing work)

• Nonetheless, such gauge fields do not have a gauge invariant kinetic

term, geometric and physical interpretation?
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Breaking of fermionic p-form symmetries and swampland

• What about theories in curved space-time

• Expectation: fermionic p-form global symmetries should be broken in a

quantum gravity theory (no global symmetry swampland conjectures)

(1) 0-form symmetry case, a Dirac spinor in curved space-time

S [ψ]sugra = −
∫

ddx
√
| det g | ψ̄γµ∇µψ , (35)

∇µ = ∂µ +
1

4
ωab
µ γab . (36)

• The action is invariant under ψ → ψ + ϵ, where ∇µϵ = 0, ϵ is a

covariantly constant spinor.

• The symmetry is not present on a general space-time background,

hence such fermionic symmetry is broken in quantum gravity theory
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Breaking of fermionic p-form symmetries and swampland

(2) fermionic 1-form symmetry

S [ψµ]sugra = −
∫

ddx
√
| det g | ψ̄µγ

µνρ∇νψρ . (37)

The symmetry generator

Uϵ(M(d−2)) = exp

(∫
M(d−2)

ϵ̄ ⋆ (γµνρψρ) + c .c .

)
(38)

is only topological when ∇µϵ = 0.

• Hence the fermionic higher-form symmetries can also be present on a

particular fixed background M with covariantly constant spinors, but

broken on a general background.

• As another comment, on such background M, one can still define the

fermionic TQFTs and gauge invariant extended operators!
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Summary

• We discussed fermionic p-form symmetries, as non-compact shifting

symmetry of fermionic p-form fields

• Example of fermionic higher-form symmetry:

(1) Free fermionic p-form fields

(2) fermionic TQFTs constructed with fermionic p-form fields

S =

∫
d4x

(
−χ̄µνγ

µνρσγ5∂ρψσ − ψ̄µγ
µνρσγ5∂νχρσ

)
. (39)

• Relation to known spin TQFTs?

• The free limit of 6d (4,0) theory also possesses fermionic 2-form

symmetry. Breaking the symmetry with interaction terms?
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Summary

• Constructing more interesting physical examples with fermionic

higher-form symmetries, e. g. gaugino condensation? (Farakos’s talk)

• Non-invertible fermionic symmetries?

• Fermionic higher-form symmetries in string theory context? Seems hard

as the only massless fermionic tensor field is the gravitino in supergravity.

• Higher version of supersymmetry?

• Relation to condensed matter physics models, bosonization etc..

• Thanks!
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