Minimal matter supergravity and asymmetric orbifold

Yuta Hamada 하마다 유타 (KEK)

Based on the work in progress w/ Zihni Kaan Baykara, Houri-Christina Tarazi, Cumrun Vafa (Harvard)

2023/07/03 String Phenomenology 2023

Supergravity without universal hypermultiplet Minimal matter supergravity and asymmetric orbifold

Yuta Hamada 하마다 유타 (KEK)

Based on the work in progress w/ Zihni Kaan Baykara, Houri-Christina Tarazi, Cumrun Vafa (Harvard)

2023/07/03 String Phenomenology 2023

We want to identify theories in the Landscape and the Swampland.

We want to identify theories in the Landscape and the Swampland.

We want to identify theories in the Landscape and the Swampland.

This seems to be understood for minimal supersymmetric d > 6 theories.

10d, 16 SUSY

For d > 6, the minimal number of SUSY is 16. The anomaly-free gauge groups are $SO(32), E_8 \times E_8, E_8 \times U(1)^{248}, U(1)^{496}$ [e.g. Green-Schwarz-Witten]. SO(32) and $E_8 \times E_8$ are in the Landscape (Heterotic/Type I). while $E_8 \times U(1)^{248}$ and $U(1)^{496}$ are in the Swampland.

However, the anomaly can not be cancelled in a supersymmetric way for $E_8 \times U(1)^{248}$ and $U(1)^{496}$ [Adams-DeWolfe-Taylor '10]. Also ruled out by 1-brane argument [Kim-Shiu-Vafa '19].

9d, 8d, 7d

All vacua can be understood geometrically (with frozen singularities) in terms of M/F-theory. [..., de Boer+ '01, ..., Font+ '20, Font+ '21, Fraiman+ '21, Cvetic+ '22, Parra De Freitas '22, Montero+ '22]

- $9d \rightarrow IIA \text{ on } S^1/\mathbb{Z}_2$
- 8d \rightarrow F-theory on elliptic K3.
- $7d \rightarrow$ M-theory on K3.

Swampland argument based on brane probe suggests this is indeed all the vacua [YH, Vafa '21, Bedroya, YH, Montero, Vafa '21] (Note: for 7d, classification of 3d SCFT is assumed)

We want to identify theories in the Landscape and the Swampland. This seems to be understood for minimal supersymmetric d > 6theories.

Let's go to $d \leq 6$ theories.

Talk Plan

- 1. d = 6 supergravity and the Swampland
- 2. d = 5 supergravity and the Swampland

Talk Plan

- 1. d = 6 supergravity and the Swampland
- 2. d = 5 supergravity and the Swampland

6d Supergravity

6d gravity theories with minimal supersymmetry (8 SUSY). Multiplets are

- Gravity multiplet $(g_{\mu\nu}, \psi_{\mu}, B^{-}_{\mu\nu})$.
- Tensor multiplet $(B^+_{\mu\nu}, \phi, \psi)$.
- Vector multiplet (A_{μ}, λ) .

Moduli

- Hyper multiplet (ϕ, ψ) .

Anomaly Cancellation

Anomaly cancellation conditions: Gauge group $G_1 \times \cdots \times G_k$.

The anomaly polynomial for 6d theory is 8-form.

 $Tr(R^4)$ and $Tr(F^4)$ cancels w/o Green-Schwarz-Sagnotti mechanism.

$$H - V = 273 - 29T, \qquad Tr(R^4)$$

$$0 = \sum_{R} n_R^i B_R^i - B_{adj}^i, \qquad Tr(F^4) \qquad \text{with } tr_R(F^4) = B_R tr_F(F^4) + C_R[tr_F(F^2)]^2, \qquad n_R^i: \text{ #(hyper in rep. } R \text{ of } G_i).$$

There are other conditions for GSS mechanism to work.

The cancellation of perturbative anomaly implies the absence of the global anomaly [Lee, Tachikawa '20; Davighi, Lohitsiri '20].

Bottom-up

The number of consistent (at the level of EFT) 6d SUGRA is finite for T < 9 [Kumar, Morrison, Taylor '10].

The infinite series appear for $T \ge 9$.

The Swampland bounds using brane probe [Kim-Shiu-Vafa '19; Tarazi-Vafa '21] explains the finiteness.

We try to do explicit enumeration using ideas from graph theory [Үн, Loges, WIP].

Talk by Gregory Loges on Tuesday. Session1-B.

[Vafa '96, Morrison-Vafa '96, Morrison-Vafa '96]

Top-down

A large class of 6d $\mathcal{N} = (1,0)$ vacua is obtained from F-theory compactified on the elliptic Calabi-Yau threefold.

Q: Given an experience at higher dimensions, is this all vacua (with possibly frozen singularities?)

F-theory vacua

The number of neutral hypermultiplets:

 $H^0 = h^{2,1}(X) + 1$

Universal hypermultiplet

The number of tensor hypermultiplets:

 $T = h^{1,1}(B) - 1$

The rank of gauge group is $r(T) = h^{1,1}(X) - h^{1,1}(B) - 1.$

If these are all consistent vacua, we have the Swampland condition: All consistent 6d SUGRA must contain at least one neutral hyper. Otherwise it is in the Swampland.

Asymmetric Orbifold

The left-mover and right-mover live in different spaces.

 \rightarrow Non-geometric.

Modular invariance is key to constructing consistent models. The level-matching condition is

Imposing the level-matching condition for the twisted sector provides non-trivial constraints.

[Baykara, Tarazi, YH, Vafa, WIP]

$E_8 \times E_8$ Heterotic on T^4/\mathbb{Z}_2

Heterotic string on T^4 . The special point in the Narain moduli space, the Lie algebra lattice is realized as a momentum lattice:

$$\begin{split} \Gamma^{20,4} &= 2\Gamma^{8,0}(E_8) + \Gamma^{4,4}(D_4).\\ \Gamma^{4,4}(D_4) &= \{(p_L, p_R) \mid p_L \in \Lambda_W(D_4), p_R \in \Lambda_W(D_4), p_L - p_R \in \Lambda_R(D_4)\}.\\ (n_1, \cdots, n_4), \text{ or }\\ \left(n_1 + \frac{1}{2}, \cdots, n_4 + \frac{1}{2}\right). \\ \begin{pmatrix} n_1 + \frac{1}{2}, \cdots, n_4 + \frac{1}{2} \end{pmatrix}. \\ & \sum_{i=1}^{N} n_i \in 2\mathbb{Z} \end{split}$$

 \mathbb{Z}_2 twist: $p_L \to p_L$, $p_R \to -p_R$. Shift vector in $E_8 \times E_8$: $V_L = \frac{1}{2}(1,1,0,0,0,0,0,0;1,1,0,0,0,0,0,0)$.

Spectrum

From $E_8 \times E_8$ heterotic asymmetric orbifold on T^4/\mathbb{Z}_2 , we obtain the specturm

G + T + 300V + 544H.

The gauge group is

$$E_7 \times SU(2) \times E_7 \times SU(2) \times SO(8).$$

All hypers are charged:

 $2(56, 2, 1, 1, 1) + 2(1, 1, 56, 2, 1) + (1, 2, 1, 2, 8_V) + (1, 2, 1, 2, 8_S) + (1, 2, 1, 2, 8_S)$

No neutral hypers.

Anomaly Cancellation

The anomaly polynomial for 6d theory is 8-form. Tr(R^4) and Tr(F^4) cancels w/o Green-Schwarz-Sagnotti mechanism.

$$\operatorname{Tr}(R^{4}): H - V = 273 - 29T.$$

$$\operatorname{Tr}(F^{4}): \sum_{R} n_{R}^{i} B_{R}^{i} - B_{\mathrm{Adj}}^{i} = 0.$$
 with $\operatorname{tr}_{R}(F^{4}) = B_{R} \operatorname{tr}_{F}(F^{4}) + C_{R}[\operatorname{tr}_{F}(F^{2})]^{2}.$

The heterotic asymmetric orbifold T^4/\mathbb{Z}_2 satisfies the anomaly-free conditions.

[Baykara, Tarazi, YH, Vafa, WIP]

Type IIB on
$$T^4/\mathbb{Z}_2$$

Take IIB on T^4 . The special point in the Narain moduli space, the Lie algebra lattice is realized:

$$\Gamma^{4,4}(D_4) = \{ (p_L, p_R) | p_L \in \Lambda_W(D_4), p_R \in \Lambda_W(D_4), p_L - p_R \in \Lambda_R(D_4) \}.$$

$$\mathbb{Z}_2$$
 twist: Left $p_L \rightarrow -p_L$, Right $(-1)^{F_R}$.

The spectrum is

$$G + 9T + 12V + 24H$$
.

All vectors are U(1) gauge bosons, and charges of hyper are $\left(\pm 1,0,0,0,0^8\right) + \left(\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2},0^8\right) + \left(\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2},0^8\right) + \left(\pm \frac{1}{2},\pm \frac{1}{2},$ 6d $\mathcal{N} = (1,0)$ supergravity theories without neutral hypermultiplets are in the Landscape.

Moduli space

We have seen two models without neutral hypermultuplets. Are these models disconnected to F-theory vacua?

Not necessary. The models can be Higgssed.

Heterotic T^4/\mathbb{Z}_2 orbifold $\xrightarrow{\text{Higgsing}} G + T + 244H$.

All hypers are neutral. Maybe dual to F-theory on elliptically fibered \mathbb{F}_n (n = 0, 1, 2).

Moduli space in IIB model

IIB T^4/\mathbb{Z}_2 orbifold $\xrightarrow{\text{Higgsing}} G + 9T + 8V + 20H.$

All hypers are neutral. The same can be obtained by F-theory on

$$\frac{T^2 \times T^2 \times T^2}{\mathbb{Z}_2 \times \mathbb{Z}_2'}$$

 \mathbb{Z}_2 : (-1, -1, 1) twist. Half shift on the third torus. \mathbb{Z}_2' : (1, -1, -1) twist. No shift.

This suggests the following picture:

In the context of F-theory compactification when the base volume becomes stringy size, all hypers (including volume modulus of base) are charged.

Talk Plan

- 1. d = 6 supergravity and the Swampland
- 2. d = 5 supergravity and the Swampland

S¹ compacfitication

 S^1 compactifications of 6d models.

6d	
gravity multiplet	$\xrightarrow{S^1}$
tensor multiplet	$\xrightarrow{S^1}$
vector multiplet	$\xrightarrow{S^1}$
hypermultiplet	$\xrightarrow{S^1}$

5d

gravity multiplet + vector multiplet

vector multiplet

vector multiplet

hypermultiplet

5d SUSY multiplets are gravity, vector, hyper.

5d hyper-free models

Let us compactify 6d models w/o neutral hypermultiplets.

 $\stackrel{S^1}{\rightarrow}$ 5d theory without neutral hypers.

5d vector multiplet has a real scalar ϕ . The VEV $\langle \phi \rangle$ is mass of charged hypers.

By turning on $\langle \phi \rangle \neq 0$, all hypers become massive. We obtain 5d theory without hypers [Gkountoumis+ '23].

This is again non-geometric. M-theory on CY_3 has at least one universal hyper.

Open question

As pointed out in [Gkountoumis+ '23], all no-hyper models have even rank.
 Is this a Swampland condition, or just a lamppost of orbifold construction here?
 Anomaly may not be helpful to explain evenness.

If there is one hyper, then both rank and even rank theories appear. [Candelas+ '16] provides CY_3 with $h^{1,1} = 13$, $h^{2,1} = 0 \longrightarrow H = 1$, V = 12. and with $h^{1,1} = 2$, $h^{2,1} = 0 \longrightarrow H = 1$, V = 3.

- The maximal rank is 22. Similar to the rank bound in 16Q model, (rank) $\leq 26 - d$ [Kim-Tarazi-Vafa '19].

Any argument for maximal rank?

Summary&Future direction

- We investigate $d \leq 6$ non-geometric compactifications.
- Non-geometric compactifications provide models without universal hypermultiplets.
- These models seem to follow some patterns. Can we explain it using the Swampland principles?