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1. Introduction
Question: Why are there 3 generations of quarks and leptons?
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Accidental? Has physical meaning ?

Standard Model Extra dimension model

Question: Why are there 3 generations of quarks and leptons?
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1. Introduction

Accidental? Has physical meaning?

Standard Model Extra dimension model
6d chiral fermion

Degenerate

Zero modes=generation

Question: Why are there 3 generations of quarks and leptons?
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1. Introduction

Accidental? Has physical meaning?

Standard Model Extra dimension model
6d chiral fermion Zero modes

Decided by topology of 
extra dimension

Question: Why are there 3 generations of quarks and leptons?

Degenerate



Atiyah-Singer index theorem (2 dimension) 

   

: chiral zero modes #   : a smooth manifold

n+ − n− ∝ ∫ℳ
F

n± ℳ
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1. Introduction

              

Chiral zero modes #　　　　　　flux quantization#

n+ − n− = ∫T2

F
2π

= M

AS index theorem on magnetized T2

We get three generations if we choose .M = 3

Contribution of flux
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2. Purpose of my talk

In previous paper, we obtain the following formula 
on  orbifoldsT2/ZN

 

：flux quanta、 ：sum of winding number at fixed points

n+ − n− =
M
N

−
V+

N
+ 1

M V+

Makoto Sakamoto,Maki Takeuchi,Yoshiyuki Tatsuta,


Phys. Rev. D 102 (2020) 025008
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2. Purpose of my talk

In previous paper, we obtain the following formula 
on  orbifoldsT2/ZN

 

：flux quanta、 ：sum of winding number at fixed points

n+ − n− =
M
N

−
V+

N
+ 1

M V+

① This formula was not derived as index theorem, only confirmed to 
be consistent after examining the left and right sides independently. 

②  The physical meaning is not clear.



 

：flux quanta、 ：sum of winding number at fixed points

n+ − n− =
M
N

−
V+

N
+ 1

M V+

11

2. Purpose of my talk

Contribution of flux

What’s physical meaning?

In previous paper, we obtain the following formula 
on  orbifoldsT2/ZN

① This formula was not derived as index theorem, only confirmed to 
be consistent after examining the left and right sides independently. 

②  The physical meaning is not clear.
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3.  orbifold modelT2/ZN

ZN

＝T2 : z ∼ z + 1 ∼ z + τ

ZN : z ∼ ρz (ρ = ei 2π
N )

Ex) T2/Z2 (τ = i)

Independent region is  of 1/N T2

①

②

①  

②

Z2 : z ∼ − z

T2 : z ∼ z + 1 ∼ z + τ

Same point

＝

Imz

Rez

Imz

Rez

z = 0,
1
2

,
τ
2

,
1 + τ

2

Fixed point

・  in flux backgroundℳ4 × T2/ZN



13

 eigen function ZN ψm
T2/ZN±,n,j(z)

Boundary condition

 

 

,

ψm
T2/ZN+,n, j(z + 1) = U1(z) ψm

T2/ZN+,n, j(z)

ψm
T2/ZN+,n, j(z + τ) = U2(z) ψm

T2/ZN+,n, j(z)

U1(z) = eiqΛ1(z) U2(z) = eiqΛ2(z)

ψm
T2/ZN+,n, j(ρz) = ρmψm

T2/ZN+,n, j(z)

winding # :  ψm
T2/ZN+,n,j(ρz + zf

j ) = ρχ+ψm
T2/ZN+,n,j(z + zf

j ) ⇒ χ+

ρ = ei 2π
N

Define winding number of  eigen function  at fixed  point ZN ψm
T2/ZN+,n, j(z) z f

j

In case of , z f
j = 0 χ+ = m

Winding number

3.  orbifold modelT2/ZN
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Rez

Ex) T2/Z2

Atiyah-Singer index theorem on  orbifoldT2/ZN

Imz

It is difficult to apply AS index theorem because  
fixed points are singular points.

Singular point

We consider blow-up manifold without singular points.

3.  orbifold modelT2/ZN

T. Kobayashi, H. Otsuka, H. Uchida., JHEP 08, 104 (2019),046
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Rez

Ex) T2/Z2

Atiyah-Singer index theorem on  orbifoldT2/ZN

Imz Singular point

3.  orbifold modelT2/ZN

T. Kobayashi, H. Otsuka, H. Uchida., JHEP 08, 104 (2019),046

It is difficult to apply AS index theorem because  
fixed points are singular points.

r

We consider blow-up manifold without singular points.
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Rez

Ex) T2/Z2

Atiyah-Singer index theorem on  orbifoldT2/ZN

Imz A part of magnetized S2

Blow-up manifold

3.  orbifold modelT2/ZN

T. Kobayashi, H. Otsuka, H. Uchida., JHEP 08, 104 (2019),046

It is difficult to apply AS index theorem because  
fixed points are singular points.

We consider blow-up manifold without singular points.
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Rez

Ex) T2/Z2

Atiyah-Singer index theorem on  orbifoldT2/ZN

Imz A part of magnetized S2

Blow-up manifold

We can apply AS 
index theorem to 
blow-up manifold 
without singularity.

3.  orbifold modelT2/ZN

T. Kobayashi, H. Otsuka, H. Uchida., JHEP 08, 104 (2019),046

It is difficult to apply AS index theorem because  
fixed points are singular points.

We consider blow-up manifold without singular points.
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 with winding  number cannot connect to  , 

because the boundary conditions are different at 

ψ0
T2/ZN,+(z) ψ0

S2,+(z′￼)

z ∼ zf
j

4. Blow-up of  orbifold T2/ZN
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Purpose :  To remove winding number

 ψn
T2/ZN,+(ρz) = ρmψn

T2/ZN,+(z) ψ̃n
T2/ZN,+(ρz) = ψ̃n

T2/ZN,+(z)

ψ̃T2/ZN,+(ρz) = ρξF− ξR
2 +m ψ̃T2/ZN,+(z) ρξF− ξR

2 +m = 1

However this gauge transformation changes flux,  
this is called ``singular gauge transformation’’.

 
 : localized flux at fixed point,  : localized curvature at fixed point 

               , ψ̃T2/ZN,±(z) = UξF UξR ψT2/ZN,±(z) UξF ∝ ( z
z̄ )

ξF
2

UξR ∝ ( z
z̄ )

ξR
4

ξF ξR

``Singular” gauge transformation

We consider in case of  fixed point            (             in case           )zf
j = 0 zf

j ≠ 0m → χ+

4. Blow-up of  orbifold T2/ZN
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Localized flux ξF

ρξF− ξR
2 +m = 1

The information of winding numbers are replaced by 
localized flux   and localized curvature .ξF ξR

Since  have no winding numbers, these can 

be connected to .

ψ̃T2/ZN,±(z)

ψ0
s2,+(z′￼)

ξF =
ξR

2
− m + lN (l ∈ ℤ)

Degree of freedom by 
 mod  of  N ρ = ei2π/N

4. Blow-up of  orbifold T2/ZN
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Connection condition   and ψ̃0
T2/ZN,±(z) ψ0

s2,+(z′￼)

4. Blow-up of  orbifold T2/ZN

Physical meaning of connection condition

  ξF

N
=

N − 1
2N

M′￼

 : localized flux.   : Total flux of  ,   : embedded area of ξF M′￼ S2 N − 1
2N

S2

  ξF

N
=

N − 1
2N

M′￼

Cut out flux of  
at fixed point

T2/ZN Embedded flux of S2
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5. Conclusion

Index theorem on blow-up manifold of  orbifoldT2/ZN

    n+ − n− = ∫blow−up

F
2π

=
M
N

+ ∑
z f

j

N − 1
2N

M′￼=
M
N

+ ∑
z f

j

ξF

N

   : chiral zero modes number ,  : Total flux of  , 

  : embedded area of  ,   : localized flux at fixed point

n± M′￼ S2

N − 1
2N

S2 ξF
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2π
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M
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2N
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M
N
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j
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+ ∑
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Index theorem on blow-up manifold of  orbifoldT2/ZN

    n+ − n− = ∫blow−up

F
2π

=
M
N

+ ∑
z f

j

N − 1
2N

M′￼=
M
N

+ ∑
z f

j

ξF

N

   : chiral zero modes number ,  : Total flux of  , 

  : embedded area of  ,   : localized flux at fixed point

n± M′￼ S2

N − 1
2N

S2 ξF

Only contribution of flux!

5. Conclusion



 

：flux quanta、 ：sum of winding number  at fixed points

n+ − n− =
M
N

−
V+

N
+ 1

M V+ χ+
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Reinterpretation of index formula on  orbifoldT2/ZN

Winding number has contributions of  localized flux and curvature. 

         ξF =
ξR

2
− m + lN (zf

j = 0) ⇒ ξF =
ξR

2
− χ+ + lN (zf

j ≠ 0)
  

 ∑
z f

j

ξF

N
= − ∑

z f
j

χ+

N
+ ∑

z f
j

ξR

2N
+ l = −

V+

N
+ 1 + l

5. Conclusion



  

 ∑
z f

j

ξF

N
= − ∑

z f
j

χ+

N
+ ∑

z f
j

ξR

2N
+ l = −

V+

N
+ 1 + l
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Reinterpretation of index theorem on  orbifoldT2/ZN

         ξF =
ξR

2
− m + lN (zf

j = 0) ⇒ ξF =
ξR

2
− χ+ + lN (zf

j ≠ 0) removes the contribution of localized curvature in .+1 V+

Winding number has contributions of  localized flux and curvature. 

 

：flux quanta、 ：sum of winding number  at fixed points

n+ − n− =
M
N

−
V+

N
+ 1

M V+ χ+

5. Conclusion
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Reinterpretation of index theorem on  orbifoldT2/ZN

  

 ∑
z f

j

ξF

N
= − ∑

z f
j

χ+

N
+ ∑

z f
j

ξR

2N
+ l = −

V+

N
+ 1 + l

         ξF =
ξR

2
− m + lN (zf

j = 0) ⇒ ξF =
ξR

2
− χ+ + lN (zf

j ≠ 0)
Index theorem implies new zero modes of l = localized mode

Winding number has contributions of  localized flux and curvature. 

 

：flux quanta、 ：sum of winding number  at fixed points

n+ − n− =
M
N

−
V+

N
+ 1

M V+ χ+

5. Conclusion
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・Further analysis of localized mode 
・Extension of the method of blow-up to higher      
dimensions (  ,  ) T4/ZN T6/ZN

5. Outlook



32

Thank you!



Back up
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3.  modelT2

・  in flux backgroundℳ4 × T2

 

  

 

,    

S = ∫ d4x∫ d2z
−
Ψ(x, z)iΓMDMΨ(x, z)

DM = ∂M − iqAM

Ψ(x, z) = ∑
n

ψ (4)
R,n(x) ⊗ ψ (2)

T2+,n(z) + ψ (4)
L,n(x) ⊗ ψ (2)

T2−,n(z)

ψ (2)
T2+,n(z) = (ψT2+,n

0 ) ψ (2)
T2−,n(z) = ( 0

ψT2−,n)

6d Dirac action

Mode expansion
6d chiral fermion

４d chiral  fermion
2d chiral fermion

T2 : z ∼ z + 1 ∼ z + τ

2d chiral fermion

＝
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・  in flux backgroundℳ4 × T2

Boundary condition

 

 

,

ψT2±,n,j(z + 1) = U1(z) ψT2±,n,j(z)

ψT2±,n,j(z + τ) = U2(z) ψT2±,n,j(z)

U1(z) = eiqΛ1(z) U2(z) = eiqΛ2(z)

Flux quantization qf
2π

≡ M ∈ ℤ

: flux quantization number　  : flux　M f

3.  modelT2

 sift  corresponds to  
gauge transformation.
T2
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・  in flux backgroundℳ4 × T2

2Dz̄ψT2+,n,j = 2 (∂z̄ − iqAz̄) ψT2+,n,j = mnψT2−,n,j

−2DzψT2−,n,j = − 2 (∂z − iqAz) ψT2−,n,j = mnψT2+,n,j

Eigenvalue equation

 Zero mode has the eigenvalue .⇒ mn = 0

              

Chiral zero modes #　　　　　　flux quantization#

n+ − n− = ∫T2

F
2π

= M

−4DzDz̄ψT2+,n,j = m2
nψT2+,n,j

−4Dz̄DzψT2−,n,j = m2
nψT2−,n,j

3.  modelT2

AS index theorem on T2
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Define winding number of  eigen function   
at fixed  point 

ZN ψm
T2/ZN+,n,j(z)

zf
j

ex)winding # = 2

Winding number depends on eigen function & fixed point

4.  orbifold modelT2/ZN

Winding number

winding # :  ψm
T2/ZN+,n,j(ρz + zf

j ) = ρχ+ψm
T2/ZN+,n,j(z + zf

j ) ⇒ χ+
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5. Magnetized S2

Magnetized S2

              

Chiral zero modes #　　　　　　flux quantization#

n+ − n− = ∫S2

F
2π

= M′￼

AS index theorem on S2

z′￼

θ

How to take the coordinate  of z′￼ S2

R

(R sin θ cos ϕ, R sin θ sin ϕ, − R cos θ)

(R tan
θ
2

cos ϕ, R tan
θ
2

sin ϕ,0)

|z′￼| = R tan
θ
2

ϕ
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5. Magnetized S2

R2 + |z′￼|2

R
i(∂z̄′￼+ i

1
2

ωz̄′￼− iAz̄′￼)ψn
s2,+(z′￼) = mnψn

s2,−(z′￼)

Dirac equation

 Zero mode has the eigenvalue .⇒ mn = 0

R2 + |z′￼|2

R
i(∂z′￼− i

1
2

ωz′￼− iAz′￼)ψn
s2,−(z′￼) = mnψn

s2,+(z′￼)

, , , ωz̄′￼=
i
2

2
R2 + |z′￼|2 z′￼ ωz′￼= −

i
2

2
R2 + |z′￼|2 z̄′￼ Az̄′￼=

i
2

M′￼

R2 + |z′￼|2 z′￼ Az′￼= −
i
2

M′￼

R2 + |z′￼|2 z̄′￼

Magnetized S2

ψ0
s2,+(z′￼) =

f+(z′￼)

(R2 + |z′￼|2 )M′￼− 1
2

: holomorphic functionf+(z′￼), f−(z′￼)

Zero mode Lowest mode with - chirality

ψ1
s2,−(z′￼) =

f−(z′￼)

(R2 + |z′￼|2 )M′￼+ 1
2
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To apply AS index theorem, we introduce blow-up manifold

4. Blow-up of  orbifold T2/ZN

Magnetized S2

Connection line

Embed  

of the area of  

(N − 1)/2N

S2
r

R
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To apply AS index theorem, we introduce blow-up manifold

Magnetized S2

Connection line

Embed  

of the area of  

(N − 1)/2N

S2
r

R

Smoothly connect  and   

at connection point.

ψ0
T2/ZN,+(z) ψ0

S2,+(z′￼)

4. Blow-up of  orbifold T2/ZN



               , ψ̃T2/ZN,±(z) = UξF UξR ψT2/ZN,±(z) UξF ∝ ( z
z̄ )

ξF
2

UξR ∝ ( z
z̄ )

ξR
4
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Field strength  

 

Gauge field  
        + 
Winding number 

F

∫T2/ZN

F
2π

=
M
N

A

χ+

``Singular” gauge transformation

Field strength  

     : localized flux at fixed point 

Gauge field           

Localized curvature        

+ No winding number       

F + δF

∫T2/ZN

F + δF
2π

=
M
N

+
ξF

N
ξF

A + δA δA = iUξF dU−1
ξF

ξR ∫T2/ZN fixedpoint

δR
2π

=
ξR

N

ψT2/ZN,+(z) ψ̃T2/ZN,+(z)

6. Blow-up manifold of  orbifoldT2/ZN



               , ψ̃ T2/ZN,±(z) = UξF UξR ψT2/ZN,±(z) UξF ∝ ( z
z̄ )

ξF
2

UξR ∝ ( z
z̄ )

ξR
4
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Field strength  

 

Gauge field  
        + 
Winding number 

F

∫T2/ZN

F
2π

=
M
N

A

χ+

“Singular” gauge transformation

Field strength  

     : localized flux at fixed point 

Gauge field           

Localized curvature        

+ No winding number       

F + δF

∫T2/ZN

F + δF
2π

=
M
N

+
ξF

N
ξF

A + δA δA = iUξF dU−1
ξF

ξR ∫T2/ZN fixed point

δR
2π

=
ξR

N

ψT2/ZN,+(z) ψ̃ T2/ZN,+(z)

4. Blow-up of  orbifold T2/ZN
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6. Blow-up of  orbifold T2/ZN

At fixed points 
Winding is closed at 180° 

At the other points 
Winding is closed at 360° 

→

→

At fixed points, there is 

deflection angle .2π −
2π
N

= 2π
N − 1

N

Localized curvature at fixed point  ξR
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6. Blow-up of  orbifold T2/ZN

Localized curvature at fixed point  ξR

         Gauss-Bonnet theorem 

                    

 : Curvature　　　　  : Euler characteristic　

∫ℳ

R
2π

= χ(ℳ)

R χ

                +

(deflection angle) = 2πχ

 Localized curvature at fixed point   →
ξR

N
=

N − 1
N
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Reinterpretation of index formula on  orbifoldT2/ZN

(generation #)  

：flux quanta、 ：sum of winding number  at fixed points

=
M
N

−
V+

N
+ 1

M V+ χ+

  

 ∑
z f

j

ξF

N
= − ∑

z f
j

χ+

N
+ ∑

z f
j

ξR

2N
+ l = −

V+

N
+ 1 + l

         ξF =
ξR

2
− m + lN (zf

j = 0) ⇒ ξF =
ξR

2
− χ+ + lN (zf

j ≠ 0)
Index theorem implies the existence of  new zero modes = localized modesl

5. Conclusion

Winding number has contributions of localized flux and curvature. 


