A dataset of R-symmetric Wess-Zumino models

Zheng Sun

Sichuan University
String Pheno 2023, IBS Daejeon, 4 July 2023
(based on Brister-Kou-Li-Sun 2204.05767, Sun 2207.13933 and related works)

Outline

SUSY breaking in Wess-Zumino models, R-symmetries, the Nelson-Seiberg theorem and its extensions

The dataset of R-symmetric Wess-Zumino models, the data structure, the brute-force algorithm and the search result

Summary and outlook

Supersymmetry (SUSY)

What is SUSY?

- Poincare \rightarrow super-Poincare algebra, fermions \leftrightarrow bosons.
- e.g., the chiral multiplet $\hat{\Phi}=(\phi, \psi, F)$, SUSY transformation $\delta_{\xi} \hat{\Phi}=\left(\sqrt{2} \xi \psi,-i \sqrt{2} \sigma^{\mu} \bar{\xi} \partial_{\mu} \phi-\sqrt{2} \xi F,-i \sqrt{2} \partial_{\mu} \psi \sigma^{\mu} \bar{\xi}\right)$.
- Also expressed as superfields with fermionic coordinates $\theta, \bar{\theta}$, e.g. the chiral field $\Phi\left(x^{\mu}, \theta, \bar{\theta}\right)=\phi+\sqrt{2} \theta \psi-\theta \theta F+\cdots$.
- And the vector multiplet $V=\left(A_{\mu}, \lambda, \bar{\lambda}, D\right)$, etc.
- The SUSY invariant action (4-d $N=1$) \rightarrow physics.

Why and where is SUSY?

- Pheno reasons: Higgs mass hierarchy, dark matter, etc.
- Math reasons: Coleman-Mandula no-go, string tachyons, etc.
- SUSY breaking \rightarrow messengers \rightarrow the Standard Model (SM).
- Ingredients of strings and string pheno, flux vacua, etc.

Wess-Zunmino models (WZ) for F-term SUSY breaking
WZ and their supergravity (SUGRA) extensions

- A superpotential $W\left(\phi_{i}\right)$ for scalar ϕ 's of chiral Ф's. $^{\text {s }}$
- A Kähler potential $K\left(\phi_{i}^{*}, \phi_{j}\right)$ and $K^{\bar{i} j}=\left(\partial_{\phi_{i}^{*}} \partial_{\phi_{j}} K\right)^{-1}$.
- The SUSY Lagrangian $\mathcal{L} \Rightarrow V=K^{\bar{j} j}\left(\partial_{\phi_{i}} W\right)^{*} \partial_{\phi_{j}} W \geq 0$.
- SUSY breaking $\Leftrightarrow\langle V\rangle>0 \Leftrightarrow\left\langle-F_{i}^{*}\right\rangle=\left\langle\partial_{\phi_{i}} W\right\rangle \neq 0$.
- In SUGRA, $V=e^{K / M_{p}^{2}}\left(K^{\overline{i j}}\left(D_{\phi_{i}} W\right) * D_{\phi_{j}} W-3 W^{*} W / M_{\mathrm{P}}^{2}\right)$, SUSY breaking $\Leftrightarrow\left\langle D_{\phi_{i}} W\right\rangle=\left\langle\partial_{\phi_{i}} W+W \partial_{\phi_{i}} K / M_{P}^{2}\right\rangle \neq 0$, in particular $\left\langle\partial_{\phi_{i}} W\right\rangle=\langle W\rangle=0 \Leftrightarrow$ SUSY and $\langle V\rangle=0$.

The Nelson-Seiberg theorem (NS) for WZ

- An U(1) R-symmetry $\theta \rightarrow e^{i \alpha} \theta, \mathrm{~d} \theta \rightarrow e^{-i \alpha} \mathrm{~d} \theta, \phi \rightarrow e^{i R(\phi) \alpha} \phi$.
- $\mathcal{L}_{W}=\int W \mathrm{~d}^{2} \theta+$ h.c. is R -invariant $\Rightarrow R(W)=2$.
- Generically, F-term SUSY breaking at the true vacuum \Rightarrow R-symmetries, \Leftarrow spotaneous R-breaking at the vacuum. (Nelson-Seiberg hep-ph/9309299)

NS revised (NSr) and other extensions

Classification of R-symmetric renormalizable WZ

- $N_{2} \leq N_{0} \Rightarrow$ SUSY, R-preserving and $\langle W\rangle=0$, same for discrete R-symmetries, generically $N_{2} \leq N_{0} \Leftrightarrow$ SUSY (NSr). (Sun 1109.6421, Kang-Li-Sun 1209.1059)
- $N_{0}<N_{2} \leq N_{0}+N_{ \pm} \Rightarrow$ SUSY, R-breaking and $\langle W\rangle=0$. (Sun-Tan-Yang 1904.09589, 2106.08879, Amariti-Sauro 2005.02076)
- $N_{2}>N_{0}+N_{ \pm} \Rightarrow$ SUSY breaking generically, but SUSY "counterexamples" with special R -charges exist. (Brister-Sun 2203.05464, Nakayama-Yoshida 2303.00951)
- No $N_{2} \leq N_{0}+N_{ \pm}$counterexample with special R-charges. (Li-Sun 2107.09943)

Other types of R-symmetric WZ

- Smooth W with an R -symmetry: same result as above.
- Sigular W with an R-symmetry \Rightarrow SUSY breaking generically. (Li-Sun 2006.00538)

Generic R-symmetric WZ

Notation conventions

- The generic superpotential with an R-symmetry:

$$
\begin{aligned}
W= & X_{i}\left(a_{i}+b_{i j} Y_{j}+c_{i j k} Y_{j} Y_{k}+d_{(r) i j k} P_{(r) j} Q_{(-r) k}\right)+W_{1}, \\
W_{1}= & \xi_{i j k} X_{i} X_{j} A_{k}+\rho_{i j k} X_{i} A_{j} A_{k} \\
& +\left(\mu_{i j}+\nu_{i j k} Y_{k}\right) A_{i} A_{j}+\lambda_{i j k} A_{i} A_{j} A_{k} \\
& +\sigma_{(r) j j k} P_{(r) i} A_{j} A_{k}+\tau_{(r) i j k} Q_{(-r) i} A_{j} A_{k} .
\end{aligned}
$$

- $P_{(r)}$'s and $Q_{(-r)}$'s with $R\left(P_{(r)}\right)=-R\left(Q_{(-r)}\right)=r>0, r \neq 2$, both P 's and Q 's only appear linearly in cubic terms of W_{1}.
- X's with $R(X)=2$, Y 's with $R(Y)=0$, A's for other fields.
- $N_{2}=N_{X}, N_{0}=N_{Y}, N_{ \pm}=\sum_{r}\left(N_{P(r)}+N_{Q(-r)}-1\right)$.

Genericity conditions

- Non-generic parameters need tuning, uninteresting for pheno.
- Non-generic R-charges, or special R-charge assignments.

Applications of WZ

SUSY pheno

- WZ as an effective theory for SUSY breaking, mediating to the SUSY Standard Model for pheno.
- E.g. in gauge mediation, $W=F X+\left(m^{i j}+n^{i j} X\right) \Phi_{i} \Phi_{j}$, messengers Φ_{i} are charged in SM gauge symmetries.

String pheno

- Type IIB strings compactified on a Calabi-Yau 3-fold (CY), effectively described by 4-d $N=1$ SUGRA.
- Fluxes on CY generate $W=\int G_{3} \wedge \Omega$ for moduli stabilization.
- Discrete R-symmetries from CY with enhanced symmetries lead to $\left\langle\partial_{\phi_{i}} W\right\rangle=\langle W\rangle=0$ and SUSY vacua with $\langle V\rangle=0$. (Dine-O'Neil-Sun hep-th/0501214, Dine-Sun hep-th/0506246)
- Non-perturbative effects generate low-scale SUSY breaking and a small positive vacuum energy density $\langle V\rangle \gtrsim 0$. (Demirtas-Kim-McAllister-Moritz 1912.10047)

The dataset of R-symmetric Wess-Zumino models

Motivation

- NSr allows a fast scan of vacua by field counting without the explicit form of W or vacuum solutions, but counterexamples with "non-generic" R-charges may introduce error.
- A dataset of models with up to N fields may estimate such error and have other pheno and string pheno applications.

The data structure

- Model data: the R-charge assignment $\hat{r}=\left\{r_{1}, \ldots r_{N}\right\}$.
- $W=\hat{c} \cdot \hat{\phi}^{\hat{a}}=c_{1} \phi_{1}^{a_{1}^{1}} \ldots \phi_{N}^{a_{N}^{1}}+\cdots+c_{m} \phi_{1}^{a_{1}^{m}} \ldots \phi_{N}^{a_{N}^{m}}$, with generic undetermined coefficients \hat{c}, identified by the exponent array $\hat{a}=\left\{\hat{a}^{1}, \ldots, \hat{a}^{m}\right\}=\left\{\left\{a_{1}^{1}, \ldots, a_{N}^{1}\right\}, \ldots,\left\{a_{1}^{m}, \ldots, a_{N}^{m}\right\}\right\}$.
- The R-symmetry constraint $\hat{a}^{s} \cdot \hat{r}=a_{1}^{s} r_{1}+\cdots+a_{N}^{S} r_{N}=2$ and the renormalization constraint $a_{1}^{s}+\cdots+a_{N}^{s} \leq 3$ can be used to construct \hat{a} from \hat{r} or determine \hat{r} from \hat{a}.

A brute-force search

Outline of the search algorithm

- Step 1: generate all M possible monomials with N fields satisfying the renormalization constraint.
- Step 2: for each N-tuple of M monomials from Step 1, try to solve the R-symmetry constraint equations and record the R-charge assignment \hat{r} if the solution is unique.
- Step 3: for each recorded R-charge assignment \hat{r}, construct W from \hat{r} by including all monomials from Step 1 satisfying the R-symmetry constraint.

Redundant data

- Symmetries in fields, e.g. $W=a \phi_{1}+b \phi_{2}^{2}$ or $a \phi_{2}+b \phi_{1}^{2}$.
- Symmetries in terms, e.g. $W=a \phi_{1}+b \phi_{2}^{2}$ or $a \phi_{2}^{2}+b \phi_{1}$.
- Reducible models, e.g. $W=a \phi_{1}+b \phi_{2}^{2}=W_{1}\left(\phi_{1}\right)+W_{2}\left(\phi_{2}\right)$.
- Eliminating redundancies reduces the size of the database.

Generating data

Demonstration for small N's

- $N=1 \Rightarrow 3$ models: $\hat{r}=\{2\},\{1\},\left\{\frac{2}{3}\right\} \Rightarrow W=a \phi_{1}, a \phi_{1}^{2}, a \phi_{1}^{3}$.
- $N=2 \Rightarrow M=9: \phi_{1}, \phi_{1}^{2}, \phi_{1}^{3}, \phi_{2}, \phi_{1} \phi_{2}, \phi_{1}^{2} \phi_{2}, \phi_{2}^{2}, \phi_{1} \phi_{2}^{2}, \phi_{2}^{3}$.
- Fixing all R-charges and adding all possible monomials, e.g., $\left\{\phi_{1}, \phi_{1} \phi_{2}\right\} \Rightarrow \hat{r}=\{2,0\} \Rightarrow W=a \phi_{1}+b \phi_{1} \phi_{2}+c \phi_{1} \phi_{2}^{2}$.
- 7 models: $\hat{r}=\{2,0\},\{2,-2\},\{0,1\},\left\{\frac{1}{2}, 1\right\},\left\{\frac{2}{3}, \frac{2}{3}\right\},\left\{\frac{2}{3}, \frac{4}{3}\right\}$, $\{1,1\} \Rightarrow W=a \phi_{1}+b \phi_{1} \phi_{2}+c \phi_{1} \phi_{2}^{2}, a \phi_{1}+b \phi_{1}^{2} \phi_{2}, a \phi_{2}^{2}+b \phi_{1} \phi_{2}^{2}$, $a \phi_{2}^{2}+b \phi_{1}^{2} \phi_{2}, a \phi_{1}^{3}+b \phi_{1}^{2} \phi_{2}+c \phi_{1} \phi_{2}^{2}+d \phi_{1}^{3}, a \phi_{1}^{3}+b \phi_{1} \phi_{2}$, $a \phi_{1}^{2}+b \phi_{1} \phi_{2}+c \phi_{2}^{2}$.
- In general $M \sim N^{3},\binom{M}{N} \sim N^{3 N} N$-tuples \Rightarrow EXP complexity, but valid and non-redundant data are few.

Data classification

- $\hat{r} \Rightarrow N_{2} \leq N_{0}$ or $N_{2}>N_{0}, \partial_{i} W=0 \Rightarrow$ SUSY or no SUSY.
- Existence of SUSY breaking vacua is not checked, e.g., the model $\hat{r}=\{2,-2\}$ has only a SUSY runaway exists.

The search result

List of models

- 859 models with $N \leq 5$, about one day running time.

N	1	2	3	4	5	Total
$N_{2} \leq N_{0}$, SUSY	2	6	19	81	448	556
$N_{2}>N_{0}$, no SUSY	1	1	7	38	237	284
$N_{2}>N_{0}$, SUSY	0	0	0	1	18	19
Total	3	7	26	120	703	859

(Brister-Kou-Li-Sun 2204.05767)

- Most models match the NSr criteria $N_{2} \leq N_{0} \Leftrightarrow$ SUSY except 19 "counterexamples" of type $N_{2}>N_{0}$ and SUSY.
- Most "counterexamples" has $N_{0}<N_{2} \leq N_{0}+N_{ \pm}$except two:
$\hat{r}=\{2,-2,4,-4,8\}$ and $\hat{r}=\left\{2, \frac{2}{3}, \frac{4}{3},-\frac{4}{3}, \frac{8}{3}\right\} \Rightarrow$
$W=a \phi_{1}+b \phi_{1}^{2} \phi_{2}+c \phi_{2} \phi_{3}+d \phi_{1} \phi_{3} \phi_{4}+e \phi_{2} \phi_{4} \phi_{5}$ and
$W=a \phi_{1}+b \phi_{2}^{3}+c \phi_{2} \phi_{3}+d \phi_{1} \phi_{3} \phi_{4}+e \phi_{2} \phi_{4} \phi_{5}$,
$N_{ \pm}=0$, SUSY at $\phi_{1}=\phi_{2}=0, \phi_{3} \phi_{4}=-\frac{a}{d}, \phi_{5}=-\frac{c \phi_{3}}{e \phi_{4}}$.
(Nakayama-Yoshida 2303.00951)

Summary and outlook

NS and extensions

- SUSY breaking $\Rightarrow \mathrm{R}$, \Leftarrow spontaneous broken R (NS).
- R and $N_{2} \leq N_{0} \Rightarrow$ SUSY and R-preserving (NSr: " \Leftrightarrow ").
- R and $N_{0}<N_{2} \leq N_{0}+N_{ \pm} \Rightarrow$ SUSY and R-breaking.
- R and $N_{2}>N_{0}+N_{ \pm} \Rightarrow$ SUSY breaking generically, but SUSY "counterexamples" with special R-charges exist.

The dataset of R-symmetric WZ

- 859 models with up to 5 fields, 19 counterexamples to NSr.
- All 19's have $N_{2}>N_{0}$, SUSY, R-breaking and $\langle W\rangle=0$, most have $N_{2} \leq N_{0}+N_{ \pm}$, two exceptions covered in literature.
- Computational complexity $\sim N^{3 N}$, need better algorithms.
- Metastable vacua and runaway models are not identified.
- Larger N, SUGRA for flux vacua and more applications

