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Summary

We analyze axion-photon couplings in the type |IB axiverse and
compare to known observational bounds.

Axion-photon couplings are more suppressed than one might think.
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Why care about axions?

1. Active ongoing experiments searching for them.

2. Axion potentials are generated non-perturbatively, and are sensitive
to UV physics, but are computable in string theory.

3. Can make fairly model-independent statements about axions in
string theory.

Axion experiments can teach us about
where we live In the string theory landscape.
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Axions In type lIB string theory

Setup: we compactify type |IB string theory on a Calabi-Yau threefold (orientifold).

The effective theory contains N axions: 0, — / ¢, ©4+= Ramond-Ramond four-form
D a

D 4 = a four-cycle

The QCD axion, HQCD, s the one associated to C, integrated over D p, the
four-cycle that hosts QCD.

Likewise, the QED axion, HQED, is the one associated to ( integrated over D, the
four-cycle that hosts QED (could be the same in the case of a GUT!).

We have: O,cp, Oppps 03;--- Oy
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Axion potentials in type |lIB string theory

Instantons generate a potential of the following form:;:
Viaxion ™~ Z A7 [1 — cos(8; + pp)]
I

A7 : instanton energy scales

A% ~ My Mgygye 2™VolDPr)

Pi: phases set by UV physics (generally assumed O(1))
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Constructing the type |lIB axiverse

Setup:
 We compactify type |IB string theory on a Calabi-Yau threefold (orientifold).

 We will not engineer a fully explicit standard model.

« We will choose a four-cycle DQCD to host a toy model of QCD on a stack of

D7-branes and arrange that it reproduces the known gauge coupling at low
energies.

- We will choose a four-cycle D that intersects D p.
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Cosmological and astrophysical bounds

 Now have the capabillity to construct a semi-realistic axiverse from
compactifications on Calabi-Yau threefolds.

* Are these models ruled out by observations?

e A first study: QCD @-angles in the string axiverse pemiras, NG, Long McAlister, Moritz 21

* | will now present some preliminary results on studying axion-photon
couplings in this axiverse. NG. Marsh, Mcalister, Moritz WiP]
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Suppression of axion-photon couplings

Start with axion Lagrangian in terms of Calabi-Yau data:

1 Q% Pa
_ ab . L | EM
L= S K0,0,0" 9y + ~EML

FAF+Y A7[l—cos(2rQf¢a)]
1

Goal/question: in a basis where all axions are mass and kinetic eigenstates, what are
the couplings of those axions to ' A F?

Two effects conspire to suppress the axion-photon coupling:
ING, Marsh, McAllister, Moritz WIP]

1. Almost-diagonal Kahler metrics

2. Light axions don’t couple to photons

See Jakob’s talk on Friday to see these suppression mechanisms in detail!
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* Where do string theory axions sit on this plot?
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Axion detection

» Where do string theory axions sit on this plot?  Preliminary data: 300 CYs with
100 hl’l — 50,100,200
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Conclusions

 We constructed an ensemble of axiverses in type |IB string theory

* Hierarchies in Calabi-Yau geometries led to new expectations for the scales of
the problem: as the number of axions increases, the decay constants

decrease.

* |n the models we studies, we also calculated the effective axion-photon
couplings.

 We found a mechanism that generically suppresses axion-photon couplings,
compared to the naive expectation.



Thank you!



Axions are ubiquitous In string theory



Axions are ubiquitous In string theory

Gauge fields in 10 dimensions wrapped on 4-cycles give rise to 4D axions:

S10p D /lexFMNpQRFMNPQR M, N €0,...9
F =dCy

F5



Axions are ubiquitous In string theory

Gauge fields in 10 dimensions wrapped on 4-cycles give rise to 4D axions:

S10p D /lexFMNpQRFMNPQR M, N €0,...9
F =dCy

F5 N ﬁ_

7 Zi some 4-cycle

i

=5




Axions are ubiquitous In string theory

Gauge fields in 10 dimensions wrapped on 4-cycles give rise to 4D axions:

1 MNP M, Ne0.,...9
S10D D /d ‘v FyrnporF QR Ve
F = dCy
F5 N ﬁ
'Y 9 D ; some 4-cycle

?




Axions are ubiquitous In string theory

Gauge fields in 10 dimensions wrapped on 4-cycles give rise to 4D axions:

S10p D /lexFMNpQRFMNPQR M, N €0,...9
F =dCy

F5 N\

> 4 Zz’ some 4-cycle

(97; Z:/ 04
3

(/

These manifolds can have hundreds of four-cycles — hundreds of axions!
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Axion-photon couplings

* (Generically, axions can couple to photons via the coupling
Layy ~ Gayy0FF

 Can hope to detect axions this way via conversion to photons in a magnetic
field

» Can place bounds on g, using axion detector experiments such as CAST
and CHAN DRA [CAST ’17, Reynolds, Marsh, Russell, Fabian, Smith, Tombesi, Veilleux *20]
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The strong CP problem

The QCD Lagrangian can, in principle, include a CP-violating term:

9 VPO
LD 353 e tr GG oo

Experiments provide upper bounds on the neutron electric dipole moment,
which show

0 < 10~V

Strong CP problem: why is this number so small?
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The Peccei-Quinn solution to strong CP

Promote 6 to a dynamical field—an axion. rreccsi, auinn 16771

QCD instanton effects generate a potential for the axion:

AZTN ALY

My + Mmg)

1
Vaen(0) = §AéCD( 0% + O(0")

If this is the sole contribution to the QCD axion potential, then () = 0 and the
strong CP problem is solved: the axion dynamically relaxes the neutron EDM.

Axion particles are excellent candidates for dark matter and dark energy!
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Standard Model-like fields in string theory

Stacks of N membranes on four-cycles 2.; in string theory give rise to
SU(N) gauge theories

N %
The gauge coupling of the theory is controlled t ?’ A
by the volumes of these cycles: o PN }j
1 ) '
X
JY M VOI(ZZ)
We will not explicitly engineer the SM in this work: 4

rather, we will simply choose a cycle 2. and ensure

that vol(2;) reproduces (i.e.) the correct gocp that we
observe.
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 We found a mechanism that generically suppresses axion-photon couplings,
compared to the naive expectation.
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Type 1IB axion potentials
y

axion

IS generated by D3-instantons wrapping 4-cycles:

Vaxion C eK(KABDAWDBW — SWW)

K = —2 10g V W = W() ZAJGXP(—QWC]ATA>

q

So defining an axion potential in type |IB string theory means specifying:

1. What is W;;? « what is the scale of SUSY breaking?

2. Whatis) ? <« whatis the KK scale?

3. What are the ¢ and associated 1',? <« actions of contributing instantons?
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A fully explicit axion model requires

 a calculation of zero modes of D3 instantons on all divisors
e orientifold
e moduli stabilization

» SUSY breaking
» explicit realization of the standard model

We want to understand axion physics in a large landscape of models.

So instead assume:

 all effective divisors contribute

« orientifold doesn’t project out any instantons (for now!)
moduli are set at “typical” values

» Conisder various choices of SUSY breaking scale

« Consider all candidates for Dqy
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How to choose moduli?

We would like to remain agnostic about moduli stabilization: our approach is to
choose a representative point in the moduli space and assume that the moduli can

be stabilized (at least perturbatively) there.

Kahler cone

locus where vol(Dgcp) gives | |
 |deally we would uniformly sample this locus and

1 . . .
correct a a_ = vol( DQCD) / compute axion potentials at each point.
° Meutoft /  Through random sampling, we found that for a given
geometry, the values of the moduli (divisor volumes) depend

very weakly on the location on this locus.
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“tip of the stretched Kahler cone”: where all curve volumes are > 1.
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How to choose moduli?

We would like to remain agnostic about moduli stabilization: our approach is to
choose a representative point in the moduli space and assume that the moduli can
be stabilized (at least perturbatively) there.

Kahler cone
locus where vol(Dgcp) gives

1
correct a; — = vol(Dgcp)

O

Meytoft

“tip of the stretched Kéhler cone”: where all curve volumes are > 1.
condition on the divisors having volumes > 1 (the geometric regime).
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A first test: 6-angles in type |lIB string theory

» Goal: calculate upper bound on @ in a large set of Calabi-Yau
compactifications of type 1IB string theory.

 The search space: 32,040 Calabi-Yau manifolds obtained as triangulations of

4d reflexive polytopes with 4! < 491 randomly selected from the Kreuzer-
Skarke database.



Excluded by neutron EDM experiments
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The QCD 6-angle at Mgy = 1 TeV
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High-scale instantons

CP-breaking operators of dimension 6 or higher in SMEFT can lift
fermion zero modes, e.qg.

Ser D fd4£E )\ijklM_zOéjkl -+ C.C.
. Qi = “’L i=1,2.3
With | <d) _

Oéjkl , — eabDin,aUle,b

instanton
of size 1/pu

inst.



With SUSY breaking:

Matching the gauge coupling at the mass of the Z:

3

87‘- 2T .

VM Msusy T (T2 ) e eg mi0—0m)
ay \ Msyusy

Plugging in numbers:

1 TeV )3

Abocp ~ 10—12(
Qeb Msysy
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Vector-like matter

Vector-like pairs modify the
p-function of QCD:
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Vector-like matter

Vector-like pairs modify the
p-function of QCD:

3 n
myg M — 2% __ .(h
Vinse. (M) ~ (37:5) (gy) mbe T e

Can give lower bound on Mgy
in order to not spoil PQ

M\/ (GGV)
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&
e
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MSUSY (GGV)
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/1\ Caveats and assumptions /1\

 We are treating all the axions in our models as independent oscillators. Effects of axion
mixing can be important, and should (and will!) be treated in a dedicated analysis.

* Our expression for the axion dark matter abundance is an estimate. To get precise
results a numerical simulation of the coupled equations of state is needed.

 The amount of axion dark matter depends on the choice of moduli. However, the

moduli are tightly constrained so that we don’t expect much of a change in the
conclusions.

With this in mind, we will now move on to calculating the
axion dark matter relic abundance.
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Axion-photon couplings in the string axiverse
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New careful calculation (WIP):
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Axion-photon couplings in the string axiverse

New careful calculation (WIP):

GUT | non-GUT
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Axion-photon couplings in the string axiverse

New careful calculation (WIP):

GUT | non-GUT
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c.f. [Agrawal, Nee, Reig ’22]



