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    Outline:

1. The need for ultra-fast methods for cohomology computations 

in heterotic model building 


2. Some results on line bundle cohomology for CY threefolds 

with Picard numbers 4 and 5  



Explain the core structures in Particle Physics: interactions, spectrum 

and flavour parameters 


First order objective of StringPheno



Explain the core structures in Particle Physics: interactions, spectrum 

and flavour parameters 


First order objective of StringPheno

Why three families of quarks and leptons?



Why a hierarchy of masses?


mtop = 172,440 MeV, me = 0.511 MeV, mν < 0.1 ⋅ 10−6 MeV

Explain the core structures in Particle Physics: interactions, spectrum 

and flavour parameters 


First order objective of StringPheno

Why three families of quarks and leptons?



topology

+


geometry

particle spectrum

+


couplings

complicated 
map

       Problem 1

cohomology formulae: provide great simplifications to this map

in heterotic string compactifications

X, V, Ṽ



 correct spectrum: all SM multiplets (plus, possibly RH neutrinos) and no exotics;  

                     Required topological data:  h∙(X, V∧n)

Spectrum and couplings

 correct couplings: all SM couplings and no dangerous operators, such as those 

inducing fast proton decay or rapid flavour-changing processes


Useful: additional symmetries inherited from the compactification, (e.g. extra

           U(1)s or discrete symmetries) to forbid (or at least suppress) dangerous operators, 

           and dictate certain forms for the couplings, so as to explain the observed patterns 

           for fermion masses and mixing angles




Example: SU(5) models from the  heterotic string on smooth CY3 with split bundles


                                           


SU(5) multiplets with S(U(1)5) charges, 


pattern of charges: 

E8 × E8

V =
5

⨁
a=1

La

(q1, q2, q3, q4, q5) ∼ (q1, q2, q3, q4, q5) + (q, q, q, q, q)

10ea
, 5ea+eb

, 5−ea−eb
, 1ea−eb

, Hu
−ea−eb

, Hd
ea+eb
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Spectrum: 


term: forbidden with any number of singlet insertions; 


Proton decay: dim-4 op.  forbidden; dim-5 op. suppressed: 

101, 102, 103, 3 51,2, Hu
−3,−4, Hd

3,4, 14,−3, 13,−2, 13,−1, 15,−4

μ−

5510 15,−414,−314,−351,2103103103 + O(14)

Bottom-up

example:
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Bottom-up

example:

Up Yukawa matrix,  : 
Hu10(i) 10( j)

6 BRODIE AND CONSTANTIN

The rays vi can be associated with coordinates zi with a weight system

z1 z2 z3 z4

0 1 0 1
1 n 1 0

From this, the Hilbert series reads

(3.6) HS(Fn, t1, t2) =
1

(1� t1t
n
2
)(1� t2)2(1� t1)

=
1X

m1,m2=0

h
0(Fn,OFn(m1C +m2F )) tm1

1
t
m2
2

.

k . . .� 5 �4 �3 �2 �1 0 1 2 3 4 5 . . .

h
0(X,OX(k)) . . . 0 0 0 0 0 1 5 15 35 70 126 . . .

h
1(X,OX(k)) . . . 0 0 0 0 0 0 0 0 0 0 0 . . .

h
2(X,OX(k)) . . . 0 0 0 0 0 0 0 0 0 0 0 . . .

h
3(X,OX(k)) . . . 329 210 126 70 35 15 5 1 0 0 0 . . .

(3.7) X =
P1

P2


d

1

�

(3.8) H
u
�3,�4

0

BB@

101 102 103

101 14,�313,�113,�1 14,�313,�113,�2 14,�313,�1

102 14,�313,�113,�2 14,�313,�213,�2 14,�313,�2

103 14,�313,�1 14,�313,�1 14,�3

1

CCA

(3.9) H
d
3,4

0

BB@

101 102 103

51,2 15,�414,�313,�1 15,�414,�313,�2 15,�414,�3

51,2 15,�414,�313,�1 15,�414,�313,�2 15,�414,�3

51,2 15,�414,�313,�1 15,�414,�313,�2 15,�414,�3

1

CCA

Proposition 8. By replacing in turn the counting variables t1 and t2 with their reciprocals, the higher

cohomology functions are obtained:

(3.10)

HS(Fn, t
�1

1
, t2) =

1

(1� t
�1

1
t
n
2
)(1� t2)2(1� t

�1

1
)

=
1X

m1=0

1X

m2=�1
h
1(Fn,OFn(�m1C +m2F )) tm1

1
t
m2
2

,

HS(Fn, t1, t
�1

2
) =

1

(1� t1t
�n
2

)(1� t
�1

2
)2(1� t1)

=
1X

m1=0

1X

m2=�1
h
1(Fn,OFn(m1C �m2F )) tm1

1
t
m2
2

,

HS(Fn, t
�1

1
, t

�1

2
) =

1

(1� t
�1

1
t
�n
2

)(1� t
�1

2
)2(1� t

�1

1
)

=
1X

m1,m2=0

h
2(Fn,OFn(�m1C �m2F )) tm1

1
t
m2
2

.

Proof. See Blumenhagen’s algorithm. ⇤
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WIP with Lucas Leung, Thomas Harvey, Andre Lukas: 

       identify viable patterns of charge assignments and their string realisations; see also Dudas&Palti, 0912.0853

https://arxiv.org/abs/0912.0853


topology

+


geometry

particle spectrum

+


couplings

complicated 
map

       Problem 2

huge space of possibilities for 

Solution: heuristic search methods (RL, GAs, QA…)

X, V, Ṽ



Line bundle cohomology 

formulae

based on 2306.03147 with Steve Abel, Thomas Harvey, Andre Lukas and Luca Nutricati

also based on earlier work with Callum Brodie, James Gray, Andre Lukas, Fabian Ruehle 


(see 2112.12107 for a review)

https://arxiv.org/abs/2306.03147
https://arxiv.org/abs/2112.12107


Computational cost of line bundle cohomology (using spectral sequences):





Example: for a line bundle of (multi)-degree 10 on a Calabi-Yau threefold


with  Kähler parameters, the estimate is


 elementary operations


which reaches the limits of a standard machine


∼ O ((ρ(X )dim(X)deg(L)dim(X))3)

h1,1(X ) = ρ(X ) = 4

∼ 1014



A Picard number 4 example: the tetraquadric manifold

3

(C3) Supersymmetry/poly-stability: There exists a
non-trivial common solution ti to the vanishing
slopes

µ(La) = dijkk
i
at

jtk
!
= 0 for a = 1, . . . , 5

such that J = tiJi is in the interior of the Käh-
ler cone, which in our examples corresponds to
ti > 0. Solving the slope-zero equations is compu-
tationally expensive and this check is replaced by
the weaker condition that each of the five matrices
Ma = (dijkki

a) has at least one positive and one
negative entry. Moreover, the same should hold for
every linear combination vaMa. In practice, consid-
ering all the vectors va with integer entries between
�2 and 2 provides a strong enough check.

(C4) Spectrum:: cohomology dimensions must satisfy
10-multiplets: h1(X, V ) = 3|�|

no 10-multiplets: h2(X, V ) = 0
5-multiplets: h1(X, ^2V ) = 3|�| + nh, nh > 0
Higgs: h2(X, ^2V ) = nh

Here |�| is the order of the discrete group � and nh

represents the number of Higgs doublet pairs. In
the absence of a cohomology formula, (C4) can be
replaced by the weaker constraint (C4’).

(C4’) Chiral spectrum: �(X,V ) = �(X, ^2V ) = 3|�|

(C5) Equivariance: Require that V descends to a bun-
dle on X/�. For symmetries acting trivially on the
basis (J1, . . . , Jh) we require that the Euler charac-
teristic of every (maximal) partial sum �aiLai in V
consisting of line bundles with identical first Chern
classes, is divisible by |�|. For symmetries with a
non-trivial action on the basis (J1, . . . , Jh), V must
admit a partition into partial sums that are invari-
ant under the induced action of � on (J1, . . . , Jh)
and, moreover, the Euler characteristic of each par-
tial sum must be divisible by |�|.

The GA scans discussed below have been carried out on
four different Calabi-Yau threefolds realised as complete
intersections in products of projective spaces. Using the
standard notation for configuration matrices, with su-
perscript indices on X indicating the Hodge numbers
(h1,1(X), h1,2(X)) and a subscript index indicating the
position in the CICY list [24], these four manifolds are
generic members of the following deformation families:

X(4,68)
7862 =

P1

P1

P1

P1

2

4
2
2
2
2

3

5 , X(5,45)
7447 =

P1

P1

P1

P1

P1

2

64

1 1
1 1
1 1
1 1
1 1

3

75

X(6,30)
5302 =

P1

P1

P1

P1

P1

P1

2

664

0 1 1
0 1 1
1 1 0
1 1 0
1 0 1
1 0 1

3

775 , X(7,27)
4071 =

P1

P2

P1

P1

P1

P2

P3

2

66664

1 1 0 0 0 0 0 0
0 1 1 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 2 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 1
0 0 0 1 1 0 1 1

3

77775

(II.1)

All four embeddings are favourable, in the sense that a
basis (J1, . . . Jh) of H2(X,Z) can be obtained by pulling
back to X the Kähler classes of the h projective fac-
tors. Line bundle cohomology formulae on the manifolds
X7862 and X7447, used to implement the constraints (C4)
in the GA searches, are presented in Appendix B. For the
manifolds X5302 and X4071 cohomology formulae are not
yet available and we have used the weaker spectrum con-
straint (C4’). The first three manifolds admit symmetries
of orders 2 and 4 which leave the basis (J1, . . . Jh) invari-
ant, while X4071, admits a free action by Z2 which maps
(J1, J2, J3, J4, J5, J6, J7) 7! (J1, J6, J3, J4, J5, J2, J7).

III. THE GENETIC ALGORITHM AND
QUANTUM ANNEALING

Fixing the manifold X, a sum of five line bundles V
is specified by 4h integers (ki

a)
i=1,...,h
a=1,...4 , where the condi-

tion (C1) is used to fix the fifth line bundle in terms of
the first four. There are no a priori bounds on these 4h
integers. However, our previous experience from system-
atic scans [4, 18] indicates that only a relatively small
range is relevant, as bundles involving larger integers ei-
ther violate the anomaly cancellation condition or fail
to match the required Euler characteristic. We choose
this range as ki

a 2 {�2n + 1, . . . , 2n}, so that every in-
teger can be encoded by n + 1 bits without redundancy,
and a complete model is described by a bit list of length
Nbits = 4h(n+1). In practice, we take n = 3 for the first
three manifolds and n = 2 for the manifold X4071.

The classic GA algorithm begins by forming a ran-
dom population of Npop individuals, that is by generat-
ing Npop random binary string genotypes of length Nbits.
To decide how successful a particular individual is, we
define a fitness function f : FNbits

2 ! R on this set of
binary strings, which indicates how close the correspond-
ing bundle comes to satisfying conditions (C1)–(C5). The
detailed definition of f is presented in Appendix A. The
population is then evolved via the three main evolution-
ary ingredients: selection, breeding and mutation. We
use a selection method based on fitness-ranking, which
means that individuals are selected for breeding with
a probability that increases linearly with their ranking,
such that the probability for the fittest individual to be
selected is a multiple ↵ of the probability for the least
fit one. Typically, ↵ is chosen in the range 2  ↵  5.
The breeding of the Npop/2 pairs that are selected in this
manner is implemented by cutting and splicing each pair
at a number of matching random points. Typically (and,
in particular, in this work) a single point cross-over per-
forms well enough, in which a cut is made at a single
random point and the ‘tails’ swapped. Mutation is the
final step, in which a small randomly selected fraction
of bits in the newly formed generation is flipped. It is
worth highlighting the crucial importance of mutation,
in the absence of which the system stagnates. As an
additional feature, our implementation includes elitism,

: generators of the Kähler cone inherited from 
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =

Z

X
ch(L) · td(X) = 2

4X

i=1

0

@ki +
Y

j 6=i

kj

1

A .

(B.1)
Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X, L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an
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(C3) Supersymmetry/poly-stability: There exists a
non-trivial common solution ti to the vanishing
slopes

µ(La) = dijkk
i
at

jtk
!
= 0 for a = 1, . . . , 5

such that J = tiJi is in the interior of the Käh-
ler cone, which in our examples corresponds to
ti > 0. Solving the slope-zero equations is compu-
tationally expensive and this check is replaced by
the weaker condition that each of the five matrices
Ma = (dijkki

a) has at least one positive and one
negative entry. Moreover, the same should hold for
every linear combination vaMa. In practice, consid-
ering all the vectors va with integer entries between
�2 and 2 provides a strong enough check.

(C4) Spectrum:: cohomology dimensions must satisfy
10-multiplets: h1(X, V ) = 3|�|

no 10-multiplets: h2(X, V ) = 0
5-multiplets: h1(X, ^2V ) = 3|�| + nh, nh > 0
Higgs: h2(X, ^2V ) = nh

Here |�| is the order of the discrete group � and nh

represents the number of Higgs doublet pairs. In
the absence of a cohomology formula, (C4) can be
replaced by the weaker constraint (C4’).

(C4’) Chiral spectrum: �(X,V ) = �(X, ^2V ) = 3|�|

(C5) Equivariance: Require that V descends to a bun-
dle on X/�. For symmetries acting trivially on the
basis (J1, . . . , Jh) we require that the Euler charac-
teristic of every (maximal) partial sum �aiLai in V
consisting of line bundles with identical first Chern
classes, is divisible by |�|. For symmetries with a
non-trivial action on the basis (J1, . . . , Jh), V must
admit a partition into partial sums that are invari-
ant under the induced action of � on (J1, . . . , Jh)
and, moreover, the Euler characteristic of each par-
tial sum must be divisible by |�|.

The GA scans discussed below have been carried out on
four different Calabi-Yau threefolds realised as complete
intersections in products of projective spaces. Using the
standard notation for configuration matrices, with su-
perscript indices on X indicating the Hodge numbers
(h1,1(X), h1,2(X)) and a subscript index indicating the
position in the CICY list [24], these four manifolds are
generic members of the following deformation families:
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2
2
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0 0 1 0 0 1 0 0
0 0 0 0 2 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 1
0 0 0 1 1 0 1 1

3

77775

(II.1)

All four embeddings are favourable, in the sense that a
basis (J1, . . . Jh) of H2(X,Z) can be obtained by pulling
back to X the Kähler classes of the h projective fac-
tors. Line bundle cohomology formulae on the manifolds
X7862 and X7447, used to implement the constraints (C4)
in the GA searches, are presented in Appendix B. For the
manifolds X5302 and X4071 cohomology formulae are not
yet available and we have used the weaker spectrum con-
straint (C4’). The first three manifolds admit symmetries
of orders 2 and 4 which leave the basis (J1, . . . Jh) invari-
ant, while X4071, admits a free action by Z2 which maps
(J1, J2, J3, J4, J5, J6, J7) 7! (J1, J6, J3, J4, J5, J2, J7).

III. THE GENETIC ALGORITHM AND
QUANTUM ANNEALING

Fixing the manifold X, a sum of five line bundles V
is specified by 4h integers (ki

a)
i=1,...,h
a=1,...4 , where the condi-

tion (C1) is used to fix the fifth line bundle in terms of
the first four. There are no a priori bounds on these 4h
integers. However, our previous experience from system-
atic scans [4, 18] indicates that only a relatively small
range is relevant, as bundles involving larger integers ei-
ther violate the anomaly cancellation condition or fail
to match the required Euler characteristic. We choose
this range as ki

a 2 {�2n + 1, . . . , 2n}, so that every in-
teger can be encoded by n + 1 bits without redundancy,
and a complete model is described by a bit list of length
Nbits = 4h(n+1). In practice, we take n = 3 for the first
three manifolds and n = 2 for the manifold X4071.

The classic GA algorithm begins by forming a ran-
dom population of Npop individuals, that is by generat-
ing Npop random binary string genotypes of length Nbits.
To decide how successful a particular individual is, we
define a fitness function f : FNbits

2 ! R on this set of
binary strings, which indicates how close the correspond-
ing bundle comes to satisfying conditions (C1)–(C5). The
detailed definition of f is presented in Appendix A. The
population is then evolved via the three main evolution-
ary ingredients: selection, breeding and mutation. We
use a selection method based on fitness-ranking, which
means that individuals are selected for breeding with
a probability that increases linearly with their ranking,
such that the probability for the fittest individual to be
selected is a multiple ↵ of the probability for the least
fit one. Typically, ↵ is chosen in the range 2  ↵  5.
The breeding of the Npop/2 pairs that are selected in this
manner is implemented by cutting and splicing each pair
at a number of matching random points. Typically (and,
in particular, in this work) a single point cross-over per-
forms well enough, in which a cut is made at a single
random point and the ‘tails’ swapped. Mutation is the
final step, in which a small randomly selected fraction
of bits in the newly formed generation is flipped. It is
worth highlighting the crucial importance of mutation,
in the absence of which the system stagnates. As an
additional feature, our implementation includes elitism,

: generators of the Kähler cone inherited from 
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =

Z

X
ch(L) · td(X) = 2

4X

i=1

0

@ki +
Y

j 6=i

kj

1

A .

(B.1)
Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X, L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an

Formula:  h0(X, L) =

1, for ki = 0
χ(X, L), for L ∈ 𝒦(X )
χ(X, L′￼) , if ∃c1(L′￼) = Mi1Mi2

…Minc1(L) ∈ 𝒦(X )∖𝒪X

(1 + kA)(1 + kB) , if kA, kB ≥ 0 and the other two integers vanish
0, otherwise
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =

Z

X
ch(L) · td(X) = 2
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Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X,L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an
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(C3) Supersymmetry/poly-stability: There exists a
non-trivial common solution ti to the vanishing
slopes

µ(La) = dijkk
i
at

jtk
!
= 0 for a = 1, . . . , 5

such that J = tiJi is in the interior of the Käh-
ler cone, which in our examples corresponds to
ti > 0. Solving the slope-zero equations is compu-
tationally expensive and this check is replaced by
the weaker condition that each of the five matrices
Ma = (dijkki

a) has at least one positive and one
negative entry. Moreover, the same should hold for
every linear combination vaMa. In practice, consid-
ering all the vectors va with integer entries between
�2 and 2 provides a strong enough check.

(C4) Spectrum:: cohomology dimensions must satisfy
10-multiplets: h1(X, V ) = 3|�|

no 10-multiplets: h2(X, V ) = 0
5-multiplets: h1(X, ^2V ) = 3|�| + nh, nh > 0
Higgs: h2(X, ^2V ) = nh

Here |�| is the order of the discrete group � and nh

represents the number of Higgs doublet pairs. In
the absence of a cohomology formula, (C4) can be
replaced by the weaker constraint (C4’).

(C4’) Chiral spectrum: �(X,V ) = �(X, ^2V ) = 3|�|

(C5) Equivariance: Require that V descends to a bun-
dle on X/�. For symmetries acting trivially on the
basis (J1, . . . , Jh) we require that the Euler charac-
teristic of every (maximal) partial sum �aiLai in V
consisting of line bundles with identical first Chern
classes, is divisible by |�|. For symmetries with a
non-trivial action on the basis (J1, . . . , Jh), V must
admit a partition into partial sums that are invari-
ant under the induced action of � on (J1, . . . , Jh)
and, moreover, the Euler characteristic of each par-
tial sum must be divisible by |�|.

The GA scans discussed below have been carried out on
four different Calabi-Yau threefolds realised as complete
intersections in products of projective spaces. Using the
standard notation for configuration matrices, with su-
perscript indices on X indicating the Hodge numbers
(h1,1(X), h1,2(X)) and a subscript index indicating the
position in the CICY list [24], these four manifolds are
generic members of the following deformation families:
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All four embeddings are favourable, in the sense that a
basis (J1, . . . Jh) of H2(X,Z) can be obtained by pulling
back to X the Kähler classes of the h projective fac-
tors. Line bundle cohomology formulae on the manifolds
X7862 and X7447, used to implement the constraints (C4)
in the GA searches, are presented in Appendix B. For the
manifolds X5302 and X4071 cohomology formulae are not
yet available and we have used the weaker spectrum con-
straint (C4’). The first three manifolds admit symmetries
of orders 2 and 4 which leave the basis (J1, . . . Jh) invari-
ant, while X4071, admits a free action by Z2 which maps
(J1, J2, J3, J4, J5, J6, J7) 7! (J1, J6, J3, J4, J5, J2, J7).

III. THE GENETIC ALGORITHM AND
QUANTUM ANNEALING

Fixing the manifold X, a sum of five line bundles V
is specified by 4h integers (ki

a)
i=1,...,h
a=1,...4 , where the condi-

tion (C1) is used to fix the fifth line bundle in terms of
the first four. There are no a priori bounds on these 4h
integers. However, our previous experience from system-
atic scans [4, 18] indicates that only a relatively small
range is relevant, as bundles involving larger integers ei-
ther violate the anomaly cancellation condition or fail
to match the required Euler characteristic. We choose
this range as ki

a 2 {�2n + 1, . . . , 2n}, so that every in-
teger can be encoded by n + 1 bits without redundancy,
and a complete model is described by a bit list of length
Nbits = 4h(n+1). In practice, we take n = 3 for the first
three manifolds and n = 2 for the manifold X4071.

The classic GA algorithm begins by forming a ran-
dom population of Npop individuals, that is by generat-
ing Npop random binary string genotypes of length Nbits.
To decide how successful a particular individual is, we
define a fitness function f : FNbits

2 ! R on this set of
binary strings, which indicates how close the correspond-
ing bundle comes to satisfying conditions (C1)–(C5). The
detailed definition of f is presented in Appendix A. The
population is then evolved via the three main evolution-
ary ingredients: selection, breeding and mutation. We
use a selection method based on fitness-ranking, which
means that individuals are selected for breeding with
a probability that increases linearly with their ranking,
such that the probability for the fittest individual to be
selected is a multiple ↵ of the probability for the least
fit one. Typically, ↵ is chosen in the range 2  ↵  5.
The breeding of the Npop/2 pairs that are selected in this
manner is implemented by cutting and splicing each pair
at a number of matching random points. Typically (and,
in particular, in this work) a single point cross-over per-
forms well enough, in which a cut is made at a single
random point and the ‘tails’ swapped. Mutation is the
final step, in which a small randomly selected fraction
of bits in the newly formed generation is flipped. It is
worth highlighting the crucial importance of mutation,
in the absence of which the system stagnates. As an
additional feature, our implementation includes elitism,
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =

Z

X
ch(L) · td(X) = 2

4X

i=1

0

@ki +
Y

j 6=i

kj

1

A .

(B.1)
Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X, L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an

Formula:  h0(X, L) =

1, for ki = 0
χ(X, L), for L ∈ 𝒦(X )
χ(X, L′￼) , if ∃c1(L′￼) = Mi1Mi2

…Minc1(L) ∈ 𝒦(X )∖𝒪X

(1 + kA)(1 + kB) , if kA, kB ≥ 0 and the other two integers vanish
0, otherwise
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).
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Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =
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Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X,L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an

Effective cone of : infinite number of simplicial cones, corresponding to the Kähler cones of isomorphic CY-threefolds
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(C3) Supersymmetry/poly-stability: There exists a
non-trivial common solution ti to the vanishing
slopes

µ(La) = dijkk
i
at

jtk
!
= 0 for a = 1, . . . , 5

such that J = tiJi is in the interior of the Käh-
ler cone, which in our examples corresponds to
ti > 0. Solving the slope-zero equations is compu-
tationally expensive and this check is replaced by
the weaker condition that each of the five matrices
Ma = (dijkki

a) has at least one positive and one
negative entry. Moreover, the same should hold for
every linear combination vaMa. In practice, consid-
ering all the vectors va with integer entries between
�2 and 2 provides a strong enough check.

(C4) Spectrum:: cohomology dimensions must satisfy
10-multiplets: h1(X, V ) = 3|�|

no 10-multiplets: h2(X, V ) = 0
5-multiplets: h1(X, ^2V ) = 3|�| + nh, nh > 0
Higgs: h2(X, ^2V ) = nh

Here |�| is the order of the discrete group � and nh

represents the number of Higgs doublet pairs. In
the absence of a cohomology formula, (C4) can be
replaced by the weaker constraint (C4’).

(C4’) Chiral spectrum: �(X,V ) = �(X, ^2V ) = 3|�|

(C5) Equivariance: Require that V descends to a bun-
dle on X/�. For symmetries acting trivially on the
basis (J1, . . . , Jh) we require that the Euler charac-
teristic of every (maximal) partial sum �aiLai in V
consisting of line bundles with identical first Chern
classes, is divisible by |�|. For symmetries with a
non-trivial action on the basis (J1, . . . , Jh), V must
admit a partition into partial sums that are invari-
ant under the induced action of � on (J1, . . . , Jh)
and, moreover, the Euler characteristic of each par-
tial sum must be divisible by |�|.

The GA scans discussed below have been carried out on
four different Calabi-Yau threefolds realised as complete
intersections in products of projective spaces. Using the
standard notation for configuration matrices, with su-
perscript indices on X indicating the Hodge numbers
(h1,1(X), h1,2(X)) and a subscript index indicating the
position in the CICY list [24], these four manifolds are
generic members of the following deformation families:
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All four embeddings are favourable, in the sense that a
basis (J1, . . . Jh) of H2(X,Z) can be obtained by pulling
back to X the Kähler classes of the h projective fac-
tors. Line bundle cohomology formulae on the manifolds
X7862 and X7447, used to implement the constraints (C4)
in the GA searches, are presented in Appendix B. For the
manifolds X5302 and X4071 cohomology formulae are not
yet available and we have used the weaker spectrum con-
straint (C4’). The first three manifolds admit symmetries
of orders 2 and 4 which leave the basis (J1, . . . Jh) invari-
ant, while X4071, admits a free action by Z2 which maps
(J1, J2, J3, J4, J5, J6, J7) 7! (J1, J6, J3, J4, J5, J2, J7).

III. THE GENETIC ALGORITHM AND
QUANTUM ANNEALING

Fixing the manifold X, a sum of five line bundles V
is specified by 4h integers (ki

a)
i=1,...,h
a=1,...4 , where the condi-

tion (C1) is used to fix the fifth line bundle in terms of
the first four. There are no a priori bounds on these 4h
integers. However, our previous experience from system-
atic scans [4, 18] indicates that only a relatively small
range is relevant, as bundles involving larger integers ei-
ther violate the anomaly cancellation condition or fail
to match the required Euler characteristic. We choose
this range as ki

a 2 {�2n + 1, . . . , 2n}, so that every in-
teger can be encoded by n + 1 bits without redundancy,
and a complete model is described by a bit list of length
Nbits = 4h(n+1). In practice, we take n = 3 for the first
three manifolds and n = 2 for the manifold X4071.

The classic GA algorithm begins by forming a ran-
dom population of Npop individuals, that is by generat-
ing Npop random binary string genotypes of length Nbits.
To decide how successful a particular individual is, we
define a fitness function f : FNbits

2 ! R on this set of
binary strings, which indicates how close the correspond-
ing bundle comes to satisfying conditions (C1)–(C5). The
detailed definition of f is presented in Appendix A. The
population is then evolved via the three main evolution-
ary ingredients: selection, breeding and mutation. We
use a selection method based on fitness-ranking, which
means that individuals are selected for breeding with
a probability that increases linearly with their ranking,
such that the probability for the fittest individual to be
selected is a multiple ↵ of the probability for the least
fit one. Typically, ↵ is chosen in the range 2  ↵  5.
The breeding of the Npop/2 pairs that are selected in this
manner is implemented by cutting and splicing each pair
at a number of matching random points. Typically (and,
in particular, in this work) a single point cross-over per-
forms well enough, in which a cut is made at a single
random point and the ‘tails’ swapped. Mutation is the
final step, in which a small randomly selected fraction
of bits in the newly formed generation is flipped. It is
worth highlighting the crucial importance of mutation,
in the absence of which the system stagnates. As an
additional feature, our implementation includes elitism,
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic
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X
ch(L) · td(X) = 2
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Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X, L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an

Formula:  h0(X, L) =

1, for ki = 0
χ(X, L), for L ∈ 𝒦(X )
χ(X, L′￼) , if ∃c1(L′￼) = Mi1Mi2

…Minc1(L) ∈ 𝒦(X )∖𝒪X

(1 + kA)(1 + kB) , if kA, kB ≥ 0 and the other two integers vanish
0, otherwise
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =

Z

X
ch(L) · td(X) = 2

4X

i=1

0

@ki +
Y

j 6=i

kj

1

A .

(B.1)
Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X,L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an
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(C3) Supersymmetry/poly-stability: There exists a
non-trivial common solution ti to the vanishing
slopes

µ(La) = dijkk
i
at

jtk
!
= 0 for a = 1, . . . , 5

such that J = tiJi is in the interior of the Käh-
ler cone, which in our examples corresponds to
ti > 0. Solving the slope-zero equations is compu-
tationally expensive and this check is replaced by
the weaker condition that each of the five matrices
Ma = (dijkki

a) has at least one positive and one
negative entry. Moreover, the same should hold for
every linear combination vaMa. In practice, consid-
ering all the vectors va with integer entries between
�2 and 2 provides a strong enough check.

(C4) Spectrum:: cohomology dimensions must satisfy
10-multiplets: h1(X, V ) = 3|�|

no 10-multiplets: h2(X, V ) = 0
5-multiplets: h1(X, ^2V ) = 3|�| + nh, nh > 0
Higgs: h2(X, ^2V ) = nh

Here |�| is the order of the discrete group � and nh

represents the number of Higgs doublet pairs. In
the absence of a cohomology formula, (C4) can be
replaced by the weaker constraint (C4’).

(C4’) Chiral spectrum: �(X,V ) = �(X, ^2V ) = 3|�|

(C5) Equivariance: Require that V descends to a bun-
dle on X/�. For symmetries acting trivially on the
basis (J1, . . . , Jh) we require that the Euler charac-
teristic of every (maximal) partial sum �aiLai in V
consisting of line bundles with identical first Chern
classes, is divisible by |�|. For symmetries with a
non-trivial action on the basis (J1, . . . , Jh), V must
admit a partition into partial sums that are invari-
ant under the induced action of � on (J1, . . . , Jh)
and, moreover, the Euler characteristic of each par-
tial sum must be divisible by |�|.

The GA scans discussed below have been carried out on
four different Calabi-Yau threefolds realised as complete
intersections in products of projective spaces. Using the
standard notation for configuration matrices, with su-
perscript indices on X indicating the Hodge numbers
(h1,1(X), h1,2(X)) and a subscript index indicating the
position in the CICY list [24], these four manifolds are
generic members of the following deformation families:

X(4,68)
7862 =

P1

P1

P1

P1

2

4
2
2
2
2

3

5 , X(5,45)
7447 =

P1

P1

P1

P1

P1

2

64

1 1
1 1
1 1
1 1
1 1

3

75

X(6,30)
5302 =

P1

P1

P1

P1

P1

P1

2

664

0 1 1
0 1 1
1 1 0
1 1 0
1 0 1
1 0 1

3

775 , X(7,27)
4071 =

P1

P2

P1

P1

P1

P2

P3

2

66664

1 1 0 0 0 0 0 0
0 1 1 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 2 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 1
0 0 0 1 1 0 1 1

3

77775

(II.1)

All four embeddings are favourable, in the sense that a
basis (J1, . . . Jh) of H2(X,Z) can be obtained by pulling
back to X the Kähler classes of the h projective fac-
tors. Line bundle cohomology formulae on the manifolds
X7862 and X7447, used to implement the constraints (C4)
in the GA searches, are presented in Appendix B. For the
manifolds X5302 and X4071 cohomology formulae are not
yet available and we have used the weaker spectrum con-
straint (C4’). The first three manifolds admit symmetries
of orders 2 and 4 which leave the basis (J1, . . . Jh) invari-
ant, while X4071, admits a free action by Z2 which maps
(J1, J2, J3, J4, J5, J6, J7) 7! (J1, J6, J3, J4, J5, J2, J7).

III. THE GENETIC ALGORITHM AND
QUANTUM ANNEALING

Fixing the manifold X, a sum of five line bundles V
is specified by 4h integers (ki

a)
i=1,...,h
a=1,...4 , where the condi-

tion (C1) is used to fix the fifth line bundle in terms of
the first four. There are no a priori bounds on these 4h
integers. However, our previous experience from system-
atic scans [4, 18] indicates that only a relatively small
range is relevant, as bundles involving larger integers ei-
ther violate the anomaly cancellation condition or fail
to match the required Euler characteristic. We choose
this range as ki

a 2 {�2n + 1, . . . , 2n}, so that every in-
teger can be encoded by n + 1 bits without redundancy,
and a complete model is described by a bit list of length
Nbits = 4h(n+1). In practice, we take n = 3 for the first
three manifolds and n = 2 for the manifold X4071.

The classic GA algorithm begins by forming a ran-
dom population of Npop individuals, that is by generat-
ing Npop random binary string genotypes of length Nbits.
To decide how successful a particular individual is, we
define a fitness function f : FNbits

2 ! R on this set of
binary strings, which indicates how close the correspond-
ing bundle comes to satisfying conditions (C1)–(C5). The
detailed definition of f is presented in Appendix A. The
population is then evolved via the three main evolution-
ary ingredients: selection, breeding and mutation. We
use a selection method based on fitness-ranking, which
means that individuals are selected for breeding with
a probability that increases linearly with their ranking,
such that the probability for the fittest individual to be
selected is a multiple ↵ of the probability for the least
fit one. Typically, ↵ is chosen in the range 2  ↵  5.
The breeding of the Npop/2 pairs that are selected in this
manner is implemented by cutting and splicing each pair
at a number of matching random points. Typically (and,
in particular, in this work) a single point cross-over per-
forms well enough, in which a cut is made at a single
random point and the ‘tails’ swapped. Mutation is the
final step, in which a small randomly selected fraction
of bits in the newly formed generation is flipped. It is
worth highlighting the crucial importance of mutation,
in the absence of which the system stagnates. As an
additional feature, our implementation includes elitism,

: generators of the Kähler cone inherited from 


 line bundle with 

{J1, J2, J3, J4} (ℙ1)×4
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =

Z

X
ch(L) · td(X) = 2

4X

i=1

0

@ki +
Y

j 6=i

kj

1
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(B.1)
Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X, L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an

Formula:  h0(X, L) =

1, for ki = 0
χ(X, L), for L ∈ 𝒦(X )
χ(X, L′￼) , if ∃c1(L′￼) = Mi1Mi2

…Minc1(L) ∈ 𝒦(X )∖𝒪X

(1 + kA)(1 + kB) , if kA, kB ≥ 0 and the other two integers vanish
0, otherwise
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =

Z

X
ch(L) · td(X) = 2

4X

i=1

0

@ki +
Y

j 6=i

kj

1
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(B.1)
Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X,L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =
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X
ch(L) · td(X) = 2
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Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X, L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X, L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X, L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).

Appendix B: Line Bundle Cohomology Formulae

1. The manifold X7862

Cohomology formulae for the tetra-quadric manifold
X7862, which corresponds to a generic hypersurface of
multi-degree (2, 2, 2, 2) in (P1)⇥4, have previously been
given in Refs. [11, 24, 39]. However, these earlier formulae
were only correct in a finite range of line bundle integers.
A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.

The embedding is favourable and also Kähler
favourable. We denote by (J1, . . . , J4) the generators
of the Kähler cone K(X) inherited from the ambient
space. A line bundle L over X with first Chern class
c1(L) =

P4
i=1 kiJi has Euler characteristic

�(X, L) =

Z

X
ch(L) · td(X) = 2

4X
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Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
Kähler cone by the action of an infinite group generated
by the matrices
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X,L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X, L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X,L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an

On  almost all line bundles satisfy either  or .

Exception: two zero entries, one entry and one entry . In this case, 

X h1(X, L) = 0 h2(X, L) = 0
kA < − 1 kB > 1
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multiplets, while the fourth term penalises the presence
of more than two pairs of Higgs doublets. There is no
further contribution from the 10-multiplets and the 5-
multiplets, given the find contribution in (A.3) above. In
the absence of a cohomology formula we set fspec = 0,
since the index constraint (C4’) has already been taken
care of in (A.3).
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A complete formula has appeared in Ref. [40], and here
we follow the arguments of this paper. For simplicity, in
this section we write X instead of X7862.
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favourable. We denote by (J1, . . . , J4) the generators
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Apart from K(X), the effective cone of X includes an
infinite number of simplicial cones. They correspond
to the Kähler cones of isomorphic Calabi-Yau threefolds
which can be reached from X by a sequence of flops (see
Refs. [34]). These additional cones are obtained from the
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Consequently, any effective line bundle L is related to a
line bundle L0 contained in the closure of the Kähler cone
by a finite number of transformations

c1(L
0) = Mi1Mi2 . . . Mikc1(L) 2 K(X) . (B.3)

However, h0(X, L) = h0(X, L0) = �(X, L0), since the
number of global sections of a line bundle is invariant
under flops and the second equality holds by Kodaira’s
vanishing theorem and the Kawamata-Viehweg vanishing

theorem (the latter required on the walls separating the
Kähler cone of X). In fact, there are a number of two-
faces of K(X) which are not covered by the Kawamata-
Viehweg vanishing theorem. These correspond to line
bundles for which at least two of the integers ki van-
ish and the remaining integers are non-negative. In
these cases, the zeroth cohomology function is simplyQ4

i=1(1 + ki), which can be easily traced back to the
zeroth cohomology of two line bundles on P1

⇥ P1.
This procedure gives an extremely efficient method for

computing the zeroth cohomology of line bundles on the
tetra-quadric threefold. In practice only a small number
of transformations arise in Eq. (B.5), since the cones are
increasingly thin as one moves away from K(X) and con-
tain line bundles where at least one of the integers is very
large.

Once the zeroth cohomology is known, the third coho-
mology follows by Serre duality,

h3(X, L) = h0(X, L⇤) . (B.4)

Note that since the effective cone is convex there are no
line bundles, except for the trivial line bundle, that have
both h0(X, L) and h3(X, L) non-vanishing.

The middle cohomologies are related to the zeroth and
the third cohomologies by the formula

h1(X, L) � h2(X, L) = h0(X,L) � h3(X, L) � �(X, L) .
(B.5)

On the tetra-quadric manifold it turns out that almost all
line bundles either have h1(X, L) = 0 or h2(X, L) = 0. In
all these cases Eq. (B.7) provides a formula for the middle
cohomologies. The exceptions correspond to line bundles
for which two of the line bundle integers are zero and the
other two have opposite sign and are greater than 1 in
modulus. If kA and kB denote these non-zero integers,
then the relation

h1(X,L) + h2(X, L) = �2(1 + kAkB) , (B.6)

holds in all of the exceptional cases. Together with
Eq. (B.7), this fixes the middle cohomologies.

2. The manifold X7447

This manifold corresponds to the intersection of two
generic hypersurfaces of degree (1, 1, 1, 1, 1) in (P1)⇥5.
The line bundle cohomology structure is very similar to
that of the manifold X7862. The Kähler cone is five di-
mensional and is inherited from the embedding space.
Additionally, the effective cone contains infinitely many
cones obtained from the Kähler cone by the action of an
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(C3) Supersymmetry/poly-stability: There exists a
non-trivial common solution ti to the vanishing
slopes

µ(La) = dijkk
i
at

jtk
!
= 0 for a = 1, . . . , 5

such that J = tiJi is in the interior of the Käh-
ler cone, which in our examples corresponds to
ti > 0. Solving the slope-zero equations is compu-
tationally expensive and this check is replaced by
the weaker condition that each of the five matrices
Ma = (dijkki

a) has at least one positive and one
negative entry. Moreover, the same should hold for
every linear combination vaMa. In practice, consid-
ering all the vectors va with integer entries between
�2 and 2 provides a strong enough check.

(C4) Spectrum:: cohomology dimensions must satisfy
10-multiplets: h1(X, V ) = 3|�|

no 10-multiplets: h2(X, V ) = 0
5-multiplets: h1(X, ^2V ) = 3|�| + nh, nh > 0
Higgs: h2(X, ^2V ) = nh

Here |�| is the order of the discrete group � and nh

represents the number of Higgs doublet pairs. In
the absence of a cohomology formula, (C4) can be
replaced by the weaker constraint (C4’).

(C4’) Chiral spectrum: �(X,V ) = �(X, ^2V ) = 3|�|

(C5) Equivariance: Require that V descends to a bun-
dle on X/�. For symmetries acting trivially on the
basis (J1, . . . , Jh) we require that the Euler charac-
teristic of every (maximal) partial sum �aiLai in V
consisting of line bundles with identical first Chern
classes, is divisible by |�|. For symmetries with a
non-trivial action on the basis (J1, . . . , Jh), V must
admit a partition into partial sums that are invari-
ant under the induced action of � on (J1, . . . , Jh)
and, moreover, the Euler characteristic of each par-
tial sum must be divisible by |�|.

The GA scans discussed below have been carried out on
four different Calabi-Yau threefolds realised as complete
intersections in products of projective spaces. Using the
standard notation for configuration matrices, with su-
perscript indices on X indicating the Hodge numbers
(h1,1(X), h1,2(X)) and a subscript index indicating the
position in the CICY list [25], these four manifolds are
generic members of the following deformation families:

X(4,68)
7862 =

P1

P1

P1

P1

2

4
2
2
2
2

3

5 , X(5,45)
7447 =

P1

P1

P1

P1

P1

2

64

1 1
1 1
1 1
1 1
1 1

3

75

X(6,30)
5302 =

P1

P1

P1

P1

P1

P1

2

664

0 1 1
0 1 1
1 1 0
1 1 0
1 0 1
1 0 1

3

775 , X(7,27)
4071 =

P1

P2

P1

P1

P1

P2

P3

2

66664

1 1 0 0 0 0 0 0
0 1 1 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 0 2 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 1
0 0 0 1 1 0 1 1

3

77775

(II.1)

All four embeddings are favourable, in the sense that a
basis (J1, . . . Jh) of H2(X,Z) can be obtained by pulling
back to X the Kähler classes of the h projective fac-
tors. Line bundle cohomology formulae on the manifolds
X7862 and X7447, used to implement the constraints (C4)
in the GA searches, are presented in Appendix B. For the
manifolds X5302 and X4071 cohomology formulae are not
yet available and we have used the weaker spectrum con-
straint (C4’). The first three manifolds admit symmetries
of orders 2 and 4 which leave the basis (J1, . . . Jh) invari-
ant, while X4071, admits a free action by Z2 which maps
(J1, J2, J3, J4, J5, J6, J7) 7! (J1, J6, J3, J4, J5, J2, J7).

III. THE GENETIC ALGORITHM AND
QUANTUM ANNEALING

Fixing the manifold X, a sum of five line bundles V
is specified by 4h integers (ki

a)
i=1,...,h
a=1,...4 , where the condi-

tion (C1) is used to fix the fifth line bundle in terms of
the first four. There are no a priori bounds on these 4h
integers. However, our previous experience from system-
atic scans [4, 19] indicates that only a relatively small
range is relevant, as bundles involving larger integers ei-
ther violate the anomaly cancellation condition or fail
to match the required Euler characteristic. We choose
this range as ki

a 2 {�2n + 1, . . . , 2n}, so that every in-
teger can be encoded by n + 1 bits without redundancy,
and a complete model is described by a bit list of length
Nbits = 4h(n+1). In practice, we take n = 3 for the first
three manifolds and n = 2 for the manifold X4071.

The classic GA algorithm begins by forming a ran-
dom population of Npop individuals, that is by generat-
ing Npop random binary string genotypes of length Nbits.
To decide how successful a particular individual is, we
define a fitness function f : FNbits

2 ! R on this set of
binary strings, which indicates how close the correspond-
ing bundle comes to satisfying conditions (C1)–(C5). The
detailed definition of f is presented in Appendix A. The
population is then evolved via the three main evolution-
ary ingredients: selection, breeding and mutation. We
use a selection method based on fitness-ranking, which
means that individuals are selected for breeding with
a probability that increases linearly with their ranking,
such that the probability for the fittest individual to be
selected is a multiple ↵ of the probability for the least
fit one. Typically, ↵ is chosen in the range 2  ↵  5.
The breeding of the Npop/2 pairs that are selected in this
manner is implemented by cutting and splicing each pair
at a number of matching random points. Typically (and,
in particular, in this work) a single point cross-over per-
forms well enough, in which a cut is made at a single
random point and the ‘tails’ swapped. Mutation is the
final step, in which a small randomly selected fraction
of bits in the newly formed generation is flipped. It is
worth highlighting the crucial importance of mutation,
in the absence of which the system stagnates. As an
additional feature, our implementation includes elitism,

Formula for higher cohomologies follows the same pattern.

Cohomology formulae for smooth quotients of these manifolds by discrete group actions?

Partial results: yes - equivariant cohomology dimensions split as evenly as possible between the various reps.



• Heterotic line bundle models offer a rich phenomenology.


• Fast line bundle cohomology computations: an essential tool for model building, especially when coupled with 
heuristic methods of search.


• For model building purposes: cohomology formulae on CY3 with relatively large number of Kähler parameters ( ).≥ 4

       Summary and Outlook



• Heterotic line bundle models offer a rich phenomenology.
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• For model building purposes: cohomology formulae on CY3 with relatively large number of Kähler parameters ( ).≥ 4

       Summary and Outlook

• Line bundle cohomology dimensions capture a great deal of geometric information about the base manifold, 

   such as threefold flops, rigid divisors, certain GW invariants. 


• A better method of encoding the patterns arising in line bundle cohomology: generating functions. 

   Examples include surfaces, threefolds and higher dimensional manifolds of (almost) Fano, Calabi-Yau and general type. 



