Decoding Nature with Nature’s
Tools

String Pheno 2023 - Daejeon

Thomas Harvey
Collaborators: Steve Abel, Andrei Constantin, Andre Lukas & Luca Nutrical

Based On: 2306.03147

UNIVERSITY OF

OXFORD 1




Motivation

 The String Landscape is vast
. Ashok & Douglas (2004) ~ 10°"

. Taylor & Wang (2015) ~ 10?7000

* Extreme difficulty identifying points of physical interest

e Constantin, He and Lukas (2019) ~ 107" standard models

 Here we use Genetic Algorithms (GA) and Quantum Annealing (QA) to search the space
of line bundle sum models

e “Nature’s tools” - Evolution and Quantum Mechanics
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Genetic Algorithms

Has been used for constructing other physics models

S. Abel, A. Constantin, TRH, A. Lukas - Monad Bundles (2021) and Inflation (2022)

e A. Cole, S. Krippendorf, A. Schachner, G. Shiu - Flux Vacua (2019, 2021)

Each model is given by a genotype (string of bits) and phenotype (physics)
1. Randomly generate a population (e.g 100 random bit strings) and rank by fitness
2. Select individuals for breading based on fitness, then crossover pair

3. Small probability of mutation (0,1,1,0[11,1,...) (1,1,1,1[[1,1,...)

. . (1,1,1,1]|0,0,...) (0,1,1,0]|0,0,...)
4. Repeat with new population

. : . 2 Nyon — k
Based on evolution and survival of the fittest P (1 S _1((.1' - 1))



Quantum Annealing

“A Genetic Quantum Annealing Algorithm” (GQAA)
S.Abel, L.Nutricati, M.Spannowsky - GQAA (2022)

D-Wave’s Advantage_system4.1

Form of quantum computing to find ground state of Ising Model
Start with a system of free-spins in ground state
Smoothly change to Ising model of interest

* Adiabatic Theorem -> Should end up in new ground state

H(s =0) = Z h, Ul(x) => H(s=1)= Z h, UZ(Z) + Z J GZ(Z)G,%)
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Line Bundle Sums
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We choose to use favourable CICYs for M, and a sum of line bundles V = GB?: O (K

* Anderson, Gray, Lukas & Palti (2012)

5 Line bundles will lead to an SU(5) GUT in 4D
* Breaks to standard model if you introduce Wilson line on the quotient manifold M/I"

 This is a special locus in the moduli space of SU(5) bundles



Line Bundle Sums

For the algorithms we use, need to encode as a binary string

hll
. Line bundle is classified by its first Chern class ¢,;(0x(k)) = Z k°J, € H?*(X, Z) ~ a vector of integers

a=1

V = 69?:1 O(K:) is described by a matrix of integers - fills lattice 7>

« Can drop to Z4h11, from requirement that ¢;(V) = 0

Natural embedding of each element into (n+1) bits k" € {-2"+1,...,2"}

» Need 4h,;(n + 1) bits in total (we will use n=2 or n=3)

Will also need a negative-semidefinite “fithess function” - next slide

* Fitness = 0 corresponds to MSSM ( + Moduli Fields )



Fithess Function
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Results-GA
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Figure 1. Saturation plot for the GA search on X447 with
T'| = 4 and h""(X7447) = 5. The horizontal axis represents
the number of genetic episodes, in each episode a number of
90,000 states being visited. The vertical axis corresponds to
the number of inequivalent models found in the search sat-
isfying the necessary criterion (C3) for poly-stability. The
computational time for a genetic episode is O(10) seconds on

a standard machine.

Very efficient compared to

direct scans, and finds
almost all states

Manifold h |I'||Range| GA Scan|Found Explored
7862 4 2 |[-7,8] | 5 5 1100% 10~ *°
7862 4 4 |[-7,8] | 30 31 | 97% 10~'°
7447 5 2 |[-7,8] | 38 38 |100% 10~ '*
7447 5 4 |[-7,8]| 139 154 | 90% 104
5302 6 2 |[-7,8] | 403 442| 93% 10~ "
5302 6 4 |[-7,8] | 722 897 | 80% 10~ *°

Can consider higher Picard

number than was possible

with direct scans




Results-GQAA vs GA
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Figure 3. Fitness of the fittest individual for both GA and
GQAA for the first 100 generations on Xr447 with |I'| = 4.
The optimal value of the GA mutation rate is 0.5% and the
range for the integers k!, is chosen to be [—4, 3]. N,op, was set
to 50 for both GA and GQAA. The fitness was averaged over
20 runs. All the other parameters related to the GQAA part
are specified in Table II.

GQAA saturates faster
for a single genetic run

Will have full saturation
in ~1/2 the number of
genetic runs.

However, it currently
takes more real time.
Time Is spent moving
between classical
computer and annealer
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Figure 4. Fitness of the fittest individual for both GA and

GQAA for the first 100 generations on Xs3p2 with |I'| = 2.
The optimal value of the GA mutation rate is 1% and the line
bundle integers are chosen in the range k%, € [—7,8]. Nyop Was
set to 35 for both GA and GQAA. The fitness was averaged
over 20 runs. All the other parameters related to the GQAA

part are specified in Table II.



Conclusion and Outlook

 GA is able to search the space if line bundle sums for interesting models

.« Upto ~ 10! more efficient than a systematic scan in some cases

* \We have been able to explore higher Picard number than has been possible with direct
scans

* Evidence suggests that the method will improve with quantum annealing, but currently slowed
down moving between classical computer and quantum annealer

* Even in these huge landscapes, it’s possible to identify the points of physical interest efficiently
* This method can be applied to other string constructions

 Even adding further constraints e.g. Yukawa Couplings
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