Topological equivalence and
invariants of Calabi-Yau threefolds

New invariants, and identification of topological data.

Kit Fraser-Taliente KFT is supported by

a Gould-Watson
OXFORD based on (upcoming) work with Andre Lukas, Thomas Harvey, Aditi Chandra, and Andrei Constantin scholarship
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e How many pairs of Hodge numbers in Kreuzer-Skarke? 30,108. At least this many distinct manifolds.

e \Very loose upper bounds on KS - 1.65 X 10**% manifolds. Mostly one polytopel
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GL(N, Z) equivalence

Given a set of manifold data, find equivalence classes finding all transformation matrices.

In practice this i1s hard - no known finite-time algorithm decides equivalence.

e \What do we know about GL(N, Z)? Greatest Common Divisors (GCDs) of vectors are preserved

under GL(N, Z) transformations - and this is the only obstruction:

e Two vectors in the fundamental can be related by a GL(N, Z) matrix iff they have the same GCD.

Quadratic and cubic forms are much more complicated.

Clearly gcd({d,}) and gcd({c,}) are preserved [Hubsch, '92].

e Some more complicated GCD invariants exist, related to (e.g.) the GCD of the diagonal elements {d..,,}.

e Other invariants related to limiting mixed Hodge structures in infinite distance limits exist [Grimm, Ruehle, van de Heisteeg, '19]. For the cases
In this talk, these are less powerful than those discussed below.
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e Expect a number of algebraically independent invariants:

htt 1(2[3| 4 |[5| 6 7

1,1 _
# of invariants expected = (h +3 1) — ((h"H2 = 1) Degrees 114(4,6|8,16%|10|10*,12*|14*
3 + expected||1|1]| 2 5 |11 21 36

DOF of cubic form  basis redundancy

e Known lowest degrees of singlets and total number of (algebraically
independent) singlets expected. Starred have not been determined explicitly
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Polynomial invariants - how to calculate them?

e The polynomial invariants (combined with others) give sharp lower bounds, but are difficult to determine.

1. Constrain the admissible monomials using permutation

symmetries and the maximal torus of the GL(N, R) group.

2. GL(N, Z) is finitely generated. Suffices to find eigenvectors of

one of those generators G (after constraints).

3. Find NullSpace(Rq ¢y (G) — 1d). Use linear algebra tricks/
custom sparse LA modules to keep small.

The results. for A1l < 5:

1,1 e E.g. - the degree-10 A*" = 5 invariant
h 1]2] 3 4 O 6 7 has 7000 independent coefficients,

Degrees 14 4,6 8,16* 10 10*,12* 14* each multiplying an S5 orbit of a
+# expected ||1|1] 2 5 111 21 36 particular monomial. It is large.
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a0872 al1 a1272 a14 a21 a22"2 a24 +

a07 a09 a11"2 a14"2 a21 a22"2 a24 +

a07 a09 al1 a12”2 al14 a21"2 a24"2 +

a08 a09 a11"2 a12"2 a21 a22 a24"2 +

a0/7"2 al1 al12 a14"2 a21 a22 a24"2 +

a0/ a08 a11™2 a12 a14 a22"2 a24"2 +

a0872 a09 al12"2 al14 a21"2 a22 a30 +

a07 a0972 al1 a1472 a2172 a22 a30 +

a08 a0972 a11"2 a14 a21 a22"2 a30 +

a0/ a08"2 al12 a14"2 a21 a22”2 a30 +

a08 a09”2 al11 a12"2 a21"2 a24 a30 +

a0/72 a09 al12 a14"2 a21"2 a24 a30 +

a0872 a09 a11"2 a12 a22”2 a24 a30 +

a0/7"2 a08 al1 a14"2 a22"2 a24 a30 +

a07 a09”"2 a11"2 a12 a21 a24”2 a30 +

a0/7"2 a08 a12”2 al14 a21 a24”2 a30 +

a07 a0872 al1 a12”2 a22 a24"2 a30 +

a0/72 a09 a11"2 a14 a22 a24"2 a30 +

a0/ a08 a09"2 al12 a14 a21"2 a30"2 +

a0872 a09”"2 al11 a12 a21 a22 a30"2 +

a0772 a08 a09 a14"72 a21 a22 a30"2 +

a07 a0872 a09 all1 a14 a22"2 a30"2 +

a07 a0872 a09 a12"2 a21 a24 a30"2 +

a0772 a09”"2 al1 a14 a21 a24 a30"2 +

a0/ a08 a09"2 a11"2 a22 a24 a30"2 +

a0/7"2 a08"2 a12 al4 a22 a24 a30"2 +

a07”72 a08 a09 al1 a12 a24"2 a30"2) -

384 (a09"2 a11"2 a14"2 a21"2 a22"2 + a08"2 a12"2 a14"2
a21"2 a22”2 + a09"2 a11"2 a12”*2 a21"2 a24"2 +
a0772 a12"2 a14"2 a21"2 a24"2 + a08"2 al11*2 a12"2
a22"2 a24”2 + a0772 al1"2 a14”2 a22"2 a24"2 +
a0872 a09"2 a12"2 a21"2 a30"2 + a0772 a09”"2 a14"2
a21"2 a307"2 + a08"2 a09”"2 a11™2 a22”2 a30"2 +
a0/"2 a0872 a1472 a22"2 a30"2 + a0/7"2 a09”2 a11"2
a24"2 a30"2 + a07"2 a08"2 a12"2 a24"2 a30"2) + 2073 a08 a09 al4 a24 a30°3) +

208 aOgi?z(’?zoi42"21;;11’\232322+22017:2832311 a14"33+84 (@0972 a12"2 a14"2 a21"4 + a07"2 al4™4 a21"2 a22"2 +
a08"2 a11"2 a14”2 a22"4 + a08"2 a12™4 a21"2 a24"2 +

a07"2 al1 a12 a14"2 a21 a22 a2482 + A A A .
27 AOR A1179 219 414 A99AD A9AAD + a0873 a09 al1 a12 a22"2 a30"2 + a0/ a08”"3 a12 al4

a0872 a09 a10 a14"2 a21 a22"

a03 a08 a09 a1472 a21"2 a2
a07 a0972 a11™2 al14 a22"2 -
a0772 a09 al1 a1472 a22"2
a0/ a09”"2 a12”2 a13 a21™2 :
a07 a0872 al1™2 al15 a22"2
a08 a09 a11"2 a12”2 al7 a2«
a08 a0972 a11"2 a12 a20 a2
a0872 a09 a1l a12”2 a20 a2
a0772 a09 a12”72 a13 a21 a2
a04 a07 a09 a12"2 a21"2 a2
a0/7"2 a08 al11™2 al15 a22 a2-
a05 a07 a08 al1™2 a22"2 a2
a0/ a0872 a12”*2 al14 a21"2 «
a0/7"2 a08 a12 a14"2 a21"2 -
a07 a08”"2 a12"2 al14 a19 a2
a0/"2 a08 a12 a14"*2 a19 a2
a07 a09”2 a11"2 al14 a18 a2:
a0772 a09 al1 a14”2 a18 a2
a0872 a09”72 a10 a14 a21 a2
a03 a08 a09"2 a14 a21"2 a2
a03 a0872 a09 a14 a21 a22"
a0772 a09"2 al1 a14 a22 a2.
a08 a09”"2 a11"2 a12 al17 a2:
a08”2 a09 al1 a12”2 al7 a2«
a08"2 a09"2 al11 a12 a20 a2
a0/7"2 a0972 a12 al13 a21 a2-
a04 a07 a09"2 al12 a21"2 a2
a0/72 a0872 al1 a15 a22 a2-
a05 a07 a0872 al1 a22”2 a2
a04 a0772 a09 al12 a21 a24*
a05 a0/"2 a08 al1 a22 a24"
a0/7"2 a08”"2 a12 a14 a21 a2!
a07 a09”"2 a11™2 a14 a21"2
a0/7"2 a09 al1 a14"*2 a21"2 .
a07"2 a09 a11"2 a14 a21 a2
a08 a0972 al11 a1272 a21"2 «

a08 a09”"2 a11*2 al12 a21 a2:
ANQAN) ANO 211 Aa19"N\) ADT1 A
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GCD invariants - how powerful are they?

e GCD invariants aren't particularly powerful. They also will get less powerful with larger A;,, as the

number of arguments increase. But - often much easier to compute than polynomial singlets.

. . 10—
e Theorem/fun fact: given n integers {m;} selected -
uniformly in [1,N], p(ged({m;}) = 1) = 1/{(n) in the 0sl
limit as N — ©0. (n is the dim of the relevant rep) _
0.6}
e Conclusion: GCDs of large representations won't give S |
much new information? = o4l
e However topological data 1s not randomly distributed - 1ol
(e.qg. (0,12,12,36)). GCDs do much better than expected, |
but are not themselves enough. ool .
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Plot of the reciprocal of the zeta function as a function of the size of the
representation size n (as an illustration).
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explicit isomorphisms P, to determine actual equivalence (upper bounds) between
manifolds with matching invariants. We've done the first part.
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What about comparing two manifolds?

e Determine invariants to find potential equivalence (lower bounds): then find (pairwise)

explicit isomorphisms P, to determine actual equivalence (upper bounds) between
manifolds with matching invariants. We've done the first part.

e Pairwise sorting: worst-case is O(N?), disastrous for N > 1000 (for N manifolds
sharing invariants).

e Newton-Raphson iteration [Candelas, He, ‘90|, Neural networks for pairwise

comparisons |Taylor,Jejjala, Turner,’21], direct gradient descent, genetic

\Vloderate success, but not good enough.

algorithms.
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e Upshot: we swap a nonlinear problem with finite data for a ‘linear’ problem with infinite
data, ‘dualising’ the problem to line bundle cohomology.
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Alternative solution with line bundle cohomology

e Upshot: we swap a nonlinear problem with finite data for a ‘linear’ problem with infinite

data, ‘dualising’ the problem to line bundle cohomology.

Use line bundle cohomoloc

sensitive only to ¢,(X) anc

y to disting
dy(X) is t

Jish between X and X'. The quantity that is

ne Euler characteristic.

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate.

rst

1 1 1
y(X,L) = - (2¢,(L) + (L) (TX)) = gd ¢/ (L) ¢ (L) c/(L) A 12c,,c{(L)
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Alternative solution with line bundle cohomology

e Upshot: we swap a nonlinear problem with finite data for a ‘linear’ problem with infinite
data, ‘dualising’ the problem to line bundle cohomology.

Use line bundle cohomology to distinguish between X and X'. The quantity that Is \ AKX /

». ?‘?‘\‘

o : _ W,
sensitive only to ¢,(X) and d,,(X) is the Euler characteristic. ;’:‘:z:
O
Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate. A
1 3 1 r ) t . 1 r B
y(X,L) = T (2 c((L)” + ¢{(L) cz(TX)) = gdm c;(L)c;(L)c;(L) 126,,(:1 (L)

To each line bundle L we attach a pair of integers (d,, c/(L) ¢ (L) c[(L), c,c/(L))*. After the map

P2, a line bundle L' on X" with identical data should still exist. Problem: we don’t know which
ine bundle.
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Alternative solution with line bundle cohomology

e Upshot: we swap a nonlinear problem with finite data for a ‘linear’ problem with infinite
data, ‘dualising’ the problem to line bundle cohomology.

Use line bundle cohomology to distinguish between X and X'. The quantity that is \ LSS /

sensitive only to ¢,(X) and d.(X) is the Euler characteristic.

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate.

1
c,c;(L)

1 1
KD =— (260 + (L) efTX)) = —dy (L)L) e{(L) +—

To each line bundle L we attach a pair of integers (d,, c/(L) ¢ (L) c[(L), c,c/(L))*. After the map

P2, a line bundle L' on X" with identical data should still exist. Problem: we don’t know which

line bundle. |||"|II||

Line bundle ¢{(L) is an integer vector k", and so we can reframe the problem to that of

finding which L (or k") on X are mapped to which L’ (or k) on X’. Do this in a box.

11 *In this case we can split the Euler characteristic into ‘linear’ and ‘cubic’ parts



Find the map

X data X' data
® o o0 0 0 o ®o e 0 2 o
© e 060 0 0 o © e 0 0 o
®© @ 006 0 0 o © o 0 0 o
® oo 0 0 0 0 ® o o 0 o
® © © © 0 0 © ®o e 0 0 o
© e 060 o 0 o o e o 0 o
' © 0 9 o o o ® o 0o 0 o
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Find the map

X dat X' data
® o 00 0 0 o ®o e 0 2 o
© 000 0 0 o © e 0 0 o
® e 00 0 0 o © o 0 0 o
® oo 0 0 0 0 ® o o 0 o
LO® © @ o o o ®o e 0 0 o
o o o o o o o e o 0 o
LO @ @ o o o ® o 0o 0 o

\LZ\
/ data(L,, X) = data(Ly, X) = {1, — 5}
data(L;, X) = data(L,, X) = {2,17}
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Find the map

data(L;, X) = data(L;, X) = {2,17}

X dat X' data
® o 00 0 0 o ® o 0 92 o
© 000 0 0 o ® o 0 o
® e 00 0 0 o ® 0o 0 0 o
® oo 0 0 0 0 ® o o 0 o
L® © @ ® o o M EX.
® o o ® o o ° ° o
L O @ o o o ° N
\ \ data(L}, X) = data(L}, X) = {1, — 5

data(L,, X) = data(Ly, X) = {1, — 5}
data(L;, X) = data(L,, X) = {2,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>