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• How many pairs of Hodge numbers in Kreuzer-Skarke? . At least this many distinct manifolds.  
• Very loose upper bounds on KS -  manifolds. Mostly one polytope!

30,108
1.65 × 10428



Wall’s theorem

3



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

3



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )

Note: we choose a positive integral basis of 

. (Guaranteed for KS, 

not for CICYs).

H1,1(X, ℤ) ≅ H2(X, ℤ)



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )

Note: we choose a positive integral basis of 

. (Guaranteed for KS, 

not for CICYs).

H1,1(X, ℤ) ≅ H2(X, ℤ)

For equivalence of two  and : find an isomorphism . 

The entire lattice in cohomology remains integral under change of basis. 

  is an (invertible) matrix with  entries  .

X X′ Ps
r : H2(X, ℤ) → H2(X′ , ℤ)

→

→ P ℤ ⟹ GL(N = h1,1, ℤ)



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )

Note: we choose a positive integral basis of 

. (Guaranteed for KS, 

not for CICYs).

H1,1(X, ℤ) ≅ H2(X, ℤ)

cr → c′ r = Ps
rcs,

drst → d′ rst = Pu
r Pv

s Pw
t duvw .For equivalence of two  and : find an isomorphism . 

The entire lattice in cohomology remains integral under change of basis. 

  is an (invertible) matrix with  entries  .

X X′ Ps
r : H2(X, ℤ) → H2(X′ , ℤ)

→

→ P ℤ ⟹ GL(N = h1,1, ℤ)



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )

Note: we choose a positive integral basis of 

. (Guaranteed for KS, 

not for CICYs).

H1,1(X, ℤ) ≅ H2(X, ℤ)

cr → c′ r = Ps
rcs,

drst → d′ rst = Pu
r Pv

s Pw
t duvw .For equivalence of two  and : find an isomorphism . 

The entire lattice in cohomology remains integral under change of basis. 

  is an (invertible) matrix with  entries  .

X X′ Ps
r : H2(X, ℤ) → H2(X′ , ℤ)

→

→ P ℤ ⟹ GL(N = h1,1, ℤ)

Pj
iPj

iP
j
iP

j
i



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )

Note: we choose a positive integral basis of 

. (Guaranteed for KS, 

not for CICYs).

H1,1(X, ℤ) ≅ H2(X, ℤ)

cr → c′ r = Ps
rcs,

drst → d′ rst = Pu
r Pv

s Pw
t duvw .For equivalence of two  and : find an isomorphism . 

The entire lattice in cohomology remains integral under change of basis. 

  is an (invertible) matrix with  entries  .

X X′ Ps
r : H2(X, ℤ) → H2(X′ , ℤ)

→

→ P ℤ ⟹ GL(N = h1,1, ℤ)

Pj
iPj

iP
j
iP

j
i



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )

Note: we choose a positive integral basis of 

. (Guaranteed for KS, 

not for CICYs).

H1,1(X, ℤ) ≅ H2(X, ℤ)

cr → c′ r = Ps
rcs,

drst → d′ rst = Pu
r Pv

s Pw
t duvw .For equivalence of two  and : find an isomorphism . 

The entire lattice in cohomology remains integral under change of basis. 

  is an (invertible) matrix with  entries  .

X X′ Ps
r : H2(X, ℤ) → H2(X′ , ℤ)

→

→ P ℤ ⟹ GL(N = h1,1, ℤ) | det P | = 1 ⟹ GL(N, ℤ) ≅ SL(N, ℤ) ⋉ ℤ2

Pj
iPj

iP
j
iP

j
i



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )

Note: we choose a positive integral basis of 

. (Guaranteed for KS, 

not for CICYs).

H1,1(X, ℤ) ≅ H2(X, ℤ)

cr → c′ r = Ps
rcs,

drst → d′ rst = Pu
r Pv

s Pw
t duvw .For equivalence of two  and : find an isomorphism . 

The entire lattice in cohomology remains integral under change of basis. 

  is an (invertible) matrix with  entries  .

X X′ Ps
r : H2(X, ℤ) → H2(X′ , ℤ)

→

→ P ℤ ⟹ GL(N = h1,1, ℤ) | det P | = 1 ⟹ GL(N, ℤ) ≅ SL(N, ℤ) ⋉ ℤ2

Pj
iPj

iP
j
iP

j
i



Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold  (regarded as a real manifold) is 
completely determined by the Hodge numbers , the intersection form  and the second Chern class .

X
hp,q κABC c2(TX)

Wall’s theorem

• The intersection (cubic) form  symmetric  array . 

•   an -dimensional vector  . (using Serre duality),

≅ h11 × h11 × h11 drst

c2(TX) ≅ h11 [c2(TX)]r
def= cr

3

Data:  =   integersh11, h12, cr, drst 2 + h1,1 + (h1,1 + 3 − 1
3 )

Note: we choose a positive integral basis of 

. (Guaranteed for KS, 

not for CICYs).

H1,1(X, ℤ) ≅ H2(X, ℤ)

cr → c′ r = Ps
rcs,

drst → d′ rst = Pu
r Pv

s Pw
t duvw .For equivalence of two  and : find an isomorphism . 

The entire lattice in cohomology remains integral under change of basis. 

  is an (invertible) matrix with  entries  .

X X′ Ps
r : H2(X, ℤ) → H2(X′ , ℤ)

→

→ P ℤ ⟹ GL(N = h1,1, ℤ) | det P | = 1 ⟹ GL(N, ℤ) ≅ SL(N, ℤ) ⋉ ℤ2

SL(N, ℤ) ⊂ SL(N, ℝ) ⊂ SL(N, ℂ)

Pj
iPj

iP
j
iP

j
i



 equivalenceGL(N, ℤ)

4



Given a set of manifold data, find equivalence classes finding all transformation matrices. 

In practice this is hard - no known finite-time algorithm decides equivalence.

 equivalenceGL(N, ℤ)

4



Given a set of manifold data, find equivalence classes finding all transformation matrices. 

In practice this is hard - no known finite-time algorithm decides equivalence.

 equivalenceGL(N, ℤ)

• What do we know about ? Greatest Common Divisors (GCDs) of vectors are preserved 
under  transformations - and this is the only obstruction: 

• Two vectors in the fundamental can be related by a  matrix iff they have the same GCD.

GL(N, ℤ)
GL(N, ℤ)

GL(N, ℤ)

4



Given a set of manifold data, find equivalence classes finding all transformation matrices. 

In practice this is hard - no known finite-time algorithm decides equivalence.

 equivalenceGL(N, ℤ)

• What do we know about ? Greatest Common Divisors (GCDs) of vectors are preserved 
under  transformations - and this is the only obstruction: 

• Two vectors in the fundamental can be related by a  matrix iff they have the same GCD.

GL(N, ℤ)
GL(N, ℤ)

GL(N, ℤ)

Quadratic and cubic forms are much more complicated. 

Clearly  and  are preserved [Hubsch, ’92].  

• Some more complicated GCD invariants exist, related to (e.g.) the GCD of the diagonal elements . 

• Other invariants related to limiting mixed Hodge structures in infinite distance limits exist [Grimm, Ruehle, van de Heisteeg, ’19]. For the cases 
in this talk, these are less powerful than those discussed below.

gcd({drst}) gcd({cr})
{drrr}
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• E.g. - the degree-10  invariant 
has 7000 independent coefficients, 
each multiplying an  orbit of a 
particular monomial. It is large.

h11 = 5

S5

The results, for :h11 ≤ 5

1. Constrain the admissible monomials using permutation 
symmetries and the maximal torus of the  group. 

2.  is finitely generated. Suffices to find eigenvectors of 
one of those generators  (after constraints). 

3. Find . Use linear algebra tricks/
custom sparse LA modules to keep small.
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10D_Invariant = 14592 a07 a08 a09 a11 a12 a14 a21 a22 a24  
      a30 - 384 (a08 a09 a11 a12^2 a14 a21^2 a22 a24 +  

       a07 a09 a11 a12 a14^2 a21^2 a22 a24 +  
       a08 a09 a11^2 a12 a14 a21 a22^2 a24 +  
       a07 a08 a11 a12 a14^2 a21 a22^2 a24 +  
       a07 a09 a11^2 a12 a14 a21 a22 a24^2 +  
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       a07 a09^2 a11 a12 a14 a21^2 a24 a30 +  
       a07 a08 a09 a12^2 a14 a21^2 a24 a30 +  
       a08 a09^2 a11^2 a12 a21 a22 a24 a30 +  
       a08^2 a09 a11 a12^2 a21 a22 a24 a30 +  
       a07 a09^2 a11^2 a14 a21 a22 a24 a30 +  
       a07 a08^2 a12^2 a14 a21 a22 a24 a30 +  
       a07^2 a09 a11 a14^2 a21 a22 a24 a30 +  
       a07^2 a08 a12 a14^2 a21 a22 a24 a30 +  
       a07 a08 a09 a11^2 a14 a22^2 a24 a30 +  
       a07 a08^2 a11 a12 a14 a22^2 a24 a30 +  
       a07 a08 a09 a11 a12^2 a21 a24^2 a30 +  
       a07^2 a09 a11 a12 a14 a21 a24^2 a30 +  
       a07 a08 a09 a11^2 a12 a22 a24^2 a30 +  
       a07^2 a08 a11 a12 a14 a22 a24^2 a30 +  
       a07 a08 a09^2 a11 a14 a21 a22 a30^2 +  
       a07 a08^2 a09 a12 a14 a21 a22 a30^2 +  
       a07 a08 a09^2 a11 a12 a21 a24 a30^2 +  
       a07^2 a08 a09 a12 a14 a21 a24 a30^2 +  
       a07 a08^2 a09 a11 a12 a22 a24 a30^2 +  
       a07^2 a08 a09 a11 a14 a22 a24 a30^2) -  

     1536 (a08 a09 a11 a12 a14^2 a21^2 a22^2 +  
       a09^2 a11^2 a12 a14 a21^2 a22 a24 +  
       a07 a08 a12^2 a14^2 a21^2 a22 a24 +  
       a08^2 a11 a12^2 a14 a21 a22^2 a24 +  
       a07 a09 a11^2 a14^2 a21 a22^2 a24 +  
       a07 a09 a11 a12^2 a14 a21^2 a24^2 +  
       a08 a09 a11^2 a12^2 a21 a22 a24^2 +

a08^2 a11 a12^2 a14 a21 a22^2 a24 +  
       a07 a09 a11^2 a14^2 a21 a22^2 a24 +  
       a07 a09 a11 a12^2 a14 a21^2 a24^2 +  
       a08 a09 a11^2 a12^2 a21 a22 a24^2 +  
       a07^2 a11 a12 a14^2 a21 a22 a24^2 +  
       a07 a08 a11^2 a12 a14 a22^2 a24^2 +  
       a08^2 a09 a12^2 a14 a21^2 a22 a30 +  
       a07 a09^2 a11 a14^2 a21^2 a22 a30 +  
       a08 a09^2 a11^2 a14 a21 a22^2 a30 +  
       a07 a08^2 a12 a14^2 a21 a22^2 a30 +  
       a08 a09^2 a11 a12^2 a21^2 a24 a30 +  
       a07^2 a09 a12 a14^2 a21^2 a24 a30 +  
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       a07 a08^2 a09 a11 a14 a22^2 a30^2 +  
       a07 a08^2 a09 a12^2 a21 a24 a30^2 +  
       a07^2 a09^2 a11 a14 a21 a24 a30^2 +  
       a07 a08 a09^2 a11^2 a22 a24 a30^2 +  
       a07^2 a08^2 a12 a14 a22 a24 a30^2 +  
       a07^2 a08 a09 a11 a12 a24^2 a30^2) -  

     384 (a09^2 a11^2 a14^2 a21^2 a22^2 + a08^2 a12^2 a14^2  
        a21^2 a22^2 + a09^2 a11^2 a12^2 a21^2 a24^2 +  

       a07^2 a12^2 a14^2 a21^2 a24^2 + a08^2 a11^2 a12^2  
        a22^2 a24^2 + a07^2 a11^2 a14^2 a22^2 a24^2 +  

       a08^2 a09^2 a12^2 a21^2 a30^2 + a07^2 a09^2 a14^2  
        a21^2 a30^2 + a08^2 a09^2 a11^2 a22^2 a30^2 +  

       a07^2 a08^2 a14^2 a22^2 a30^2 + a07^2 a09^2 a11^2  
        a24^2 a30^2 + a07^2 a08^2 a12^2 a24^2 a30^2) +  

     384 (a09^2 a11 a12 a14^2 a21^3 a22 +  
       a08 a09 a12^2 a14^2 a21^3 a22 + a07 a09 a11 a14^3 + 

       a07^2 a11 a12 a14^2 a21 a22 a24^2 +  
       a07 a08 a11^2 a12 a14 a22^2 a24^2 + 

a07 a08 a11^2 a12^2 a22 a24^3 + a07^2 a11^2 a12  
        a14 a22 a24^3 + a08 a09^2 a12^2 a14 a21^3 a30 +  
       a07 a09^2 a12 a14^2 a21^3 a30 + a09^3 a11^2 a14  
        a21^2 a22 a30 + a07^2 a09 a14^3 a21^2 a22 a30 +  
       a08^3 a12^2 a14 a21 a22^2 a30 + a07^2 a08 a14^3  
        a21 a22^2 a30 + a08^2 a09 a11^2 a14 a22^3 a30 +  
       a07 a08^2 a11 a14^2 a22^3 a30 + a09^3 a11^2 a12  

        a21^2 a24 a30 + a08^2 a09 a12^3 a21^2 a24 a30 +  
       a08 a09^2 a11^3 a22^2 a24 a30 + a08^3 a11 a12^2  
        a22^2 a24 a30 + a07 a08^2 a12^3 a21 a24^2 a30 +  
       a07^3 a12 a14^2 a21 a24^2 a30 + a07 a09^2 a11^3  
        a22 a24^2 a30 + a07^3 a11 a14^2 a22 a24^2 a30 +  

       a07^2 a09 a11^2 a12 a24^3 a30 + a07^2 a08 a11  
        a12^2 a24^3 a30 + a08 a09^3 a11 a12 a21^2 a30^2 +  

       a07 a09^3 a11 a14 a21^2 a30^2 + a08 a09^3 a11^2  
        a21 a22 a30^2 + a08^3 a09 a12^2 a21 a22 a30^2 +  

       a08^3 a09 a11 a12 a22^2 a30^2 + a07 a08^3 a12 a14  
        a22^2 a30^2 + a07 a09^3 a11^2 a21 a24 a30^2 +  

       a07^3 a09 a14^2 a21 a24 a30^2 + a07 a08^3 a12^2  
        a22 a24 a30^2 + a07^3 a08 a14^2 a22 a24 a30^2 +  
       a07^3 a09 a11 a14 a24^2 a30^2 + a07^3 a08 a12 a14  

        a24^2 a30^2 + a07 a08^2 a09^2 a12 a21 a30^3 +  
       a07^2 a08 a09^2 a14 a21 a30^3 + a07 a08^2 a09^2  
        a11 a22 a30^3 + a07^2 a08^2 a09 a14 a22 a30^3 +  
       a07^2 a08 a09^2 a11 a24 a30^3 + a07^2 a08^2 a09  

        a12 a24 a30^3) + 1152 (a07 a09 a12 a14^3 a21^3  
        a22 + a07 a08 a11 a14^3 a21 a22^3 +  

       a08 a09 a12^3 a14 a21^3 a24 + a08 a09 a11^3 a14  
        a22^3 a24 + a07 a08 a11 a12^3 a21 a24^3 +  

       a07 a09 a11^3 a12 a22 a24^3 + a09^3 a11 a12 a14  
        a21^3 a30 + a08^3 a11 a12 a14 a22^3 a30 +  

       a09^3 a11^3 a21 a22 a24 a30 + a08^3 a12^3 a21 a22  
        a24 a30 + a07^3 a14^3 a21 a22 a24 a30 +  

       a07^3 a11 a12 a14 a24^3 a30 + a07 a08 a09^3 a11  
        a21 a30^3 + a07 a08^3 a09 a12 a22 a30^3 +  

       a07^3 a08 a09 a14 a24 a30^3) +  
     384 (a09^2 a12^2 a14^2 a21^4 + a07^2 a14^4 a21^2 a22^2 +  

       a08^2 a11^2 a14^2 a22^4 + a08^2 a12^4 a21^2 a24^2 +  
a08^3 a09 a11 a12 a22^2 a30^2 + a07 a08^3 a12 a14  

       a08^2 a11^2 a14^2 a22^4 + a08^2 a12^4 a21^2 a24^2 + 
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a08^2 a09 a10 a14^2 a21 a22^2 a30 +  
       a03 a08 a09 a14^2 a21^2 a22^2 a30 +  
       a07 a09^2 a11^2 a14 a22^2 a23 a30 +  
       a07^2 a09 a11 a14^2 a22^2 a23 a30 +  
       a07 a09^2 a12^2 a13 a21^2 a24 a30 +  
       a07 a08^2 a11^2 a15 a22^2 a24 a30 +  
       a08 a09 a11^2 a12^2 a17 a24^2 a30 +  
       a08 a09^2 a11^2 a12 a20 a24^2 a30 +  
       a08^2 a09 a11 a12^2 a20 a24^2 a30 +  
       a07^2 a09 a12^2 a13 a21 a24^2 a30 +  
       a04 a07 a09 a12^2 a21^2 a24^2 a30 +  
       a07^2 a08 a11^2 a15 a22 a24^2 a30 +  
       a05 a07 a08 a11^2 a22^2 a24^2 a30 +  
       a07 a08^2 a12^2 a14 a21^2 a25 a30 +  
       a07^2 a08 a12 a14^2 a21^2 a25 a30 +  
       a07 a08^2 a12^2 a14 a19 a21 a30^2 +  
       a07^2 a08 a12 a14^2 a19 a21 a30^2 +  
       a07 a09^2 a11^2 a14 a18 a22 a30^2 +  
       a07^2 a09 a11 a14^2 a18 a22 a30^2 +  
       a08^2 a09^2 a10 a14 a21 a22 a30^2 +  
       a03 a08 a09^2 a14 a21^2 a22 a30^2 +  
       a03 a08^2 a09 a14 a21 a22^2 a30^2 +  
       a07^2 a09^2 a11 a14 a22 a23 a30^2 +  
       a08 a09^2 a11^2 a12 a17 a24 a30^2 +  
       a08^2 a09 a11 a12^2 a17 a24 a30^2 +  
       a08^2 a09^2 a11 a12 a20 a24 a30^2 +  
       a07^2 a09^2 a12 a13 a21 a24 a30^2 +  
       a04 a07 a09^2 a12 a21^2 a24 a30^2 +  
       a07^2 a08^2 a11 a15 a22 a24 a30^2 +  
       a05 a07 a08^2 a11 a22^2 a24 a30^2 +  
       a04 a07^2 a09 a12 a21 a24^2 a30^2 +  
       a05 a07^2 a08 a11 a22 a24^2 a30^2 +  
       a07^2 a08^2 a12 a14 a21 a25 a30^2 +  
       a07 a09^2 a11^2 a14 a21^2 a24 a31 +  
       a07^2 a09 a11 a14^2 a21^2 a24 a31 +  
       a07^2 a09 a11^2 a14 a21 a24^2 a31 +  
       a08 a09^2 a11 a12^2 a21^2 a22 a33 +  
       a08 a09^2 a11^2 a12 a21 a22^2 a33 +  
       a08^2 a09 a11 a12^2 a21 a22^2 a33 +  
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• However topological data is not randomly distributed - 
(e.g. ). GCDs do much better than expected, 
but are not themselves enough.

(0,12,12,36)

• from this heuristic we should also expect them to worsen at larger .h11
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comparisons [Taylor,Jejjala,Turner,’21], direct gradient descent, genetic 
algorithms.

10

Moderate success, but not good enough.
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Use line bundle cohomology to distinguish between  and . The quantity that is 
sensitive only to  and (X) is the Euler characteristic. 

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate. 
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Use line bundle cohomology to distinguish between  and . The quantity that is 
sensitive only to  and (X) is the Euler characteristic. 

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate. 

 

X X′ 

c2(X) drst

χ(X, L) =
1
12 (2 c1(L)3 + c1(L) c2(TX)) =

1
6

drst c r
1(L) c s

1(L) c t
1(L) +

1
12

crc r
1(L)

To each line bundle  we attach a pair of integers *. After the map 
, a line bundle  on  with identical data should still exist. Problem: we don’t know which 

line bundle.

L (drst c r
1(L) c s

1(L) c t
1(L), crc r

1(L))
Ps

r L′ X′ 

Line bundle  is an integer vector , and so we can reframe the problem to that of 
finding which  (or ) on  are mapped to which  (or ) on . Do this in a box.

c r
1(L) kr

L kr X L′ k′ r X′ 

*In this case we can split the Euler characteristic into ‘linear’ and ‘cubic’ parts
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data(L′ 3, X) = data(L′ 4, X) = {1, − 5}

data(L′ 1, X) = data(L′ 2, X) = {2,17}
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KS data up to h11 = 6. (generated with cytools [Demirtas, Rios-Tascon, McAllister, ’22]) 
• Lower bound on the number of classes comes from considering invariants 
• Upper bound comes from explicitly finding basis transformations using line bundle algorithm 

with adaptive box size. 
Good invariants are crucial if you want to find an upper bound in reasonable time.
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Lower bounds

Upper bounds

# distinct triangs.

Distinct Hodge #s

1 2 3 4 5 6

10

100

1000

104

105

no polynomial invariant - 
lower bound isn’t as good

similarly a less good upper 
bound - smaller box scanned

h11

Number 
(log)

Lower and Upper 
bounds

27

i.e. manifolds without the trivial 
redundancy of identical data

• Lesson: the number of topological classes is increasing at roughly the same rate ( )as the (numerically distinct) 
triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.
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Lower bounds

Upper bounds

# distinct triangs.
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• Lesson: the number of topological classes is increasing at roughly the same rate ( )as the (numerically distinct) 
triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.

∼ 10h11
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h11

Number 
(log) no polynomial invariant - lower 

bound isn’t as good

similarly a less good upper bound - 
smaller box scanned

Lower and Upper 
bounds (incl. polytopes)

i.e. manifolds without the trivial 
redundancy of identical data



• Lesson: the number of topological classes is increasing at roughly the same rate ( )as the (numerically distinct) 
triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.

∼ 10h11
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Lower and Upper 
bounds per polytope

h11

Number 
(log)

Lower bounds/polytope

Upper bounds/polytope

# distinct triangs/polytope

Distinct Hodge #s/polytope

Triangulations/polytope

1 2 3 4 5 6

0.01

0.10

1

10
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Conclusions 

• Established powerful new invariants for low Picard number 

• New techniques for deciding equivalence of multilinear forms 

• Bounds on Kreuzer-Skarke data for low Picard number 

• An indication as to the asymptotic growth rate of the number of realised topological manifolds.



Conclusions and outlook

Outlook 

•Is there topological meaning to a GCD invariant? What about the polynomial singlets? Do they represent interesting 
properties of the CYs? 

•If we want to extend to higher Picard number - can we generate them more efficiently? Linear algebra may be too slow. 

•A partial recurrence relation exists for the degree-2  invariant. Can it be completed to a full recurrence relation? 

•Can these invariants be used to bound the number of Calabi-Yaus at a particular ? 

•Add the limiting mixed Hodge structure invariants mentioned above.
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