Topological equivalence and invariants of Calabi-Yau threefolds

New invariants, and identification of topological data.

Kit Fraser-Taliente

based on (upcoming) work with Andre Lukas, Thomas Harvey, Aditi Chandra, and Andrei Constantin

KFT is supported by a Gould-Watson scholarship

[Candelas et al, '88] [Kreuzer, Skarke, '02]. Only a single topological type of each of CY1s and CY2s.

• We are able to construct many Calabi-Yau threefolds (CY3s) - various methods

- CY1s and CY2s.
- equivalent? This could give **upper bounds** on the number in a given list.

• We are able to construct many Calabi-Yau threefolds (CY3s) - various methods [Candelas et al, '88] [Kreuzer, Skarke, '02]. Only a single topological type of each of

• Unknown how many distinct manifolds are actually realised, as (numerical) topological data is basis-dependent. Given two manifolds, can we decide if they are topologically

• New invariants could give lower bounds on the number of manifolds in a list.

- We are able to construct many Calabi-Yau threefolds (CY3s) various methods [Candelas et al, '88] [Kreuzer, Skarke, '02]. Only a single topological type of each of CY1s and CY2s.
- Unknown how many distinct manifolds are actually realised, as (numerical) topological data is basis-dependent. Given two manifolds, can we decide if they are topologically equivalent? This could give **upper bounds** on the number in a given list.
 - New invariants could give lower bounds on the number of manifolds in a list.
- More ambitiously, new invariants could lead to results on the question of **overall finiteness** of the classification of CYs. Finiteness results exist for Picard number 1/2[Wilson '17].

- We are able to construct many Calabi-Yau threefolds (CY3s) various methods [Candelas et al, '88] [Kreuzer, Skarke, '02]. Only a single topological type of each of CY1s and CY2s.
- Unknown how many distinct manifolds are actually realised, as (numerical) topological data is basis-dependent. Given two manifolds, can we decide if they are topologically equivalent? This could give **upper bounds** on the number in a given list.
 - New invariants could give lower bounds on the number of manifolds in a list.
- More ambitiously, new invariants could lead to results on the question of **overall finiteness** of the classification of CYs. Finiteness results exist for Picard number 1/2[Wilson '17].
 - How many pairs of Hodge numbers in Kreuzer-Skarke? 30,108. At least this many distinct manifolds. Very loose upper bounds on KS - 1.65×10^{428} manifolds. Mostly one polytope!

Theorem (Wall, 1966): The **homotopy type** of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

 h_{11} h_{12}

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

 d_{113} d_{123} d_{133} d_{233} c_1 $d_{111} \ d_{112} \ d_{113} \ \left| \ d_{223} \ \right| \ d_{333}$ $c_2 \ c_3$ $d_{112} \ d_{122} \ d_{123} \ \Big| \ d_{233}$ d_{113} d_{123} d_{133}

 h_{11} h_{12}

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

Note: we choose a **positive integral basis** of $H^{1,1}(X,\mathbb{Z}) \cong H^2(X,\mathbb{Z})$. (Guaranteed for KS, not for CICYs).

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

For equivalence of two X and X': find an isomorphism P_r^s

 \rightarrow The entire lattice in cohomology remains integral under change of basis.

 $\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\implies GL(N = h^{1,1}, \mathbb{Z})$.

Note: we choose a **positive integral basis** of $H^{1,1}(X,\mathbb{Z})\cong H^2(X,\mathbb{Z})$. (Guaranteed for KS, not for CICYs).

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_{2}(T_{X})$.

$$: H^2(X,\mathbb{Z}) \to H^2(X',\mathbb{Z}).$$

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

For equivalence of two X and X': find an isomorphism P_r^s

 \rightarrow The entire lattice in cohomology remains integral under change of basis.

 $\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\implies GL(N = h^{1,1}, \mathbb{Z})$.

Note: we choose a **positive integral basis** of $H^{1,1}(X,\mathbb{Z}) \cong H^2(X,\mathbb{Z})$. (Guaranteed for KS, not for CICYs).

Theorem (Wall, 1966): The **homotopy type** of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

 d_{113} d_{123} d_{133} c_1 $c_2 \ c_3$ $d_{111} \ d_{112} \ d_{113} \ \left| \ d_{223} \ \right| \ d_{333}$ h_{11} h_{12} $d_{112} \ d_{122} \ d_{123} \ | \ d_{233}$ d_{113} d_{123} d_{133}

$$: H^2(X,\mathbb{Z}) \to H^2(X',\mathbb{Z}).$$

$$c_r \to c'_r = P^s_r c_s,$$

$$d_{rst} \to d'_{rst} = P^u_r P^v_s P^w_t d_{uvw}.$$

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

For equivalence of two X and X': find an isomorphism P_r^s

 \rightarrow The entire lattice in cohomology remains integral under change of basis.

 $\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\implies GL(N = h^{1,1}, \mathbb{Z})$.

Note: we choose a **positive integral basis** of $H^{1,1}(X,\mathbb{Z})\cong H^2(X,\mathbb{Z})$. (Guaranteed for KS, not for CICYs).

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

$$: H^2(X,\mathbb{Z}) \to H^2(X',\mathbb{Z}).$$

$$c_r \to c'_r = P_r^s c_s,$$

$$d_{rst} \to d'_{rst} = P_r^u P_s^v P_t^w d_{uvw}.$$

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

For equivalence of two X and X': find an isomorphism $P_r^s: H^2(X, \mathbb{Z}) \to H^2(X', \mathbb{Z})$.

 \rightarrow The entire lattice in cohomology remains integral under change of basis.

 $\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\implies GL(N = h^{1,1}, \mathbb{Z})$.

Note: we choose a **positive integral basis** of $H^{1,1}(X,\mathbb{Z}) \cong H^2(X,\mathbb{Z})$. (Guaranteed for KS, not for CICYs).

Theorem (Wall, 1966): The **homotopy type** of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

integers

 d_{113} d_{123} d_{133} c_1 $d_{111} \ d_{112} \ d_{113} \ \left| \ d_{223} \ \left| \ d_{333} \right.
ight|$ c_2 c_3 h_{11} h_{12} d_{112} d_{122} d_{123} d_{233} $d_{113} \ d_{123} \ d_{133}$ $P_i^j P_i^j P_i^j$ P_i^j

$$c_r \to c'_r = P_r^s c_s,$$

$$d_{rst} \to d'_{rst} = P_r^u P_s^v P_t^w d_{uv}$$

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

For equivalence of two X and X': find an isomorphism $P_r^s : H^2(X, \mathbb{Z}) \to H^2(X', \mathbb{Z})$.

→ The entire lattice in cohomology remains integral under change of basis.

 $\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\implies GL(N = h^{1,1}, \mathbb{Z})$.

Note: we choose a **positive integral basis** of $H^{1,1}(X,\mathbb{Z})\cong H^2(X,\mathbb{Z})$. (Guaranteed for KS, not for CICYs).

Theorem (Wall, 1966): The **homotopy type** of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

integers

 $|\det P| = 1 \implies GL(N, \mathbb{Z}) \cong SL(N, \mathbb{Z}) \ltimes \mathbb{Z}_2$

$$c_r \to c'_r = P_r^s c_s,$$

$$d_{rst} \to d'_{rst} = P_r^u P_s^v P_t^w d_{uv}$$

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

For equivalence of two X and X': find an isomorphism $P_r^s : H^2(X, \mathbb{Z}) \to H^2(X', \mathbb{Z})$.

→ The entire lattice in cohomology remains integral under change of basis.

 $\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\implies GL(N = h^{1,1}, \mathbb{Z})$.

Note: we choose a **positive integral basis** of $H^{1,1}(X,\mathbb{Z})\cong H^2(X,\mathbb{Z})$. (Guaranteed for KS, not for CICYs).

Theorem (Wall, 1966): The **homotopy type** of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

integers

 $|\det P| = 1 \implies GL(N, \mathbb{Z}) \cong SL(N, \mathbb{Z}) \ltimes \mathbb{Z}_2$

$$c_r \to c'_r = P_r^s c_s,$$

$$d_{rst} \to d'_{rst} = P_r^u P_s^v P_t^w d_{uv}$$

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array d_{rst} .
- $c_2(T_X) \cong an h^{11}$ -dimensional vector $[c_2(T_X)]_r \stackrel{def}{=} c_r$. (using Serre duality),

Data:
$$h^{11}$$
, h^{12} , c_r , $d_{rst} = 2 + h^{1,1} + (h^{1,1} + (h^{1$

For equivalence of two X and X': find an isomorphism P_r^s

 \rightarrow The entire lattice in cohomology remains integral under change of basis.

 $\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\implies GL(N = h^{1,1}, \mathbb{Z})$. $|\det P| = 1 \implies GL(N, \mathbb{Z}) \cong SL(N, \mathbb{Z}) \ltimes \mathbb{Z}_2$ $SL(N,\mathbb{Z}) \subset SL(N,\mathbb{R}) \subset SL(N,\mathbb{C})$

Note: we choose a **positive integral basis** of $H^{1,1}(X,\mathbb{Z}) \cong H^2(X,\mathbb{Z})$. (Guaranteed for KS, not for CICYs).

 c_1

 c_2 c_3

 h_{11} h_{12}

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p,q}$, the intersection form κ_{ABC} and the second Chern class $c_2(T_X)$.

integers

$$: H^2(X,\mathbb{Z}) \to H^2(X',\mathbb{Z}).$$

 $c_r \to c_r' = P_r^s c_s,$

 d_{113} d_{123} d_{133}

 $d_{112} d_{122} d_{123}$

 $d_{111} \ d_{112} \ d_{113} \ \left| \ d_{223} \ \left| \ d_{333} \right.
ight|$

 d_{112} d_{122} d_{123} d_{233}

 $d_{113} \ d_{123} \ d_{133}$

 $P_i^j P_i^j P_i^j$

$$d_{rst} \to d'_{rst} = P^u_r P^v_s P^w_t d_{uv}$$

In practice this is hard - no known finite-time algorithm decides equivalence.

- Given a set of manifold data, find equivalence classes finding all transformation matrices.

In practice **this is hard** - no known finite-time algorithm decides equivalence.

- What do we know about $GL(N, \mathbb{Z})$? Greatest Common Divisors (GCDs) of vectors are preserved under $GL(N,\mathbb{Z})$ transformations - and this is the only obstruction:
- Two vectors in the fundamental can be related by a $GL(N,\mathbb{Z})$ matrix iff they have the same GCD. \bullet

- Given a set of manifold data, find equivalence classes finding all transformation matrices.

In practice this is hard - no known finite-time algorithm decides equivalence.

- What do we know about $GL(N, \mathbb{Z})$? Greatest Common Divisors (GCDs) of vectors are preserved under $GL(N, \mathbb{Z})$ transformations - and this is the only obstruction:
- Two vectors in the fundamental can be related by a $GL(N,\mathbb{Z})$ matrix iff they have the same GCD.

Quadratic and cubic forms are **much more complicated.** Clearly $gcd(\{d_{rst}\})$ and $gcd(\{c_r\})$ are preserved [Hubsch, '92].

- Some more complicated GCD invariants exist, related to (e.g.) the GCD of the diagonal elements $\{d_{rrr}\}$.
- Other invariants related to limiting mixed Hodge structures in infinite distance limits exist [Grimm, Ruehle, van de Heisteeg, '19]. For the cases in this talk, these are less powerful than those discussed below.

- Given a set of manifold data, find equivalence classes finding all transformation matrices.

• $c_r \sim$ fundamental **N**

• $c_r \sim$ fundamental **N**

•
$$d_{rst} \sim \mathbf{R} = \mathrm{Sym}^3(\mathbf{N}).$$

- $c_r \sim$ fundamental **N**
- $d_{rst} \sim \mathbf{R} = \mathrm{Sym}^3(\mathbf{N}).$
- Symmetric tensor powers of these representations = polynomial representations.

- $c_r \sim$ fundamental **N**
- $d_{rst} \sim \mathbf{R} = \mathrm{Sym}^3(\mathbf{N}).$
- Symmetric tensor powers of these representations = polynomial representations.
- Representation algebra. For $h^{11} = 2$, N = 2 and R = 4: Linears: $Sym^{1}(4) = 4$ Quadratics: $\text{Sym}^2(4) = 3 \oplus 7$ Cubics: $\text{Sym}^3(4) = 4 \oplus 6 \oplus 10$ Quartics: $\text{Sym}^4(4) = 1 \oplus 5 \oplus 7 \oplus 9 \oplus 13$

- $c_r \sim$ fundamental **N**
- $d_{rst} \sim \mathbf{R} = \mathrm{Sym}^3(\mathbf{N}).$
- Symmetric tensor powers of these representations = polynomial representations.
- Representation algebra. For $h^{11} = 2$, N = 2 and R = 4: Linears: $Sym^1(4) = 4$

Quadratics: $\text{Sym}^2(4) = 3 \oplus 7$ Cubics: $\text{Sym}^3(4) = 4 \oplus 6 \oplus 10$ Quartics: $\text{Sym}^4(4) = 1 \oplus 5 \oplus 7 \oplus 9 \oplus 13$

• The GCD of any representation will be preserved. Some representations can be

explicitly constructed - *e.g.* the Hessian representation. $\mathbf{3} = \{b^2 - ac, c^2 - bd, ad - bc\}$

- $c_r \sim$ fundamental **N**
- $d_{rst} \sim \mathbf{R} = \mathrm{Sym}^3(\mathbf{N}).$
- Symmetric tensor powers of these representations = polynomial representations.
- Representation algebra. For $h^{11} = 2$, N = 2 and R = 4:

Linears: $Sym^{1}(4) = 4$ Quadratics: $\text{Sym}^2(4) = 3 \oplus 7$ Cubics: $\text{Sym}^3(4) = 1 \oplus 6 \oplus 10$ Quartics: $\text{Sym}^4(4) = 1 \oplus 5 \oplus 7 \oplus 9 \oplus 13$

• The GCD of any representation will be preserved. Some representations can be

explicitly constructed - e.g. the Hessian representation. $\mathbf{3} = \{b^2 - ac, c^2 - bd, ad - bc\}$

• There exists a degree-4 **invariant** of the symmetric binary cubic (symmetric 2^3) array): Cayley's hyperdeterminant $\Delta_4 \sim$ a discriminant for the binary cubic :

• There exists a degree-4 **invariant** of the symmetric binary cubic (symmetric 2^3) array): Cayley's hyperdeterminant $\Delta_4 \sim$ a discriminant for the binary cubic :

$$\Delta_4(d_{ijk}) = a^2 d^2 - 6abcd + 4(ac^3 + b^3 d)$$

 $-3b^2c^2$

• There exists a degree-4 **invariant** of the symmetric binary cubic (symmetric 2^3 array): Cayley's hyperdeterminant $\Delta_4 \sim$ a discriminant for the binary cubic :

$$\Delta_4(d_{ijk}) = a^2 d^2 - 6abcd + 4(ac^3 + b^3 d)$$

• General problem: identify the **singlets** of $Sym^k(Sym^3(N))$ for all k and $N = h^{11}$. Gives us the singlets of $GL(N, \mathbb{Z})$ (up to sign).

 $-3b^2c^2$

* also have $\operatorname{Sym}^{k}(\operatorname{Sym}^{3}(\mathbb{N}) \otimes \mathbb{N})$ if combined with the data from c_2

• There exists a degree-4 **invariant** of the symmetric binary cubic (symmetric 2^3 array): Cayley's hyperdeterminant $\Delta_4 \sim$ a discriminant for the binary cubic :

$$\Delta_4(d_{ijk}) = a^2 d^2 - 6abcd + 4(ac^3 + b^3 d)$$

- General problem: identify the singlets of $Sym^k(Sym^3(N))$ for all k and $N = h^{11}$. Gives us the singlets of $GL(N, \mathbb{Z})$ (up to sign).
- To identify where invariants appear, use LiE [Feger et al, '19] to do the relevant plethysm.
- Expect a number of algebraically independent invariants:

 $-3b^2c^2$

* also have $\operatorname{Sym}^{k}(\operatorname{Sym}^{3}(\mathbf{N}) \otimes \mathbf{N})$ if combined with the data from c_2

• There exists a degree-4 **invariant** of the symmetric binary cubic (symmetric 2^3 array): Cayley's hyperdeterminant $\Delta_4 \sim$ a discriminant for the binary cubic :

$$\Delta_4(d_{ijk}) = a^2 d^2 - 6abcd + 4(ac^3 + b^3 d)$$

- General problem: identify the **singlets** of $Sym^k(Sym^3(N))$ for all k and $N = h^{11}$. Gives us the singlets of $GL(N, \mathbb{Z})$ (up to sign).
- To identify where invariants appear, use *LiE* [Feger et al, '19] to do the relevant *plethysm*.
- Expect a number of algebraically independent invariants:

of invariants expected =
$$\begin{pmatrix} h^{1,1} + 3 - 1 \\ 3 \end{pmatrix} - ((h^{1,1}))$$

DOF of cubic form

basis redundancy

 $-3b^2c^2$

* also have $\operatorname{Sym}^{k}(\operatorname{Sym}^{3}(\mathbf{N}) \otimes \mathbf{N})$ if combined with the data from c_2

 $)^{2}-1$

• There exists a degree-4 **invariant** of the symmetric binary cubic (symmetric 2^3 array): Cayley's hyperdeterminant $\Delta_4 \sim$ a discriminant for the binary cubic :

$$\Delta_4(d_{ijk}) = a^2 d^2 - 6abcd + 4(ac^3 + b^3 d)$$

- General problem: identify the **singlets** of $Sym^k(Sym^3(N))$ for all k and $N = h^{11}$. Gives us the singlets of $GL(N, \mathbb{Z})$ (up to sign).
- To identify where invariants appear, use *LiE* [Feger et al, '19] to do the relevant *plethysm*.
- Expect a number of algebraically independent invariants:

of invariants expected =
$$\begin{pmatrix} h^{1,1} + 3 - 1 \\ 3 \end{pmatrix} - ((h^{1,1}))$$

DOF of cubic form

basis redundancy

 $-3b^2c^2$

* also have $\operatorname{Sym}^{k}(\operatorname{Sym}^{3}(\mathbb{N}) \otimes \mathbb{N})$ if combined with the data from c_2

$$(2-1)$$

- $h^{1,1}$ 1|2|3 5 6 4 |1|4|4,6|8,16*|10|10*,12*|14* Degrees # expected ||1|1| $\mathbf{2}$ 2136ТТ
- Known lowest degrees of singlets and total number of (algebraically independent) singlets expected. Starred have not been determined explicitly

• The polynomial invariants (combined with others) give **sharp lower bounds**, but are difficult to determine.

- - custom sparse LA modules to keep small.

• The polynomial invariants (combined with others) give **sharp lower bounds**, but are difficult to determine.

1. Constrain the admissible monomials using **permutation** symmetries and the maximal torus of the $GL(N, \mathbb{R})$ group.

2. $GL(N,\mathbb{Z})$ is **finitely generated**. Suffices to find eigenvectors of **one** of those generators G (after constraints).

3. Find NullSpace($R_{S^kS^3V}(G) - Id$). Use linear algebra tricks/

- - **one** of those generators G (after constraints).
 - custom sparse LA modules to keep small.

The results, for $h^{11} \leq 5$:

$h^{1,1}$	1	2	3	4	5	6	7
Degrees	1	4	$4,\!6$	$8,\!16^*$	10	10*,12*	14*
# expected	1	1	2	5	11	21	36

• The polynomial invariants (combined with others) give **sharp lower bounds**, but are difficult to determine.

1. Constrain the admissible monomials using **permutation** symmetries and the maximal torus of the $GL(N, \mathbb{R})$ group.

2. $GL(N,\mathbb{Z})$ is **finitely generated**. Suffices to find eigenvectors of

3. Find NullSpace($R_{S^kS^3V}(G) - Id$). Use linear algebra tricks/

• E.g. - the degree-10 $h^{11} = 5$ invariant has 7000 independent coefficients, each multiplying an S_5 orbit of a particular monomial. It is large.

a08^2 a11 a12^2 a14 a21 a22^2 a24 + **10D_Invariant** = 14592 a07 a08 a09 a11 a12 a14 a21 a22 a24 a07 a09 a11^2 a14^2 a21 a22^2 a24 + a30 - 384 (a08 a09 a11 a12^2 a14 a21^2 a22 a24 + a07 a09 a11 a12^2 a14 a21^2 a24^2 + a07 a09 a11 a12 a14^2 a21^2 a22 a24 + a08 a09 a11^2 a12^2 a21 a22 a24^2 + a08 a09 a11^2 a12 a14 a21 a22^2 a24 + a07^2 a11 a12 a14^2 a21 a22 a24^2 + a07 a08 a11 a12 a14^2 a21 a22^2 a24 + a07 a08 a11^2 a12 a14 a22^2 a24^2 + a07 a09 a11^2 a12 a14 a21 a22 a24^2 + a08^2 a09 a12^2 a14 a21^2 a22 a30 + a07 a08 a11 a12^2 a14 a21 a22 a24^2 + a07 a09^2 a11 a14^2 a21^2 a22 a30 + a08 a09^2 a11 a12 a14 a21^2 a22 a30 + a08 a09^2 a11^2 a14 a21 a22^2 a30 + a07 a08 a09 a12 a14^2 a21^2 a22 a30 + a07 a08^2 a12 a14^2 a21 a22^2 a30 + a08^2 a09 a11 a12 a14 a21 a22^2 a30 + a08 a09^2 a11 a12^2 a21^2 a24 a30 + a07 a08 a09 a11 a14^2 a21 a22^2 a30 + a07^2 a09 a12 a14^2 a21^2 a24 a30 + a07 a09^2 a11 a12 a14 a21^2 a24 a30 + a08^2 a09 a11^2 a12 a22^2 a24 a30 + a07 a08 a09 a12^2 a14 a21^2 a24 a30 + a07^2 a08 a11 a14^2 a22^2 a24 a30 + a08 a09^2 a11^2 a12 a21 a22 a24 a30 + a07 a09^2 a11^2 a12 a21 a24^2 a30 + a08^2 a09 a11 a12^2 a21 a22 a24 a30 + a07^2 a08 a12^2 a14 a21 a24^2 a30 + a07 a09^2 a11^2 a14 a21 a22 a24 a30 + a07 a08^2 a11 a12^2 a22 a24^2 a30 + a07 a08^2 a12^2 a14 a21 a22 a24 a30 + a07^2 a09 a11^2 a14 a22 a24^2 a30 + a07^2 a09 a11 a14^2 a21 a22 a24 a30 + a07 a08 a09^2 a12 a14 a21^2 a30^2 + a07^2 a08 a12 a14^2 a21 a22 a24 a30 + a08^2 a09^2 a11 a12 a21 a22 a30^2 + a07 a08 a09 a11^2 a14 a22^2 a24 a30 + a07^2 a08 a09 a14^2 a21 a22 a30^2 + a07 a08^2 a11 a12 a14 a22^2 a24 a30 + a07 a08^2 a09 a11 a14 a22^2 a30^2 + a07 a08 a09 a11 a12^2 a21 a24^2 a30 + a07 a08^2 a09 a12^2 a21 a24 a30^2 + a07^2 a09 a11 a12 a14 a21 a24^2 a30 + a07^2 a09^2 a11 a14 a21 a24 a30^2 + a07 a08 a09 a11^2 a12 a22 a24^2 a30 + a07 a08 a09^2 a11^2 a22 a24 a30^2 + a07^2 a08 a11 a12 a14 a22 a24^2 a30 + a07^2 a08^2 a12 a14 a22 a24 a30^2 + a07 a08 a09^2 a11 a14 a21 a22 a30^2 + a07^2 a08 a09 a11 a12 a24^2 a30^2) a07 a08^2 a09 a12 a14 a21 a22 a30^2 + 384 (a09^2 a11^2 a14^2 a21^2 a22^2 + a08^2 a12^2 a14^2 a07 a08 a09^2 a11 a12 a21 a24 a30^2 + a21^2 a22^2 + a09^2 a11^2 a12^2 a21^2 a24^2 + a07^2 a08 a09 a12 a14 a21 a24 a30^2 + a07^2 a12^2 a14^2 a21^2 a24^2 + a08^2 a11^2 a12^2 a07 a08^2 a09 a11 a12 a22 a24 a30^2 + a22^2 a24^2 + a07^2 a11^2 a14^2 a22^2 a24^2 + a07^2 a08 a09 a11 a14 a22 a24 a30^2) a08^2 a09^2 a12^2 a21^2 a30^2 + a07^2 a09^2 a14^2 1536 (aO8 aO9 a11 a12 a14^2 a21^2 a22^2 + a21^2 a30^2 + a08^2 a09^2 a11^2 a22^2 a30^2 + a09^2 a11^2 a12 a14 a21^2 a22 a24 + a07^2 a08^2 a14^2 a22^2 a30^2 + a07^2 a09^2 a11^2 a07 a08 a12^2 a14^2 a21^2 a22 a24 + $a24^{2} a30^{2} + a07^{2} a08^{2} a12^{2} a24^{2} a30^{2} + a30^{2}$ a08^2 a11 a12^2 a14 a21 a22^2 a24 + 384 (a09^2 a11 a12 a14^2 a21^3 a22 + a07 a09 a11^2 a14^2 a21 a22^2 a24 + a07 a09 a11 a12^2 a14 a21^2 a24^2 + a07^2 a11 a12 a14^2 a21 a22 a2482 + a08 a09 a11^2 a12^2 a21 a22 a24^2 + a07 a08 a11^2 a12 a14 a22^2 a24^2 +

a14 a22 a24^3 + a08 a09^2 a12^2 a14 a21^3 a30 + a07 a09^2 a12 a14^2 a21^3 a30 + a09^3 a11^2 a14 a21^2 a22 a30 + a07^2 a09 a14^3 a21^2 a22 a30 + a08^3 a12^2 a14 a21 a22^2 a30 + a07^2 a08 a14^3 a21 a22^2 a30 + a08^2 a09 a11^2 a14 a22^3 a30 + a07 a08^2 a11 a14^2 a22^3 a30 + a09^3 a11^2 a12 a21^2 a24 a30 + a08^2 a09 a12^3 a21^2 a24 a30 + a08 a09^2 a11^3 a22^2 a24 a30 + a08^3 a11 a12^2 a22^2 a24 a30 + a07 a08^2 a12^3 a21 a24^2 a30 + a07^3 a12 a14^2 a21 a24^2 a30 + a07 a09^2 a11^3 a22 a24^2 a30 + a07^3 a11 a14^2 a22 a24^2 a30 + a07^2 a09 a11^2 a12 a24^3 a30 + a07^2 a08 a11 a12^2 a24^3 a30 + a08 a09^3 a11 a12 a21^2 a30^2 + a07 a09^3 a11 a14 a21^2 a30^2 + a08 a09^3 a11^2 a21 a22 a30^2 + a08^3 a09 a12^2 a21 a22 a30^2 + a08^3 a09 a11 a12 a22^2 a30^2 + a07 a08^3 a12 a14 a22^2 a30^2 + a07 a09^3 a11^2 a21 a24 a30^2 + a07^3 a09 a14^2 a21 a24 a30^2 + a07 a08^3 a12^2 a22 a24 a30^2 + a07^3 a08 a14^2 a22 a24 a30^2 + a07^3 a09 a11 a14 a24^2 a30^2 + a07^3 a08 a12 a14 a24^2 a30^2 + a07 a08^2 a09^2 a12 a21 a30^3 + a07^2 a08 a09^2 a14 a21 a30^3 + a07 a08^2 a09^2 a11 a22 a30^3 + a07^2 a08^2 a09 a14 a22 a30^3 + a07^2 a08 a09^2 a11 a24 a30^3 + a07^2 a08^2 a09 a12 a24 a30^3) + 1152 (a07 a09 a12 a14^3 a21^3 a22 + a07 a08 a11 a14^3 a21 a22^3 + a08 a09 a12^3 a14 a21^3 a24 + a08 a09 a11^3 a14 a22^3 a24 + a07 a08 a11 a12^3 a21 a24^3 + a07 a09 a11^3 a12 a22 a24^3 + a09^3 a11 a12 a14 a21^3 a30 + a08^3 a11 a12 a14 a22^3 a30 + a09^3 a11^3 a21 a22 a24 a30 + a08^3 a12^3 a21 a22 a24 a30 + a07^3 a14^3 a21 a22 a24 a30 + a07^3 a11 a12 a14 a24^3 a30 + a07 a08 a09^3 a11 a21 a30^3 + a07 a08^3 a09 a12 a22 a30^3 + a07^3 a08 a09 a14 a24 a30^3) + a08 a09 a12^2 a14^2 a21^3 a22 + a07 a09 a11 a14^3 + 384 (a09^2 a12^2 a14^2 a21^4 + a07^2 a14^4 a21^2 a22^2 + a08^2 a11^2 a14^2 a22^4 + a08^2 a12^4 a21^2 a24^2 + a08^3 a09 a11 a12 a22^2 a30^2 + a07 a08^3 a12 a14

a08^2 a09 a10 a14^2 a21 a22^ a03 a08 a09 a14^2 a21^2 a2 a07 a09^2 a11^2 a14 a22^2 a a07^2 a09 a11 a14^2 a22^2 a a07 a09^2 a12^2 a13 a21^2 a a07 a08^2 a11^2 a15 a22^2 a a08 a09 a11^2 a12^2 a17 a24 a08 a09^2 a11^2 a12 a20 a2 a08^2 a09 a11 a12^2 a20 a2 a07^2 a09 a12^2 a13 a21 a24 a04 a07 a09 a12^2 a21^2 a2 a07^2 a08 a11^2 a15 a22 a24 a05 a07 a08 a11^2 a22^2 a2 a07 a08^2 a12^2 a14 a21^2 a a07^2 a08 a12 a14^2 a21^2 a a07 a08^2 a12^2 a14 a19 a2 a07^2 a08 a12 a14^2 a19 a2 a07 a09^2 a11^2 a14 a18 a22 a07^2 a09 a11 a14^2 a18 a22 a08^2 a09^2 a10 a14 a21 a2 a03 a08 a09^2 a14 a21^2 a2 a03 a08^2 a09 a14 a21 a22^ a07^2 a09^2 a11 a14 a22 a23 a08 a09^2 a11^2 a12 a17 a24 a08^2 a09 a11 a12^2 a17 a24 a08^2 a09^2 a11 a12 a20 a2 a07^2 a09^2 a12 a13 a21 a24 a04 a07 a09^2 a12 a21^2 a2 a07^2 a08^2 a11 a15 a22 a24 a05 a07 a08^2 a11 a22^2 a2 a04 a07^2 a09 a12 a21 a24^ a05 a07^2 a08 a11 a22 a24^ a07^2 a08^2 a12 a14 a21 a2 a07 a09^2 a11^2 a14 a21^2 a07^2 a09 a11 a14^2 a21^2 a a07^2 a09 a11^2 a14 a21 a2 a08 a09^2 a11 a12^2 a21^2 a a08 a09^2 a11^2 a12 a21 a2 $a08^{2} = 00 = 11 = 12^{2} = 21 = 2^{2}$

• GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11} , as the number of arguments increase. But - often much easier to compute than polynomial singlets.

• GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11} , as the number of arguments increase. But - often much easier to compute than polynomial singlets.

Plot of the reciprocal of the zeta function as a function of the size of the representation size *n* (as an illustration).

- **Theorem/fun fact:** given *n* integers $\{m_i\}$ selected uniformly in [1,N], $p(gcd(\{m_i\}) = 1) \rightarrow 1/\zeta(n)$ in the limit as $N \to \infty$. (*n* is the dim of the relevant rep)

• GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11} , as the number of arguments increase. But - often much easier to compute than polynomial singlets.

Plot of the reciprocal of the zeta function as a function of the size of the representation size *n* (as an illustration).

- **Theorem/fun fact:** given *n* integers $\{m_i\}$ selected uniformly in [1,N], $p(\text{gcd}(\{m_i\}) = 1) \rightarrow 1/\zeta(n)$ in the limit as $N \to \infty$. (*n* is the dim of the relevant rep)
- **Conclusion:** GCDs of large representations won't give much new information?

• GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11} , as the number of arguments increase. But - often much easier to compute than polynomial singlets.

Plot of the reciprocal of the zeta function as a function of the size of the representation size *n* (as an illustration).

- **Theorem/fun fact:** given *n* integers $\{m_i\}$ selected uniformly in [1,N], $p(\text{gcd}(\{m_i\}) = 1) \rightarrow 1/\zeta(n)$ in the limit as $N \to \infty$. (*n* is the dim of the relevant rep)
- **Conclusion:** GCDs of large representations won't give much new information?
- **However** topological data is not randomly distributed -(e.g. (0,12,12,36)). GCDs do **much better** than expected, but are **not themselves enough**.

• GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11} , as the number of arguments increase. But - often much easier to compute than polynomial singlets.

Plot of the reciprocal of the zeta function as a function of the size of the representation size *n* (as an illustration).

- **Theorem/fun fact:** given *n* integers $\{m_i\}$ selected uniformly in [1,N], $p(gcd(\{m_i\}) = 1) \rightarrow 1/\zeta(n)$ in the limit as $N \to \infty$. (*n* is the dim of the relevant rep)
- **Conclusion:** GCDs of large representations won't give much new information?
- **However** topological data is not randomly distributed -(e.g. (0,12,12,36)). GCDs do **much better** than expected, but are **not themselves enough**.
 - from this heuristic we should also expect them to worsen at larger h^{11} .

• GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11} , as the number of arguments increase. But - often much easier to compute than polynomial singlets.

Plot of the reciprocal of the zeta function as a function of the size of the representation size *n* (as an illustration).

manifolds with matching invariants. We've done the first part.

• Determine invariants to find potential equivalence (lower bounds): then find (pairwise) explicit isomorphisms P_r^s to determine actual equivalence (upper bounds) between

- manifolds with matching invariants. We've done the first part.
- Pairwise sorting: worst-case is $\mathcal{O}(N^2)$, disastrous for $N \gtrsim 1000$ (for N manifolds) sharing invariants).

• Determine invariants to find potential equivalence (lower bounds): then find (pairwise) explicit isomorphisms P_r^s to determine actual equivalence (upper bounds) between

- Determine invariants to find potential equivalence (lower bounds): then find (pairwise) explicit isomorphisms P_r^s to determine actual equivalence (upper bounds) between manifolds with matching invariants. We've done the first part.
- **Pairwise sorting:** worst-case is $\mathcal{O}(N^2)$, disastrous for $N \gtrsim 1000$ (for N manifolds sharing invariants).
 - Newton-Raphson iteration [Candelas, He, '90], Neural networks for pairwise comparisons [Taylor, Jejjala, Turner, '21], direct gradient descent, genetic algorithms.

- Determine invariants to find potential equivalence (lower bounds): then find (pairwise) explicit isomorphisms P_r^s to determine actual equivalence (upper bounds) between manifolds with matching invariants. We've done the first part.
- Pairwise sorting: worst-case is $\mathcal{O}(N^2)$, disastrous for $N \gtrsim 1000$ (for N manifolds) sharing invariants).
 - Newton-Raphson iteration [Candelas, He, '90], Neural networks for pairwise **comparisons** [Taylor, Jejjala, Turner, '21], **direct gradient descent**, **genetic** algorithms.

data, 'dualising' the problem to line bundle cohomology.

• Upshot: we swap a nonlinear problem with finite data for a 'linear' problem with infinite

data, 'dualising' the problem to line bundle cohomology.

Use line bundle cohomology to distinguish between X and X'. The quantity that is sensitive only to $c_2(X)$ and $d_{rst}(X)$ is the **Euler characteristic**.

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate.

$$\chi(X,L) = \frac{1}{12} \left(2 c_1(L)^3 + c_1(L) c_2(TX) \right) =$$

- Upshot: we swap a nonlinear problem with finite data for a 'linear' problem with infinite

$$\frac{1}{6}d_{rst}c_1^r(L)c_1^s(L)c_1^t(L) + \frac{1}{12}c_rc_1^r(L)$$

data, 'dualising' the problem to line bundle cohomology.

Use line bundle cohomology to distinguish between X and X'. The quantity that is sensitive only to $c_2(X)$ and $d_{rst}(X)$ is the **Euler characteristic**.

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate.

$$\chi(X,L) = \frac{1}{12} \left(2 c_1(L)^3 + c_1(L) c_2(TX) \right) = \frac{1}{6} d_{rst} c_1^r(L) c_1^s(L) c_1^t(L) + \frac{1}{12} c_r c_1^r(L) c_1^s(L) c_1^s(L) c_1^s(L) + \frac{1}{12} c_r c_1^r(L) c_1^s(L) c_1^s(L)$$

To each line bundle L we attach a pair of integers $(d_{rst}c_1^r(L)c_1^s(L)c_1^t(L), c_rc_1^r(L))$ *. After the map P_r^s , a line bundle L' on X' with identical data should still exist. Problem: we don't know which line bundle.

- Upshot: we swap a nonlinear problem with finite data for a 'linear' problem with infinite

data, 'dualising' the problem to line bundle cohomology.

Use line bundle cohomology to distinguish between X and X'. The quantity that is sensitive only to $c_2(X)$ and $d_{rst}(X)$ is the **Euler characteristic**.

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate.

$$\chi(X,L) = \frac{1}{12} \left(2 c_1(L)^3 + c_1(L) c_2(TX) \right) = \frac{1}{6} d_{rst} c_1^r(L) c_1^s(L) c_1^t(L) + \frac{1}{12} c_r c_1^r(L) c_1^s(L) c_1^s(L) c_1^s(L) + \frac{1}{12} c_r c_1^r(L) c_1^s(L) c_1^s(L)$$

To each line bundle L we attach a pair of integers $(d_{rst}c_1^r(L)c_1^s(L)c_1^t(L), c_rc_1^r(L))$ *. After the map P_r^s , a line bundle L' on X' with identical data should still exist. Problem: we don't know which line bundle.

Line bundle $c_1^r(L)$ is an integer vector k^r , and so we can reframe the problem to that of finding which L (or k^r) on X are mapped to which L' (or k^r) on X'. Do this in a box.

- Upshot: we swap a nonlinear problem with finite data for a 'linear' problem with infinite

Find the map

Find the map

12

- Two approaches:

- Two approaches:

• Inspired by the 'point-set registration' (~ machine vision) problem above - use coherent **point drift**, a **noise-tolerant** algorithm, modified to accept 'coloured' line bundle data.

- Two approaches:
 - Inspired by the 'point-set registration' (~ machine vision) problem above use coherent point drift, a noise-tolerant algorithm, modified to accept 'coloured' line bundle data.
 - Unit vector search algorithm. Finds all candidate image points k'^r on X' of basis vectors \hat{k}^s on X (for k'^r in a box of width w), and ensures consistency. **Guaranteed** to find any basis transformation matrix with all entries in our $w^{(h^{11})}$ box.

- Two approaches:
 - Inspired by the 'point-set registration' (~ machine vision) problem above use coherent point drift, a noise-tolerant algorithm, modified to accept 'coloured' line bundle data.
 - Unit vector search algorithm. Finds all candidate image points k'^r on X' of basis vectors \hat{k}^s on X (for k'^r in a box of width w), and ensures consistency. **Guaranteed** to find any basis transformation matrix with all entries in our $w^{(h^{11})}$ box.
 - NB if the Picard number gets too high, we will have to return to the less consistent methods described above.

- Two approaches:
 - Inspired by the 'point-set registration' (~ machine vision) problem above use coherent **point drift**, a **noise-tolerant** algorithm, modified to accept 'coloured' line bundle data.
 - Unit vector search algorithm. Finds all candidate image points k'' on X' of basis vectors \hat{k}^s on X (for k'' in a box of width w), and ensures consistency. **Guaranteed** to find any basis transformation matrix with all entries in our $w^{(h^{11})}$ box.

• NB - if the Picard number gets too high, we will have to return to the less consistent methods described above.

Application to Kreuzer-Skarke

Application to Kreuzer-Skarke

KS data up to h11 = 6. (generated with *cytools* [Demirtas, Rios-Tascon, McAllister, '22]) • Lower bound on the number of classes comes from considering invariants

- with adaptive box size.

Good invariants are crucial if you want to find an **upper bound in reasonable time**.

• Upper bound comes from explicitly finding basis transformations using line bundle algorithm

Application to Kreuzer-Skarke

- **KS data up to h11 = 6.** (generated with *cytools* [Demirtas, Rios-Tascon, McAllister, '22]) • Lower bound on the number of classes comes from considering invariants
- Upper bound comes from explicitly finding basis transformations using line bundle algorithm with adaptive box size.

Good invariants are crucial if you want to find an **upper bound in reasonable time**.

$\left[\begin{array}{c} h^{1,1} \end{array} ight]$	# Polytopes	# Triangs.	# Distinct Triangs.	Hodge #s	Lower Bound	Upper Bound
1	5	5	5	5	5	5
2	36	48	38	18	27	29
3	243	525	296	42	169	186
4	1185	5,330	1,954	87	1,061	1186
5	4896	56,714	$13,\!330$	113	7,244	8078
6	16607	584,281	83,906	128	1,744	TBC

triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.

triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.

• Lesson: the number of topological classes is increasing at roughly the same rate ($\sim 10^{h^{11}}$) as the (numerically distinct) triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.

Conclusions and outlook

Conclusions and outlook

Conclusions

- Established **powerful new invariants** for low Picard number
- New techniques for deciding equivalence of multilinear forms
- Bounds on Kreuzer-Skarke data for low Picard number
- An indication as to the asymptotic growth rate of the number of realised topological manifolds.

Conclusions and outlook

Conclusions

- Established **powerful new invariants** for low Picard number
- **New techniques** for deciding equivalence of multilinear forms
- **Bounds on Kreuzer-Skarke data** for low Picard number
- An indication as to the **asymptotic growth rate** of the number of realised topological manifolds.

Outlook

- •Is there **topological meaning** to a GCD invariant? What about the polynomial singlets? Do they represent interesting properties of the CYs?
- •If we want to extend to higher Picard number can we generate them more efficiently? Linear algebra may be too slow. •A partial recurrence relation exists for the degree- $2h^{11}$ invariant. Can it be completed to a full recurrence relation? •Can these invariants be used to **bound** the number of Calabi-Yaus at a particular h^{11} ?

- •Add the limiting mixed Hodge structure invariants mentioned above.

