Topological equivalence and invariants of Calabi-Yau threefolds

New invariants, and identification of topological data.

Motivation

Motivation

- We are able to construct many Calabi-Yau threefolds (CY3s) - various methods [Candelas et al, '88] [Kreuzer, Skarke, '02]. Only a single topological type of each of CY1s and CY2s.

Motivation

- We are able to construct many Calabi-Yau threefolds (CY3s) - various methods [Candelas et al, '88] [Kreuzer, Skarke, '02]. Only a single topological type of each of CY1s and CY2s.
- Unknown how many distinct manifolds are actually realised, as (numerical) topological data is basis-dependent. Given two manifolds, can we decide if they are topologically equivalent? This could give upper bounds on the number in a given list.
- New invariants could give lower bounds on the number of manifolds in a list.

Motivation

- We are able to construct many Calabi-Yau threefolds (CY3s) - various methods [Candelas et al, '88] [Kreuzer, Skarke, '02]. Only a single topological type of each of CY1s and CY2s.
- Unknown how many distinct manifolds are actually realised, as (numerical) topological data is basis-dependent. Given two manifolds, can we decide if they are topologically equivalent? This could give upper bounds on the number in a given list.
- New invariants could give lower bounds on the number of manifolds in a list.
- More ambitiously, new invariants could lead to results on the question of overall finiteness of the classification of CYs. Finiteness results exist for Picard number $1 / 2$ [Wilson '17].

Motivation

- We are able to construct many Calabi-Yau threefolds (CY3s) - various methods [Candelas et al, '88] [Kreuzer, Skarke, '02]. Only a single topological type of each of CY1s and CY2s.
- Unknown how many distinct manifolds are actually realised, as (numerical) topological data is basis-dependent. Given two manifolds, can we decide if they are topologically equivalent? This could give upper bounds on the number in a given list.
- New invariants could give lower bounds on the number of manifolds in a list.
- More ambitiously, new invariants could lead to results on the question of overall finiteness of the classification of CYs. Finiteness results exist for Picard number $1 / 2$ [Wilson '17].
- How many pairs of Hodge numbers in Kreuzer-Skarke? 30,108. At least this many distinct manifolds.
- Very loose upper bounds on KS -1.65×10^{428} manifolds. Mostly one polytope!

Wall's theorem

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{2}\left(T_{X}\right)$.

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{八}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{\text {sst }}$
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$ (using Serre duality),

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1,1}+3-1}{3}$ integers

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1,1}+3-1}{3}$ integers

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1,1}+3-1}{3}$ integers

For equivalence of two X and X^{\prime} : find an isomorphism $P_{r}^{s}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$.
\rightarrow The entire lattice in cohomology remains integral under change of basis.
$\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\Longrightarrow G L\left(N=h^{1,1}, \mathbb{Z}\right)$.

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1,1}+3-1}{3}$ integers

For equivalence of two X and X^{\prime} : find an isomorphism $P_{r}^{s}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$.

$$
\begin{aligned}
c_{r} & \rightarrow c_{r}^{\prime}=P_{r}^{s} c_{s} \\
d_{r s t} & \rightarrow d_{r s t}^{\prime}=P_{r}^{u} P_{s}^{v} P_{t}^{w} d_{u v w}
\end{aligned}
$$

\rightarrow The entire lattice in cohomology remains integral under change of basis.
$\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\Longrightarrow G L\left(N=h^{1,1}, \mathbb{Z}\right)$.

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1,1}+3-1}{3}$ integers

For equivalence of two X and X^{\prime} : find an isomorphism $P_{r}^{s}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$.

$$
\begin{aligned}
c_{r} & \rightarrow c_{r}^{\prime}=P_{r}^{s} c_{s} \\
d_{r s t} & \rightarrow d_{r s t}^{\prime}=P_{r}^{u} P_{s}^{v} P_{t}^{w} d_{u v w}
\end{aligned}
$$

\rightarrow The entire lattice in cohomology remains integral under change of basis.
$\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\Longrightarrow G L\left(N=h^{1,1}, \mathbb{Z}\right)$.

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1.1}+3-1}{3}$ integers

For equivalence of two X and X^{\prime} : find an isomorphism $P_{r}^{s}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$.

$$
\begin{aligned}
c_{r} & \rightarrow c_{r}^{\prime}=P_{r}^{s} c_{s} \\
d_{r s t} & \rightarrow d_{r s t}^{\prime}=P_{r}^{u} P_{s}^{v} P_{t}^{w} d_{u v w}
\end{aligned}
$$

\rightarrow The entire lattice in cohomology remains integral under change of basis.
$\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\Longrightarrow G L\left(N=h^{1,1}, \mathbb{Z}\right)$.

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1,1}+3-1}{3}$ integers

For equivalence of two X and X^{\prime} : find an isomorphism $P_{r}^{s}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$.

$$
\begin{aligned}
c_{r} & \rightarrow c_{r}^{\prime}=P_{r}^{s} c_{s} \\
d_{r s t} & \rightarrow d_{r s t}^{\prime}=P_{r}^{u} P_{s}^{v} P_{t}^{w} d_{u v w}
\end{aligned}
$$

\rightarrow The entire lattice in cohomology remains integral under change of basis.
$\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\Longrightarrow G L\left(N=h^{1,1}, \mathbb{Z}\right)$.

$$
|\operatorname{det} P|=1 \Longrightarrow G L(N, \mathbb{Z}) \cong S L(N, \mathbb{Z}) \ltimes \mathbb{Z}_{2}
$$

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1,1}+3-1}{3}$ integers

For equivalence of two X and X^{\prime} : find an isomorphism $P_{r}^{s}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$.

$$
\begin{aligned}
c_{r} & \rightarrow c_{r}^{\prime}=P_{r}^{s} c_{s} \\
d_{r s t} & \rightarrow d_{r s t}^{\prime}=P_{r}^{u} P_{s}^{v} P_{t}^{w} d_{u v w}
\end{aligned}
$$

\rightarrow The entire lattice in cohomology remains integral under change of basis.
$\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\Longrightarrow G L\left(N=h^{1,1}, \mathbb{Z}\right)$.

$$
|\operatorname{det} P|=1 \Longrightarrow G L(N, \mathbb{Z}) \cong S L(N, \mathbb{Z}) \ltimes \mathbb{Z}_{2}
$$

Wall's theorem

Theorem (Wall, 1966): The homotopy type of a compact Calabi-Yau threefold X (regarded as a real manifold) is completely determined by the Hodge numbers $h^{p, q}$, the intersection form $\kappa_{A B C}$ and the second Chern class $c_{\imath}\left(T_{X}\right)$.

- The intersection (cubic) form \cong symmetric $h^{11} \times h^{11} \times h^{11}$ array $d_{r s t}$.
- $c_{2}\left(T_{X}\right) \cong$ an h^{11}-dimensional vector $\left[c_{2}\left(T_{X}\right)\right]_{r} \stackrel{\text { def }}{=} c_{r}$. (using Serre duality),

Data: $h^{11}, h^{12}, c_{r}, d_{r s t}=2+h^{1,1}+\binom{h^{1,1}+3-1}{3}$ integers

For equivalence of two X and X^{\prime} : find an isomorphism $P_{r}^{s}: H^{2}(X, \mathbb{Z}) \rightarrow H^{2}\left(X^{\prime}, \mathbb{Z}\right)$.

$$
\begin{aligned}
c_{r} & \rightarrow c_{r}^{\prime}=P_{r}^{s} c_{s} \\
d_{r s t} & \rightarrow d_{r s t}^{\prime}=P_{r}^{u} P_{s}^{v} P_{t}^{w} d_{u v w}
\end{aligned}
$$

\rightarrow The entire lattice in cohomology remains integral under change of basis.
$\rightarrow P$ is an (invertible) matrix with \mathbb{Z} entries $\Longrightarrow G L\left(N=h^{1,1}, \mathbb{Z}\right)$.

$$
\begin{gathered}
|\operatorname{det} P|=1 \Longrightarrow G L(N, \mathbb{Z}) \cong S L(N, \mathbb{Z}) \ltimes \mathbb{Z}_{2} \\
S L(N, \mathbb{Z}) \subset S L(N, \mathbb{R}) \subset S L(N, \mathbb{C})
\end{gathered}
$$

$G L(N, \mathbb{Z})$ equivalence

$G L(N, \mathbb{Z})$ equivalence

Given a set of manifold data, find equivalence classes finding all transformation matrices.
In practice this is hard - no known finite-time algorithm decides equivalence.

$G L(N, \mathbb{Z})$ equivalence

Given a set of manifold data, find equivalence classes finding all transformation matrices.
In practice this is hard - no known finite-time algorithm decides equivalence.

- What do we know about $G L(N, \mathbb{Z})$? Greatest Common Divisors (GCDs) of vectors are preserved under $G L(N, \mathbb{Z})$ transformations - and this is the only obstruction:
- Two vectors in the fundamental can be related by a $G L(N, \mathbb{Z})$ matrix iff they have the same GCD.

$G L(N, \mathbb{Z})$ equivalence

Given a set of manifold data, find equivalence classes finding all transformation matrices.
In practice this is hard - no known finite-time algorithm decides equivalence.

- What do we know about $G L(N, \mathbb{Z})$? Greatest Common Divisors (GCDs) of vectors are preserved under $G L(N, \mathbb{Z})$ transformations - and this is the only obstruction:
- Two vectors in the fundamental can be related by a $G L(N, \mathbb{Z})$ matrix iff they have the same GCD.

Quadratic and cubic forms are much more complicated.
Clearly $\operatorname{gcd}\left(\left\{d_{r s t}\right\}\right)$ and $\operatorname{gcd}\left(\left\{c_{r}\right\}\right)$ are preserved [Hubsch, '92].

- Some more complicated GCD invariants exist, related to (e.g.) the GCD of the diagonal elements $\left\{d_{r r r}\right\}$.
- Other invariants related to limiting mixed Hodge structures in infinite distance limits exist [Grimm, Ruehle, van de Heisteeg, '19]. For the cases in this talk, these are less powerful than those discussed below.

New invariants: tensor power representations

New invariants: tensor power representations

- $c_{r} \sim$ fundamental \mathbf{N}

New invariants: tensor power representations

- $c_{r} \sim$ fundamental \mathbf{N}
- $d_{r s t} \sim \mathbf{R}=\operatorname{Sym}^{3}(\mathbf{N})$.

New invariants: tensor power representations

- $c_{r} \sim$ fundamental \mathbf{N}
- $d_{r s t} \sim \mathbf{R}=\operatorname{Sym}^{3}(\mathbf{N})$.
- Symmetric tensor powers of these representations = polynomial representations.

New invariants: tensor power representations

- $c_{r} \sim$ fundamental \mathbf{N}
- $d_{r s t} \sim \mathbf{R}=\operatorname{Sym}^{3}(\mathbf{N})$.
- Symmetric tensor powers of these representations = polynomial representations.
- Representation algebra. For $h^{11}=2, \mathbf{N}=\mathbf{2}$ and $\mathbf{R}=\mathbf{4}$:

Linears: $\operatorname{Sym}^{1}(\mathbf{4})=\mathbf{4}$
Quadratics: $\operatorname{Sym}^{2}(\mathbf{4})=\mathbf{3} \oplus \mathbf{7}$
Cubics: $\operatorname{Sym}^{3}(\mathbf{4})=\mathbf{4} \oplus \mathbf{6} \oplus 10$
Quartics: $\operatorname{Sym}^{4}(\mathbf{4})=\mathbf{1} \oplus \mathbf{5} \oplus \mathbf{7} \oplus \mathbf{9} \oplus 13$

New invariants: tensor power representations

- $c_{r} \sim$ fundamental \mathbf{N}
- $d_{r s t} \sim \mathbf{R}=\operatorname{Sym}^{3}(\mathbf{N})$.
- Symmetric tensor powers of these representations = polynomial representations.
- Representation algebra. For $h^{11}=2, \mathbf{N}=\mathbf{2}$ and $\mathbf{R}=\mathbf{4}$:

Linears: $\operatorname{Sym}^{1}(\mathbf{4})=\mathbf{4}$
Quadratics: $\operatorname{Sym}^{2}(\mathbf{4})=\mathbf{3} \oplus \mathbf{7}$
Cubics: $\operatorname{Sym}^{3}(\mathbf{4})=\mathbf{4} \oplus \mathbf{6} \oplus 10$
Quartics: $\operatorname{Sym}^{4}(4)=1 \oplus 5 \oplus 7 \oplus 9 \oplus 13$

- The GCD of any representation will be preserved. Some representations can be explicitly constructed -e.g. the Hessian representation. $\quad \mathbf{3}=\left\{b^{2}-a c, c^{2}-b d, a d-b c\right\}$

New invariants: tensor power representations

- $c_{r} \sim$ fundamental \mathbf{N}
- $d_{r s t} \sim \mathbf{R}=\operatorname{Sym}^{3}(\mathbf{N})$.
- Symmetric tensor powers of these representations = polynomial representations.
- Representation algebra. For $h^{11}=2, \mathbf{N}=\mathbf{2}$ and $\mathbf{R}=\mathbf{4}$:

Linears: $\operatorname{Sym}^{1}(\mathbf{4})=\mathbf{4}$
Quadratics: $\operatorname{Sym}^{2}(\mathbf{4})=\mathbf{3} \oplus \mathbf{7}$
Cubics: $\operatorname{Sym}^{3}(\mathbf{4}) \Rightarrow \mathbf{~} \mathbf{6} \oplus 10$
Quartics: $\operatorname{Sym}^{4}(4)=1 \oplus 5 \oplus \mathbf{7} \oplus 9 \oplus 13$

- The GCD of any representation will be preserved. Some representations can be explicitly constructed -e.g. the Hessian representation. $\quad \mathbf{3}=\left\{b^{2}-a c, c^{2}-b d, a d-b c\right\}$

Polynomial invariant theory

Polynomial invariant theory

- There exists a degree-4 invariant of the symmetric binary cubic (symmetric 2^{3} array): Cayley's hyperdeterminant $\Delta_{4} \sim$ a discriminant for the binary cubic:

Polynomial invariant theory

- There exists a degree-4 invariant of the symmetric binary cubic (symmetric 2^{3} array): Cayley's hyperdeterminant $\Delta_{4} \sim$ a discriminant for the binary cubic:

$$
\Delta_{4}\left(d_{i j k}\right)=a^{2} d^{2}-6 a b c d+4\left(a c^{3}+b^{3} d\right)-3 b^{2} c^{2}
$$

Polynomial invariant theory

- There exists a degree-4 invariant of the symmetric binary cubic (symmetric 2^{3} array): Cayley's hyperdeterminant $\Delta_{4} \sim$ a discriminant for the binary cubic:

$$
\Delta_{4}\left(d_{i j k}\right)=a^{2} d^{2}-6 a b c d+4\left(a c^{3}+b^{3} d\right)-3 b^{2} c^{2}
$$

- General problem: identify the singlets of $\operatorname{Sym}^{k}\left(\operatorname{Sym}^{3}(\mathbf{N})\right)$ for all k and $N=h^{11}$. Gives us the singlets of $G L(N, \mathbb{Z})$ (up to sign).

Polynomial invariant theory

- There exists a degree-4 invariant of the symmetric binary cubic (symmetric 2^{3} array): Cayley's hyperdeterminant $\Delta_{4} \sim$ a discriminant for the binary cubic :

$$
\Delta_{4}\left(d_{i j k}\right)=a^{2} d^{2}-6 a b c d+4\left(a c^{3}+b^{3} d\right)-3 b^{2} c^{2}
$$

- General problem: identify the singlets of $\operatorname{Sym}^{k}\left(\operatorname{Sym}^{3}(\mathbf{N})\right)$ for all k and $N=h^{11}$. Gives us the singlets of $G L(N, \mathbb{Z})$ (up to sign).
- To identify where invariants appear, use LiE [Feger et al, '19] to do the relevant plethysm.
- Expect a number of algebraically independent invariants:

Polynomial invariant theory

- There exists a degree-4 invariant of the symmetric binary cubic (symmetric 2^{3} array): Cayley's hyperdeterminant $\Delta_{4} \sim$ a discriminant for the binary cubic :

$$
\Delta_{4}\left(d_{i j k}\right)=a^{2} d^{2}-6 a b c d+4\left(a c^{3}+b^{3} d\right)-3 b^{2} c^{2}
$$

- General problem: identify the singlets of $\operatorname{Sym}^{k}\left(\operatorname{Sym}^{3}(\mathbf{N})\right)$ for all k and $N=h^{11}$. Gives us the singlets of $G L(N, \mathbb{Z})$ (up to sign).
- To identify where invariants appear, use LiE [Feger et al, '19] to do the relevant plethysm.
- Expect a number of algebraically independent invariants:

$$
\begin{aligned}
\text { \# of invariants expected } & =\binom{h^{1,1}+3-1}{3}-\left(\left(h^{1,1}\right)^{2}-1\right) \\
& \text { DOF of cubic form }
\end{aligned}
$$

Polynomial invariant theory

- There exists a degree-4 invariant of the symmetric binary cubic (symmetric 2^{3} array): Cayley's hyperdeterminant $\Delta_{4} \sim$ a discriminant for the binary cubic :

$$
\Delta_{4}\left(d_{i j k}\right)=a^{2} d^{2}-6 a b c d+4\left(a c^{3}+b^{3} d\right)-3 b^{2} c^{2}
$$

- General problem: identify the singlets of $\operatorname{Sym}^{k}\left(\operatorname{Sym}^{3}(\mathbf{N})\right)$ for all k and $N=h^{11}$. Gives us the singlets of $G L(N, \mathbb{Z})$ (up to sign).
- To identify where invariants appear, use LiE [Feger et al, '19] to do the relevant plethysm.
- Expect a number of algebraically independent invariants:

$$
\begin{array}{r}
\text { \# of invariants expected }=\binom{h^{1,1}+3-1}{3}-\left(\left(h^{1,1}\right)^{2}-1\right) \\
\text { DOF of cubic form basis redundancy }
\end{array}
$$

$h^{1,1}$	1	2	3	4	5	6	7
Degrees	1	4	4,6	$8,16^{*}$	10	$10^{*}, 12^{*}$	14^{*}
\# expected	1	1	2	5	11	21	36

- Known lowest degrees of singlets and total number of (algebraically

Polynomial invariants - how to calculate them?

Polynomial invariants - how to calculate them?

- The polynomial invariants (combined with others) give sharp lower bounds, but are difficult to determine.

Polynomial invariants - how to calculate them?

- The polynomial invariants (combined with others) give sharp lower bounds, but are difficult to determine

1. Constrain the admissible monomials using permutation symmetries and the maximal torus of the $G L(N, \mathbb{R})$ group.
2. $G L(N, \mathbb{Z})$ is finitely generated. Suffices to find eigenvectors of one of those generators G (after constraints).
3. Find NullSpace $\left(R_{S^{k} S^{3} V}(G)\right.$ - Id). Use linear algebra tricks/ custom sparse LA modules to keep small.

Polynomial invariants - how to calculate them?

- The polynomial invariants (combined with others) give sharp lower bounds, but are difficult to determine.

1. Constrain the admissible monomials using permutation symmetries and the maximal torus of the $G L(N, \mathbb{R})$ group.
2. $G L(N, \mathbb{Z})$ is finitely generated. Suffices to find eigenvectors of one of those generators G (after constraints).
3. Find NullSpace $\left(R_{S^{k} S^{3} V}(G)\right.$ - Id $)$. Use linear algebra tricks/ custom sparse LA modules to keep small.

The results, for $h^{11} \leq 5$:

$h^{1,1}$	1	2	3	4	5	6	7
Degrees	1	4	4,6	$8,16^{*}$	10	$10^{*}, 12^{*}$	14^{*}
\# expected	1	1	2	5	11	21	36

- E.g. - the degree- $10 h^{11}=5$ invariant has 7000 independent coefficients, each multiplying an S_{5} orbit of a particular monomial. It is large.

10D_Invariant = 14592 a07 a08 a09 a11 a12 a14 a21 a22 a2
a30-384 (a08 a09 a11 a12^2 a14 a21^2 a22 a24 + a07 a09 a11 a12 a14^2 a21^2 a22 a24 + a08 a09 a11^2 a12 a14 a21 a22^2 a24 + a07 a08 a11 a12 a14^2 a21 a22^2 a24 + a07 a09 a11^2 a12 a14 a21 a22 a24^2 + a07 a08 a11 a12^2 a14 a21 a22 a24^2 + a08 a09^2 a11 a12 a14 a21^2 a22 a30 + a07 a08 a09 a12 a14^2 a21^2 a22 a30 + a08^2 a09 a11 a12 a14 a21 a22^2 a30 + a07 a08 a09 a11 a14^2 a21 a22^2 a30 + a07 a09^2 a11 a12 a14 a21^2 a24 a30 + a07 a08 a09 a12^2 a14 a21^2 a24 a30 + a08 a09^2 a11^2 a12 a21 a22 a24 a30 + a08^2 a09 a11 a12^2 a21 a22 a24 a30 + a07 a09^2 a11^2 a14 a21 a22 a24 a30 + a07 a08^2 a12^2 a14 a21 a22 a24 a30 + a07^2 a09 a11 a14^2 a21 a22 a24 a30 + a07^2 a08 a12 a14^2 a21 a22 a24 a30 + a07 a08 a09 a11^2 a14 a22^2 a24 a30 + a07 a08^2 a11 a12 a14 a22^2 a24 a30 + a07 a08 a09 a11 a12^2 a21 a24^2 a30 + a07^2 a09 a11 a12 a14 a21 a24^2 a30 + a07 a08 a09 a11^2 a12 a22 a24^2 a30 + a07^2 a08 a11 a12 a14 a22 a24^2 a30 + a07 a08 a09^2 a11 a14 a21 a22 a30^2 + a07 a08^2 a09 a12 a14 a21 a22 a30^2 + a07 a08 a09^2 a11 a12 a21 a24 a30^2 + a07^2 a08 a09 a12 a14 a21 a24 a30^2 + a07 a08^2 a09 a11 a12 a22 a24 a30^2 + a07^2 a08 a09 a11 a14 a22 a24 a30^2) 1536 (a08 a09 a11 a12 a14^2 a21^2 a22^2 + a09^2 a11^2 a12 a14 a21^2 a 22 a $24+$ a07 a08 a12^2 a14^2 a21^2 a22 a24 + a08^2 a11 a12^2 a14 a21 a22^2 a24 + a07 a09 a11^2 a14^2 a21 a22^2 a24 + a07 a09 a11 a12^2 a14 a21^2 a24^2 + a08 a09 a11^2 a12^2 a21 a22 a24^2 +
$08^{\wedge} 2$ a11 a12^2 a14 a21 a22^2 a24 +
a07 a09 a11^2 a14^2 a21 a a07 a09 a11 a12^2 a14 a21^2 a24^2 + a08 a09 a11^2 a12^2 a21 a22 a24^2 + a07^2 a11 a12 a14^2 a21 a22 a24^2 + a07 a08 a11^2 a12 a14 a22^2 a24^2 + a08^2 a09 a12^2 a14 a21^2 a22 a30 + a07 a09^2 a11 a14^2 a21^2 a22 a30 + a08 a09^2 a11^2 a14 a21 a22^2 a30 + a07 a08^2 a12 a14^2 a21 a22^2 a30 + a08 a09^2 a11 a12^2 a21^2 a24 a30 + a07^2 a09 a12 a14^2 a21^2 a24 a30 + a08^2 a09 a11^2 a12 a22^2 a24 a30 + a07^2 a08 a11 a14^2 a22^2 a24 a30 + a07 a09^2 a11^2 a12 a21 a24^2 a30 + a07^2 a08 a12^2 a14 a21 a24^2 a30 + a07 a08^2 a11 a12^2 a22 a24^2 a30 + a07^2 a09 a11^2 a14 a22 a24^2 a30 + a07 a08 a09^2 a12 a14 a21^2 a30^2 + a08^2 a09^2 a11 a12 a21 a22 a30^2 + a07^2 a08 a09 a14^2 a21 a22 a30^2 + a07 a08^2 a09 a11 a14 a22^2 a30^2 + a07 a08^2 a09 a12^2 a21 a24 a30^2 + a07^2 a09^2 a11 a14 a21 a24 a30^2 + a07 a08 a09^2 a11^2 a22 a24 a30^2 + a07^2 a08^2 a12 a14 a22 a24 a30^2 + a07^2 a08 a09 a11 a12 a24^2 a30^2) -
384 (a09^2 a11^2 a14^2 a21^2 a22^2 + a08^2 a12^2 a14^2 a21^2 a22^2 + a09^2 a11^2 a12^2 a21^2 a24^2 + a07^2 a12^2 a14^2 a21^2 a24^2 + a08^2 a11^2 a12^2 a22^2 a24^2 + a07^2 a11^2 a14^2 a22^2 a24^2 +
a08^2 a09^2 a12^2 a21^2 a30^2 + a07^2 a09^2 a14^2 a21^2 a30^2 + a08^2 a09^2 a11^2 a22^2 a30^2 +
a07^2 a08^2 a14^2 a22^2 a30^2 + a07^2 a09^2 a11^2 a24^2 a30^2 + a07^2 a08^2 a12^2 a $24^{\wedge} 2$ a30^ 2) + 384 (a09^2 a11 a12 a14^2 a21^3 a22 +
a08 a09 a12^2 a14^2 a21^3 a22 +a07 a09 a11 a14^3 384 (a09^2 a12^2 a14^2 a21^4 +a07^2 a14^4 a21^2 a22^2

a07^2 a11 a12 a14^2 a21 a22 a24夂^2+ a08^2 a11^2 a14^2 a22^4 +a08^2 a12^4 a21^2 a24^2+
a14 a22 a24^3 + a08 a09^2 a12^2 a14 a21^3 a30 + 07 a09^2 a12 a14^2 a21^3 a 30 + a09^3 a11^2 14 a21^2 a22 a30 + a07^2 a09 a14^3 a21^2 a22 a30 + a08^3 a12^2 a14 a21 a22^2 a30 + a07^2 a08 a14^3 a21 a22^2 a30 + a08^2 a09 a11^2 a14 a22^3 a30 + a07 a08^2 a11 a14^2 a22^3 a30 + a09^3 a11^2 a12 a21^2 a24 a30 + a08^2 a09 a12^3 a21^2 a24 a30 + a08 a09^2 a11^3 a22^2 a24 a30 + a08^3 a11 a12^2 a22^2 a24 a30 + a07 a08^2 a12^3 a21 a24^2 a30 + a07^3 a12 a14^2 a21 a24^2 a30 + a07 a09^2 a11^3 a22 a24^2 a30 + a07^3 a11 a14^2 a22 a24^2 a30 + a07^2 a09 a11^2 a12 a24^3 a30 + a07^2 a08 a11 a12^2 a24^3 a30 + a08 a09^3 a11 a12 a21^2 a30^2 + a07 a09^3 a11 a14 a21^2 a30^2 + a08 a09^3 a11^2 a21 a22 a30^2 + a08^3 a09 a12^2 a21 a22 a30^2 + a08^3 a09 a11 a12 a22^2 a30^2 + a07 a08^3 a12 a14 a22^2 a30^2 + a07 a09^3 a11^2 a21 a24 a30^2 + a07^3 a09 a14^2 a21 a24 a30^2 + a07 a08^3 a12^2 a22 a24 a30^2 + a07^3 a08 a14^2 a22 a24 a30^2 + a07^3 a09 a11 a14 a24^2 a30^2 + a07^3 a08 a12 a14 a24^2 a30^2 + a07 a08^2 a09^2 a12 a21 a30^3 + a07^2 a08 a09^2 a14 a21 a30^3 + a07 a08^2 a09^2 a11 a22 a30^3 + a07^2 a08^2 a09 a14 a22 a30^3 + a07^2 a08 a09^2 a11 a24 a30^3 + a07^2 a08^2 a09 a12 a24 a30^3) + 1152 (a07 a09 a12 a14^3 a21^3 a22 + a07 a08 a11 a14^3 a21 a22^3 + a08 a09 a12^3 a14 a21^3 a24 + a08 a09 a11^3 a14 a22^3 a24 + a07 a08 a11 a12^3 a21 a24^3 + a07 a09 a11^3 a12 a22 a24^3 + a09^3 a11 a12 a14 a21^3 a30 + a08^3 a11 a12 a14 a22^3 a30 +
a09^3 a11^3 a21 a22 a24 a30 + a08^3 a12^3 a21 a22 a24 a30 + a07^3 a14^3 a21 a22 a24 a30 +
a07^3 a11 a12 a14 a24^3 a30 + a07 a08 a09^3 a11 a21 a30^3 + a07 a08^3 a09 a12 a22 a30^3 + a07^3 a08 a09 a14 a24 a30^3) +
a08^2 a09 a10 a14^2 a21 a22
a03 a08 a09 a14^2 a21^2 a03 a08 a09 a14^2 a21^2 a2 a07 a09^2 a11^2 a14 a22^2
a07^2 a09 a11 a14^2 a22^2 a07 a09^2 a12^2 a13 a21^2 a07 a08^2 a11^2 a15 a22^2 a08 a09 a11^2 a12^2 a17 a2 a08 a09^2 a11^2 a12 a20 a2 a08^2 a09 a11 a12^2 a20 a2 a07^2 a09 a12^2 a13 a21 a2 a04 a07 a09 a12^2 a21^2 a2 a07^2 a08 a11^2 a15 a22 a2 a05 a07 a08 a11^2 a22^2 a2 a07 a08^2 a12^2 a14 a21^2 a07^2 a08 a12 a14^2 a21^2 a07 a08^2 a12^2 a14 a19 a2 a07^2 a08 a12 a14^2 a19 a2 a07 a09^2 a11^2 a14 a18 a2 a07^2 a09 a11 a14^2 a18 a2 a08^2 a09^2 a10 a14 a21 a2 a03 a08 a09^2 a14 a21^2 a2 a03 a08^2 a09 a14 a21 a22^ a07^2 a09^2 a11 a14 a22 a2 a08 a09^2 a11^2 a12 a17 a2 a08^2 a09 a11 a12^2 a17 a2 a08^2 a09^2 a11 a12 a20 a2 a07^2 a09^2 a12 a13 a21 a2 a04 a07 a09^2 a12 a21^2 a2 a07^2 a08^2 a11 a15 a22 a2 a05 a07 a08^2 a11 a22^2 a2 a04 a07^2 a09 a12 a21 a24^ a05 a07^2 a08 a11 a22 a24^ a07^2 a08^2 a12 a14 a21 a2 a07 a09^2 a11^2 a14 a21^2 a07^2 a09 a11 a14^2 a21^2 a07^2 a09 a11^2 a14 a21 a2 a08 a09^2 a11 a12^2 a21^2 a08 a09^2 a11^2 a12 a21 a2

GCD invariants - how powerful are they?

GCD invariants - how powerful are they?

- GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11}, as the number of arguments increase. But - often much easier to compute than polynomial singlets.

GCD invariants - how powerful are they?

- GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11}, as the number of arguments increase. But - often much easier to compute than polynomial singlets.

Plot of the reciprocal of the zeta function as a function of the size of the representation size n (as an illustration)

GCD invariants - how powerful are they?

- GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11}, as the number of arguments increase. But - often much easier to compute than polynomial singlets.
- Theorem/fun fact: given n integers $\left\{m_{i}\right\}$ selected uniformly in $[1, N], p\left(\operatorname{gcd}\left(\left\{m_{i}\right\}\right)=1\right) \rightarrow 1 / \zeta(n)$ in the limit as $N \rightarrow \infty$. (n is the dim of the relevant rep)

Plot of the reciprocal of the zeta function as a function of the size of the representation size n (as an illustration)

GCD invariants - how powerful are they?

- GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11}, as the number of arguments increase. But - often much easier to compute than polynomial singlets.
- Theorem/fun fact: given n integers $\left\{m_{i}\right\}$ selected uniformly in $[1, N], p\left(\operatorname{gcd}\left(\left\{m_{i}\right\}\right)=1\right) \rightarrow 1 / \zeta(n)$ in the limit as $N \rightarrow \infty$. (n is the dim of the relevant rep)
- Conclusion: GCDs of large representations won't give much new information?

GCD invariants - how powerful are they?

- GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11}, as the number of arguments increase. But - often much easier to compute than polynomial singlets.
- Theorem/fun fact: given n integers $\left\{m_{i}\right\}$ selected uniformly in $[1, N], p\left(\operatorname{gcd}\left(\left\{m_{i}\right\}\right)=1\right) \rightarrow 1 / \zeta(n)$ in the limit as $N \rightarrow \infty$. (n is the dim of the relevant rep)
- Conclusion: GCDs of large representations won't give much new information?
- However topological data is not randomly distributed (e.g. $(0,12,12,36))$. GCDs do much better than expected, but are not themselves enough.

Plot of the reciprocal of the zeta function as a function of the size of the representation size n (as an illustration).

GCD invariants - how powerful are they?

- GCD invariants aren't particularly powerful. They also will get less powerful with larger h_{11}, as the number of arguments increase. But - often much easier to compute than polynomial singlets.
- Theorem/fun fact: given n integers $\left\{m_{i}\right\}$ selected uniformly in $[1, N], p\left(\operatorname{gcd}\left(\left\{m_{i}\right\}\right)=1\right) \rightarrow 1 / \zeta(n)$ in the limit as $N \rightarrow \infty$. (n is the dim of the relevant rep)
- Conclusion: GCDs of large representations won't give much new information?
- However topological data is not randomly distributed (e.g. $(0,12,12,36))$. GCDs do much better than expected, but are not themselves enough.
- from this heuristic we should also expect them to worsen at larger h^{11}

Plot of the reciprocal of the zeta function as a function of the size of the representation size n (as an illustration).

What about comparing two manifolds?

What about comparing two manifolds?

- Determine invariants to find potential equivalence (lower bounds): then find (pairwise) explicit isomorphisms P_{r}^{s} to determine actual equivalence (upper bounds) between manifolds with matching invariants. We've done the first part.

What about comparing two manifolds?

- Determine invariants to find potential equivalence (lower bounds): then find (pairwise) explicit isomorphisms P_{r}^{s} to determine actual equivalence (upper bounds) between manifolds with matching invariants. We've done the first part.
- Pairwise sorting: worst-case is $\mathcal{O}\left(N^{2}\right)$, disastrous for $N \gtrsim 1000$ (for N manifolds sharing invariants).

What about comparing two manifolds?

- Determine invariants to find potential equivalence (lower bounds): then find (pairwise) explicit isomorphisms P_{r}^{s} to determine actual equivalence (upper bounds) between manifolds with matching invariants. We've done the first part.
- Pairwise sorting: worst-case is $\mathcal{O}\left(N^{2}\right)$, disastrous for $N \gtrsim 1000$ (for N manifolds sharing invariants).
- Newton-Raphson iteration [Candelas, He, '90], Neural networks for pairwise comparisons [Taylor, Jejjala, Turner,'21], direct gradient descent, genetic algorithms.

What about comparing two manifolds?

- Determine invariants to find potential equivalence (lower bounds): then find (pairwise) explicit isomorphisms P_{r}^{s} to determine actual equivalence (upper bounds) between manifolds with matching invariants. We've done the first part.
- Pairwise sorting: worst-case is $\mathcal{O}\left(N^{2}\right)$, disastrous for $N \gtrsim 1000$ (for N manifolds sharing invariants).
- Newton-Raphson iteration [Candelas, He, '90], Neural networks for pairwise comparisons [Taylor, Jejjala, Turner,'21], direct gradient descent, genetic algorithms.

Alternative solution with line bundle cohomology

Alternative solution with line bundle cohomology

- Upshot: we swap a nonlinear problem with finite data for a 'linear’ problem with infinite data, 'dualising' the problem to line bundle cohomology.

Alternative solution with line bundle cohomology

- Upshot: we swap a nonlinear problem with finite data for a 'linear' problem with infinite data, 'dualising' the problem to line bundle cohomology.

Use line bundle cohomology to distinguish between X and X^{\prime}. The quantity that is sensitive only to $c_{2}(X)$ and $d_{r s t}(X)$ is the Euler characteristic.

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate.

$$
\chi(X, L)=\frac{1}{12}\left(2 c_{1}(L)^{3}+c_{1}(L) c_{2}(T X)\right)=\frac{1}{6} d_{r s t} c_{1}^{r}(L) c_{1}^{s}(L) c_{1}^{t}(L)+\frac{1}{12} c_{r} c_{1}^{r}(L)
$$

Alternative solution with line bundle cohomology

- Upshot: we swap a nonlinear problem with finite data for a 'linear' problem with infinite data, 'dualising' the problem to line bundle cohomology.

Use line bundle cohomology to distinguish between X and X^{\prime}. The quantity that is sensitive only to $c_{2}(X)$ and $d_{r s t}(X)$ is the Euler characteristic.

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate.

$$
\chi(X, L)=\frac{1}{12}\left(2 c_{1}(L)^{3}+c_{1}(L) c_{2}(T X)\right)=\frac{1}{6} d_{r s t} c_{1}^{r}(L) c_{1}^{s}(L) c_{1}^{t}(L)+\frac{1}{12} c_{r} c_{1}^{r}(L)
$$

To each line bundle L we attach a pair of integers $\left(d_{r s t} c_{1}^{r}(L) c_{1}^{s}(L) c_{1}^{t}(L), c_{r} c_{1}^{r}(L)\right)^{*}$. After the map P_{r}^{s}, a line bundle L^{\prime} on X^{\prime} with identical data should still exist. Problem: we don't know which line bundle.

Alternative solution with line bundle cohomology

- Upshot: we swap a nonlinear problem with finite data for a 'linear' problem with infinite data, 'dualising' the problem to line bundle cohomology.

Use line bundle cohomology to distinguish between X and X^{\prime}. The quantity that is sensitive only to $c_{2}(X)$ and $d_{r s t}(X)$ is the Euler characteristic.

Full line bundle cohomology contains too much info (e.g. about the complex structure)/too slow to generate.

$$
\chi(X, L)=\frac{1}{12}\left(2 c_{1}(L)^{3}+c_{1}(L) c_{2}(T X)\right)=\frac{1}{6} d_{r s t} c_{1}^{r}(L) c_{1}^{s}(L) c_{1}^{t}(L)+\frac{1}{12} c_{r} c_{1}^{r}(L)
$$

To each line bundle L we attach a pair of integers $\left(d_{r s t} c_{1}^{r}(L) c_{1}^{s}(L) c_{1}^{t}(L), c_{r} c_{1}^{r}(L)\right)^{*}$. After the map P_{r}^{s}, a line bundle L^{\prime} on X^{\prime} with identical data should still exist. Problem: we don't know which line bundle.

Line bundle $c_{1}^{r}(L)$ is an integer vector k^{r}, and so we can reframe the problem to that of finding which L (or k^{r}) on X are mapped to which L^{\prime} (or $k^{\prime r}$) on X^{\prime}. Do this in a box.

Find the map

Find the map

Find the map

A $G L(N, \mathbb{Z})$ transformation

A $G L(N, \mathbb{Z})$ transformation

A $G L(N, \mathbb{Z})$ transformation

A $G L(N, \mathbb{Z})$ transformation

A $G L(N, \mathbb{Z})$ transformation

A $G L(N, \mathbb{Z})$ transformation

A $G L(N, \mathbb{Z})$ transformation

A $G L(N, \mathbb{Z})$ transformation

A $G L(N, \mathbb{Z})$ transformation

Solving with line bundle cohomology

Solving with line bundle cohomology

- Two approaches:

Solving with line bundle cohomology

- Two approaches:
- Inspired by the 'point-set registration' (\sim machine vision) problem above - use coherent point drift, a noise-tolerant algorithm, modified to accept 'coloured' line bundle data.

Solving with line bundle cohomology

- Two approaches:
- Inspired by the 'point-set registration' (\sim machine vision) problem above - use coherent point drift, a noise-tolerant algorithm, modified to accept 'coloured' line bundle data.
- Unit vector search algorithm. Finds all candidate image points $k^{\prime r}$ on X^{\prime} of basis vectors \hat{k}^{s} on X (for $k^{\prime r}$ in a box of width w), and ensures consistency. Guaranteed to find any basis transformation matrix with all entries in our $w^{\left(h^{11}\right)}$ box.

Solving with line bundle cohomology

- Two approaches:
- Inspired by the 'point-set registration' (~ machine vision) problem above - use coherent point drift, a noise-tolerant algorithm, modified to accept 'coloured' line bundle data.
- Unit vector search algorithm. Finds all candidate image points $k^{\prime r}$ on X^{\prime} of basis vectors \hat{k}^{s} on X (for $k^{\prime r}$ in a box of width w), and ensures consistency. Guaranteed to find any basis transformation matrix with all entries in our $w^{\left(h^{11}\right)}$ box.
- NB - if the Picard number gets too high, we will have to return to the less consistent methods described above.

Solving with line bundle cohomology

- Two approaches:
- Inspired by the 'point-set registration' (\sim machine vision) problem above - use coherent point drift, a noise-tolerant algorithm, modified to accept 'coloured' line bundle data.
- Unit vector search algorithm. Finds all candidate image points k^{r} on X^{\prime} of basis vectors \hat{k}^{s} on X (for $k^{\prime r}$ in a box of width w), and ensures consistency. Guaranteed to find any basis transformation matrix with all entries in our $w^{\left(h^{11}\right)}$ box.
- NB - if the Picard number gets too high, we will have to return to the less consistent methods described above.

Application to Kreuzer-Skarke

Application to Kreuzer-Skarke

KS data up to h11 = 6. (generated with cytools [Demirtas, Rios-Tascon, McAllister, '22])

- Lower bound on the number of classes comes from considering invariants
- Upper bound comes from explicitly finding basis transformations using line bundle algorithm with adaptive box size.
Good invariants are crucial if you want to find an upper bound in reasonable time.

Application to Kreuzer-Skarke

KS data up to h11 = 6. (generated with cytools [Demirtas, Rios-Tascon, McAllister, '22])

- Lower bound on the number of classes comes from considering invariants
- Upper bound comes from explicitly finding basis transformations using line bundle algorithm with adaptive box size.
Good invariants are crucial if you want to find an upper bound in reasonable time.

$h^{1,1}$	\# Polytopes	\# Triangs.	\# Distinct Triangs.	Hodge \#s	Lower Bound	Upper Bound
1	5	5	5	5	5	5
2	36	48	38	18	27	29
3	243	525	296	42	169	186
4	1185	5,330	1,954	87	1,061	1186
5	4896	56,714	13,330	113	7,244	8078
6	16607	584,281	83,906	128	1,744	TBC

- Lesson: the number of topological classes is increasing at roughly the same rate ($\sim 10^{h^{11}}$) as the (numerically distinct) triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.

- Lesson: the number of topological classes is increasing at roughly the same rate ($\sim 10^{h^{11}}$) as the (numerically distinct) triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.

- Lesson: the number of topological classes is increasing at roughly the same rate ($\sim 10^{h^{11}}$) as the (numerically distinct) triangulations. We have significantly more than the absolutely minimum given by the distinct Hodge numbers.

Conclusions and outlook

Conclusions and outlook

Conclusions

- Established powerful new invariants for low Picard number
- New techniques for deciding equivalence of multilinear forms
- Bounds on Kreuzer-Skarke data for low Picard number
- An indication as to the asymptotic growth rate of the number of realised topological manifolds.

Conclusions and outlook

Conclusions

- Established powerful new invariants for low Picard number
- New techniques for deciding equivalence of multilinear forms
- Bounds on Kreuzer-Skarke data for low Picard number
- An indication as to the asymptotic growth rate of the number of realised topological manifolds.

Outlook

- Is there topological meaning to a GCD invariant? What about the polynomial singlets? Do they represent interesting properties of the CYs?
-If we want to extend to higher Picard number - can we generate them more efficiently? Linear algebra may be too slow.
-A partial recurrence relation exists for the degree- $2 h^{11}$ invariant. Can it be completed to a full recurrence relation?
-Can these invariants be used to bound the number of Calabi-Yaus at a particular h^{11} ?
-Add the limiting mixed Hodge structure invariants mentioned above.

