The Branes Behind Topological Symmetry Operators

2203.10102, 2209.03343, 2212.09743, 2304.03300, 2305.09665 with Acharya, Cvetič, Del Zotto, Heckman, Torres, Yu, Zhang

String Phenomenology, Institute for Basic Science, Daejeon, 2023 Tuesday July $4^{\text{th}},\,2023$

Motivation

Motivation: Generalized Global Symmetries

They are useful:

- Phase and vacua structures in 2d theories
- Confinement and deconfinement in 4d theories
- Neutrino masses from generalized symmetry breaking
- No global symmetries and cobordism conjecture

and they are ubiquitous.

Often rely on educated Lagrangian gauge theory constructions.

Motivation

Question

Data of generalized global symmetries includes:

- Topological symmetry operators $\mathcal O$
- Non-dynamical defect operators \mathcal{D} (Representations)
- Fusion structure (often non-invertible)

Given a theory with generalized global symmetries which admits an embedding into string theory: How do \mathcal{O}, \mathcal{D} lift?

Geometric Engineering Operators and D-branes

Generalized Global Symmetry in String Theory

Example, Geometric Engineering:

 $\mathsf{IIA}/\mathsf{IIB}/\mathsf{M} \text{ theory on non-compact } X \ \Rightarrow \ \mathsf{Theory} \ \mathcal{T}_X$

Then, defect ops and symmetry ops can be constructed from (flux)branes.

Philosophy applies more broadly.

D-branes and Symmetry Operators

Symmetry operators from topological worldvolume terms:

$$\mathcal{O}(M) = \int DA_1 \exp\left(2\pi i \int_{M \times \gamma} \mathcal{L}_{top}^{Dp}\right)$$

with world volume gauge field A_1 and Wess-Zumino action:

$$\mathcal{S}_{\mathsf{top}}^{\mathcal{D}p} = 2\pi i \int_{\mathcal{M}=\mathcal{M} imes\gamma} \exp(\mathcal{F}_2) \sqrt{rac{\widehat{A}(\mathcal{T}\mathcal{M})}{\widehat{A}(\mathcal{N}\mathcal{M})}} \bigoplus_{\mathsf{odd/even}} C_q$$

where $\mathcal{F}_2=\mathcal{F}_2-\mathcal{B}_2$ [Douglas, 1995], [Minasian, Moore, 1997], \dots

Important: Gauge field A_1 is path-integrated over \Rightarrow Worldvolume TFT_M, Non-invertible Fusion Rules, ...

Examples

- Non-invertible symmetries in 6D SCFTs [Heckman, MH, Torres, Zhang, 2022] IIB String Theory: $X = \mathbb{C}^2/\Gamma$ & X = NHC, D3-brane on 1-cycles of ∂X
- Duality defects [Heckman, MH, Torres, Yu, Zhang, 2022]

IIB String Theory: $N \times D3$ probing $X = \mathbb{C}^3$, 7-brane on $\partial X = S^5$

- Verlinde's metastable monopole [Cvetič, Heckman, MH, Torres, 2023]
- SCFT junctions via G_2 [Acharya, Del Zotto, Heckman, MH, Torres, 2023] M-theory: $X = G_2/\Gamma$, defects via M2-branes on cones
- 4D N=4 SYM [Garcia Etxebarria, 2022]
- 4D $\mathcal{N}{=}1$ SYM [Apruzzi, Bah, Bonetti, Schäfer-Nameki, 2022]
- S-folds [Etheredge, Garcia Etxebarria, Heidenreich, Rauch, 2023]

and more ...

Many Examples

Teaser: Generalized Symmetries and Gravity

Consider compact singular X (e.g., T^4/\mathbb{Z}_2) M-theory on $X \rightarrow$ supergravity theory S_X (with localized 7d SYM sectors) Singularity content: A_1^{16}

Define local models and complement:

$$X^{\mathsf{loc}} = \cup_i B_i \,, \qquad X^\circ = X \setminus X^{\mathsf{loc}}$$

Cutting and gluing:

 $0 \ \rightarrow \ H_2(X^\circ) \ \xrightarrow{\jmath_2} \ H_2(X) \ \xrightarrow{\partial_2} \ H_1(\partial X^{\mathsf{loc}}) \cong \oplus_i \ H_1(\partial B_i) \ \xrightarrow{\imath_1} \ H_1(X^\circ) \ \rightarrow \ 0$

 $0 \rightarrow H_2(X^{\circ}) \xrightarrow{\mathfrak{I}_2} H_2(X) \xrightarrow{\partial_2} H_1(\partial X^{\mathsf{loc}}) \cong \oplus_i H_1(\partial B_i) \xrightarrow{\mathfrak{i}_1} H_1(X^{\circ}) \rightarrow 0$ Sketch of geometry $X = T^4/\mathbb{Z}_2$:

(1) : Trivialization of Symmetry Operators

Thank you for your time.