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Introduction

What is 6d LST?

LSTs are intermediate between local and gravitational theories
→ they are related by decompactification:

SUGRA→ LST→ SCFT

Properties: (capture some features of SUGRAs and SCFTs)

1 String excitations have an intrinsic string tension (LST scale) [Seiberg’96]

→ key in the dynamics of the theory
2 T-dualities arising from a circle reduction of the 6d string compactification
3 Decoupled from gravity and contains interesting global symmetries
4 LSTs have a 2-group structure → Constrain T-dualities

[Cordova, Dumitrescu, Intriligator’18,’20, Del Zotto, Ohmori’20]

Goal - geometric engineering in F-theory:
1 Determine novel Heterotic ALE instantonic LSTs
2 Study 2-group structure and T-dual network

Muyang Liu 3 / 17
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Introduction

T-duality and 2-groups

LSTs have a continuous 2-group symmetry structure:

→

(
P(0) × SU(2)(0)R ×

∏
a

F (0)
a

)
×κ̂P ,κ̂R ,κ̂Fa

U(1)(1)LST

T-dual LSTs must have matching (very constraining):

1 κ̂P, κ̂R and κ̂Fa (formula determined by GS mechanism)

κ̂F = −
nT+1∑
I=1

NIη
IA κ̂R =

nT+1∑
I=1

NIh
∨
gI κ̂P = −

nT+1∑
I=1

NI (η
II − 2)

2 Coulomb branch dimension and amounts of Wilson line parameters

Dim(CB) = T + rk(G) , Dim(WL) = rk(GF )
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Introduction

Generic E8 × E8 heterotic instantonic LSTs in HW picture

The exceptional LSTs in M-theory ← A stack of N M5 branes [Hořava, Witten’95]:

0-5

6-9

10

 N M5
M9 M9

. . .

The resulting theory depends on a choice of a flat connection encoded in:
µa : π1(S

3/Γg) ≃ Γg → E8 , for µa ≃ id , see [Aspinwall, Morrison’97]

The LST ↔ A generalized quiver:

KN(µ1,µ2; g) = T (µ1, g)
g

TN(g, g)
g

T (µ2, g)

Determine fractional instantons by F-theory [Del Zotto, Heckman, Tomasiello, Vafa’14]

Matching criteria to chart the T-dualities:
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Geometric Engineering of Novel LST families
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Geometric Engineering of Novel LST families Review: Geometric Counterpart of 6D LST in F-theory

6D Heteorotic LST from F-theory

An elliptic fibered CY threefold X ↔ 6d LSTs in F-theory:

T 2 → X
↓ π
B2

,

T 2 → X
↓ π̃
B̃2

Obtain the same 5d theory (with inequivalent 6d uplifts) after circle reduction
Geometrically realize T-duality between these two 6d Theories

Consider a non-trivial global structure (Different fibre type K3/Fi ) [Aspinwall, Morrison’98...]

MW (X ) = Zr ×MW (X )Tor ⇒ GT = GF×G
MWTor

Break the E8 flavor factors via a discrete holonomy µi = Zn

(focus on the rank preserving case in this work)

Muyang Liu 7 / 17
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Geometric Engineering of Novel LST families Exotic LSTs

Z2 Discrete Holonomy LSTs

Consider a breaking to e7 × su2 and soM4N+8 gaugings:

[e7]
so4N+8

1
[su2]

so4N+8
2 . . .

so4N+8
2

so4N+8
1

[su2]︸ ︷︷ ︸
M×

[e7]

Has two more inequivalent toric fibrations, first:

sp2N+M−3

1
spM−3

1∗

[so24]
sp2N+M+3

1
so8N+4M+4

4 . . .
sp4(N−k)+2M−4

1
so8(N−k)+4M−4

4 . . .
sp2M
1

so4M+4

4∗︸ ︷︷ ︸
2N×

spM−1

1 [so8]

This chain has the full so(1)4N+8 topology! ↔ Fiber-Base-Duality

Muyang Liu 8 / 17
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Geometric Engineering of Novel LST families Exotic LSTs

Z2 Discrete Holonomy LSTs
The third fibration has the quiver:

[su16 × u1]
su4N+2M+6

2
su8N+4M−4

2
su8N+4M−12

2
su8N+4M−20

2 . . .
su4M+4

2
sp2M−2

1︸ ︷︷ ︸
N×

su4N+2M−2

2

so
(1)
4N+8 base shape is folded to an su

(2)
N+3

T-dual−−−→

The 2-groups and CB dimension are matched and given below as

Dim(CB) = 4N2 + 4NM + 8N + 6M + 2 , κ̂R = 8N2 + 8NM + 8N + 8M + 2
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Geometric Engineering of Novel LST families Heterotic LSTs and K3 degeneration

Heterotic LSTs and K3 fibration

1 An elliptic fibered CY has a nested fibration:

K3→ X
↓
C

with
T 2 → K3

↓
P1

2 Q: Can we obtain certain information of 6D LST from K3 only?

3 FA × FB Flavor groups → Picard sublattices embeded in the homology lattice ΛK3
[Friedman, Morgan, Witten’97, Harder, Thompson’97]

4 Elliptic fibration in K3 ← embedding U into NS(K3) ⊂ ΛK3 [Braun, Kimura, Watari’13]:

5 Add non-trivial compact curves to X → K3 degeneration → 6d LST quiver

Muyang Liu 10 / 17
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Geometric Engineering of Novel LST families Heterotic LSTs and K3 degeneration

Stratification of 6D LST families from the same K3

LST Family j

LST Family i

T-Hexality families

(Dim(CB), κ̂R)

Spin(32)/Z2 × SU(3)− g1,i

U(18)/Z3 − g2,i

(Spin(20)× E7)/Z2 × U(1)− g3,i

g4,i − E 2
8 × SU(3)

g5,i − E 3
6 /Z3

g6,i − (Spin(14)× SU(12))/Z4

(Dim(CB), κ̂R)→ Stratification of 6D LST families from the same generic K3

Muyang Liu 11 / 17



Geometric Engineering of Novel LST families Geometric engineering of pure heterotic strings

Geometric engineering of heterotic strings
No full M5 branes but only the M9 fractions:

1 Orbi-instanton quiver → Reduced theories → Fuse two reduced theories:

K0(µ1,µ2; g) = Tred(µ1; g)
g

T̂red(µ2; g)

= [f(µ1)]
h1
n1

h2
n2 . . .

hr1
nr1

g
mr1+1

ĥr2
n̂r2 . . .

ĥ2
n̂2

ĥ1
n̂1 [f(µ2)]

2 For A-type singuarities:

K0(E8,E8; suk) = [E8] 1 2
su2
2

su3
2 · · ·

suk−1
2

suk
2

Nf =2

suk−1
2 · · ·

su3
2

su2
2 2 1 [E8]

3 If k is even, the T-dual theory is

K̃(so32; suk) = [so32]
sp2k
1

su4k−8
2

su4k−16
2 · · ·

su8
2 1 [su2]

4 If k is odd, the T-dual theory is

K̃(so32; suk) = [so32]
sp2k
1

su4k−8
2

su4k−16
2 · · ·

su12
2

su4
1

NA=1
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ĥr2
n̂r2 . . .

ĥ2
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Geometric Engineering of Novel LST families Geometric engineering of pure heterotic strings

Fronzen Singularity and Incomplete fusion

In M-theory, can partially freeze the Xg singularities by torsional C3 fluxes at infinity∫
S3/Γg

C =
ℓ

d

This results subalgbra
g so2k+8 e6 e7 e8
l
d

1
2

1
2

1
3 ,

2
3

1
2

1
3 ,

2
3

1
4 ,

3
4

1
2

1
3 ,

2
3

1
4 ,

3
4

1
5 ,

2
5 ,

3
5 ,

4
5

1
6 ,

5
6

h spk su3 − so7 su2 − f4 g2 su2 − −

→ An incomplete fusion (decouple the quiver at the i−th node)

Tred(µ; g) = [f(µ)]
h1
n1

h2
n2 . . .

hi
ni . . .

hr
nr [g]
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Geometric Engineering of Novel LST families Geometric engineering of pure heterotic strings

Exceptional non-simply laced fusion

Consider Tred(e6 : e8) → Read off the unbroken gauge algebra: e.g f4

[e6] 1
su3
2 1

f4
5 1

g2
3

sp2
2 2 1 [e8] and [e8] 1 2

sp1
2

g2
3 1

f4
5︸ ︷︷ ︸

Fusion

1
su3
2 1 [e6]

Yield LST :

[e6] 1
su3
3 1

f4
4

[NF=1]
1

su3
3 1 [e6]

This LST has a T-dual partner

[so20]
sp4
1

so12
4 1

[su2
2]

2 2 [su2]
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Outlook

1 Introduction

2 Geometric Engineering of Novel LST families
Review: Geometric Counterpart of 6D LST in F-theory
Exotic LSTs
Heterotic LSTs and K3 degeneration
Geometric engineering of pure heterotic strings

3 Outlook
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Outlook

Outlook

1 Turn towards non-heterotic LSTs given by systems without M9 branes

2 Incorporate the possibility of twisted compactifications

3 Relate heterotic LSTs to the classification of degenerate K3 surfaces and study unexplored
reducible K3 fibrations occur in the geometry of LSTs

Muyang Liu 16 / 17



Outlook

Thank you!

Categorical Aspects of Symmetries (AUGUST 14-25, 2023)
NORDITA Stockholm (Sweden)
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