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Motivation

« KKLT is one of the leading ways to construct metastable de Sitter vacua in String Theory
[Kachru, Kallosh, Linde, Trivedi ’03]

 The first step is done at the ten-dimensional level, but for the second step we have to resort to an effective
four-dimensional theory.

» (Can we understand it from a ten-dimensional viewpoint?



Supersymmetry conditions for type II SUSY 4d vacua

 The Generalized Complex Geometry conditions for type IIB flux compactifications to four-dimensional
flat and AdS vacua preserving N=1 SUSY read:
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* and the internal geometry is characterized by the polyforms W, :
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Supersymmetry conditions for type II SUSY 4d vacua

 The Generalized Complex Geometry conditions for type IIB flux compactifications to four-dimensional
flat and AdS vacua preserving N=1 SUSY read:
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* These can be also understood as D- and F-flatness conditions for [Koerber, Martucci 07, "08]
Waca :vr/Mth,dT), A4,B)=[ArnaB); —— (Waca) =uN
where the holomorphic fields are
Z =ePe3 00 . T =eB(C+ie?Rely)
and the Kahler potential is given by
K=-3logN, N = 4%/ 2472001,
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Supersymmetry conditions with localized terms

We include a stack of space-time filling D7-branes wrapping an internal four-cycle > and undergoing
gaugino condensation. The supersymmetry conditions are modified as follows
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Here (S) is the VEV of the condensate superfield related to the gaugino bilinear by
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) (2)[24] is the localized 2-form Poincaré dual to the four-cycle wrapped by the branes and
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Supersymmetry conditions with localized terms

 We include a stack of space-time filling D7-branes wrapping an internal four-cycle Y and undergoing
gaugino condensation. The supersymmetry conditions are modified as follows

dp (4700 = 2ipe™*PIm W, — 2i(5)6?) [Ty]
dH (EQA_@IHI 1114_) — 0 .

dig (e ~Re W) = 3¢*4~Re [AT_] + e* 46 a(F) — A5 [Ty) Re [(S)T_|
* The on-shell value of the GCG superpotential is still
Wace) = pN

» It encodes all ingredients relevant to the effective action, including non-perturbative terms.
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Supersymmetry conditions with localized terms

The modified supersymmetry conditions imply that for localized sources a 10D description of the KKLT
AdS vacuum can not have SU(3) structure.

For example: for SU(3) structure W_ = Q, W, = exp(i J), the first equation becomes
9 A A 1 (e
dp (e‘H_OQ) — 2ipe?A? (J — 6.] A J A J) —2i(S)6@) [24]

The two-form component cannot be satisfied.

» We need dynamic SU(2) structure.

Hard to do in practice and so we can either:

» Study small perturbations in the deviation from SU(3) structure on top of the flat solution

» Or simplify the problem by smearing the source



Smeared D7-branes

* We solve the modified supersymmetry equations for type I1IB AdS4 compactifications with gaugino
condensates on smeared D7-branes. The smearing procedure amounts to replacing
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Smeared D7-branes

* We solve the modified supersymmetry equations for type I1IB AdS4 compactifications with gaugino
condensates on smeared D7-branes. The smearing procedure amounts to replacing

5(2) 124] — 7632‘4_('*5&7: 5(0)[24] S 3,.},,6214—@-*3

where y is fixed by requiring

" :/ (€ Re ¥y, —0P[Bd]) = f T e e
Mg Mg 3N

e The problematic two-form component of the 15 SUSY condition now reads
(e 0W_|1) = 2i(n —~(S))e* 2T

» We can have an SU(3) structure solution with u = y(S).



Smeared D7-branes

e The rest of the supersymmetry conditions give

» First SUSY equation
1 34— _
dy (&*m) — 2pe?A=? (J — =T AT J) ) ) Gpe— { d (g™t !

» Second SUSY equation
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» Third SUSY equation
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Summary of the smeared solution

* The internal manifold is a conformal CY.

* The G, flux is still ISD, but now develops a (0,3) component
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« The KKLT relation between the total and the non-perturbative superpotentials is precisely reproduced
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Summary of the smeared solution

The internal manifold is a conformal CY;.

The G, flux is still ISD, but now develops a (0,3) component

P .
G3) = —5° P A0

The KKLT relation between the total and the non-perturbative superpotentials is precisely reproduced

A7t 2 (27

(W) = pN =N(S) = —?U4<S> -3 (N) a1{Wnp)

There is no obstruction to scale separation if small (0,3) flux is possible.
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we have to leave the realm of SU(3)-structure compactifications

consider TASD fluxes as well
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* Possible issue: the evaluation of the on-shell action can contain divergent terms ~ (5 (2))
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= consider TASD fluxes as well
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Localized solution

For a solution to the supersymmetry conditions with localized sources:
= we have to leave the realm of SU(3)-structure compactifications

= consider TASD fluxes as well

2
Possible issue: the evaluation of the on-shell action can contain divergent terms ~ (5 (2))
= F g.: [Dymarsky, Martucci "11]
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. . . . . Kachru, Kim, McAllister, Zimet ‘19
The issue has been studied without reaching a common conclusion. | |

[Hamada, Hebecker, Shiu, Soler ‘18, ‘19, ‘21]

One can evaluate the action without knowing the solution: Liist, Marchesano, Martucei, Tsimpis ‘0]
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On-shell action

e The effective potential is given by
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On-shell action

e The effective potential is given by
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e The different contributions to the on-shell action including the effect of the localized gaugino condensate
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On-shell action

« The terms proportional to §© [Z4] cancel out, while the terms proportional to (5 (0) [24])2 don’t.
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On-shell action

The terms proportional to &6© [Z4] cancel out, while the terms proportional to (5 (0) [24])2 don’t.

We should also consider the brane action, which however does not contain terms with a square of delta
functions. [Grana, Kovensky, Retolaza ‘20]
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On-shell action

« The terms proportional to §© [Z4] cancel out, while the terms proportional to (5 (0) [24])2 don’t.
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On-shell action

The terms proportional to &6© [Z4] cancel out, while the terms proportional to (5 (0) [24])2 don’t.

(Gaugino mass contribution:

Four fermion terms should add up to:

The different contributions to the on-shell action including the effect of the localized gaugino condensate
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On-shell action

The terms proportional to §© [Z4] cancel out, while the terms proportional to (5 (0) [24])2 don’t.

. . 1 _ | _
Gaugino mass contribution: V' = —— (myA_ A, +c.c.) = —4] 5O [Sy] e Re [u(S)] volg
*7 Mg

Four fermion terms should add up to: Ve?;”rc't" - 6: - / 00 [24] e ?|AAPvols
DT M

Putting everything together, the effective potential should be:
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On-shell action

The terms proportional to §© [Z4] cancel out, while the terms proportional to (5 (0) [24])2 don’t.
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Putting everything together, the effective potential should be:
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On-shell action

« The terms proportional to §© [Z4] cancel out, while the terms proportional to (5 (0) [24])2 don’t.

. . 1 _ | _
 Gaugino mass contribution: V' = —— (myA_ A, +ce) = —4] 5O [Sy] e Re [u(S)] volg
70 Msg

/|

* Four fermion terms should add up to: Ve?;”rc't" - 63 - / 50 [24] e ?| AN Pvolg
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« Putting everything together, the effective potential should be:
[Hamada, Hebecker, Shiu, Soler ‘21]

.’“\Ilr.-"

6474

/ 3 [S4] e ANPvols — = / e 2 A(S)* (61 [24])?volg
Mg 3 J Mg

phulk Ly

e

» No perfect square structure arises.



Thank you!
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