Fayet-Iliopoulos D-term in Non-Susy Heterotic String Orbifolds

Alonzo R. Diaz Avalos

Based on 2302.10075, 2306.16878
with Alon Faraggi, Viktor Matyas, Ben Percival

De Sitter Vacua ?

- Universe is expanding with positive acceleration
- A positive cosmological constant Λ is the oldest and simplest solution to this \rightarrow de Sitter Spacetime.
- However de Sitter space in conflict with QFT formulation (and string theory)

De Sitter Vacua ?

Possible Solutions:

- KKLT
- Landscape - Swampland
- Quintessence

- Is there a way to uplift the Vacuum through an exact string theory computation ?

Heterotic String

Free-Fermionic Construction:

\rightarrow Symmetric $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold with $\mathcal{N}=1$ Susy
with Gauge group $S O(10) \times U(1)_{1} \times U(1)_{2} \times U(1)_{3} \times S O(8)^{2}$

Fayet-Iliopoulos term

Anomalies: Lagrangian $\mathcal{L} \rightarrow$ local transformation $\rightarrow \mathcal{L}$ not Invariant

4D

Fayet-Iliopoulos term

Green-Schwarz Mechanism $\mathcal{N}=1$:

Anomaly cancelled by the 'anomalous' variation of some other field(s)
$\mathcal{L} \quad \xrightarrow{U(1)} \quad A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \Lambda \quad \rightarrow \quad \delta \mathcal{L} \sim \xi \Lambda F^{2} \quad \xi \sim \operatorname{Tr} Q$
$\mathcal{L}+a F^{2} \xrightarrow{U(1)} \quad a \rightarrow a-\xi \Lambda \quad \rightarrow \quad \delta \mathcal{L}=0$

Fayet-Iliopoulos term

Imposing Gauge Invariance
$V_{D}=\frac{1}{2} g_{s}^{-2} D^{2}=\ldots+\frac{1}{2} g_{s}^{2} \xi^{2} \quad \xi \sim \operatorname{Tr} Q$

- Additional contribution in $\mathrm{N}=1$ when non-zero TrQ
> Destabilizes the vacua

Fayet-Iliopoulos term

Imposing Gauge Invariance
$V_{D}=\frac{1}{2} g_{s}^{-2} D^{2}=\ldots+\frac{1}{2} g_{s}^{2} \xi^{2} \quad \xi \sim \operatorname{Tr} Q$

- Additional contribution in $\mathrm{N}=1$ when non-zero TrQ
- "When $\mathrm{N}=1 \rightarrow \mathrm{~N}=0$ remains there"

Fayet-Iliopoulos term

Susy breaking

- Explicit Breaking: gravitino projected out of the spectrum

$$
\mathbb{Z}_{2}: \quad \psi_{I} \rightarrow-\psi_{I}
$$

- Spontaneous Breaking:

$$
\mathbb{Z}_{2}+X \rightarrow X+\pi: \quad \psi_{I} \rightarrow \psi_{I} \quad \text { invariant but massive } m \sim \frac{1}{R}
$$

Fayet-Iliopoulos term

Imposing Gauge Invariance
$V_{D}=\frac{1}{2} g_{s}^{-2} D^{2}=\ldots+\frac{1}{2} g_{s}^{2} \xi^{2} \quad \xi \sim \operatorname{Tr} Q$

- Additional contribution in $\mathrm{N}=1$ when non-zero TrQ
- "When $\mathrm{N}=1 \rightarrow \mathrm{~N}=0$ remains there"
- $\left[\xi^{2}\right]=M^{4}$ as CC \rightarrow additional POSITIVE contribution to CC

Results

Does this really work?

- In the PF $T^{6} \sim T^{2} \times T^{2} \times T^{2}$ with $\Gamma_{2,2}(T, U) \rightarrow \Gamma_{2,2}\left(T_{2}\right), \quad T_{1}^{*}, U_{1}^{*}, U_{2}^{*}$ fixed at FF point Florakis, Rizos
- Potential computed as $\mathrm{V}\left(T_{2}\right)=\int Z$ at 1-loop
- $\operatorname{Tr} Q$ computed by analysing states charged under $U(1)_{A}$
- $V_{D}=\frac{1}{2} g_{s}^{2} \xi^{2}$ fix $g_{s}=1$

Results

Results

Results

Results

Results

Other Models:

Results

Other Models:

Results

Other Models:

Conclusion

- $N=1$ existence of Anomalous $U(1) \rightarrow$ additional positive contribution to CC
- Contributions remains there even with broken SUSY
- Possibility of Vacuum Uplift

Thanks for the attention !

