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Trans-Planckian censorship conjecture and metastable vacua
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• TCC forbids enlargement of sub-Planckian fluctuation to classical one
during inflation. [Vafa et al., JHEP 09 123 (2020)]

𝑙!

• It gives strong constraints on lifetimes of metastable de-Sitter vacua.
[Bedroya et al.,arXiv:2008.07555[hep-th]]

TCC condition



Catalytic effect
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• In GUT and gravitational theory, monopoles and black holes are well 
known for acting as catalysts to enhance the instability of the vacuum.

FV FV

TV bubble

BH BH

• Can metastable vacua with impurities circumvent swampland??

e.g. Black hole catalysis

[P. J. Steinhardt, Nucl. Phys. B 190, 583-616 (1981); Phys. Rev. D 24, 842 (1981)]
[Y. Hosotani, Phys. Rev. D 27, 789 (1983)] [U. A. Yajnik, Phys. Rev. D 34, 1237-1240 (1986)]

[R. Gregory, I. G. Moss and B. Withers, JHEP 03, 081 (2014)]



Brane setup

4

• D5 and antiD5-branes wrapped to conifolds form a metastable state.

• D3-branes which are wrapped to the internal space dissolve into D5-
brane and become magnetic flux.

0 1 2 3 4 5 6 7 8 9
D5/antiD5 ○ ○ ○ ○ △ △ △ × × ×
DWD5 ○ △ △ △ △ △ △ △ × ×
D3 ○ × × × △ △ △ △ × ×S3S2

Table 1.  brane configuration

Catalyst!

[F. Cachazo et al., Nucl. Phys. B 603, 3-41 (2001);C. Vafa, J. Math. Phys. 42, 2798-2817 (2001);M. Aganagic et al., Nucl. Phys. B 789, 382-412 (2008)]

[A. Kasai et al., Phys. Rev. D 91, no.12, 126002 (2015)]



Brane setup
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• Comparing the critical lifetime with the TCC condition, 
we obtained a specific restriction on the string scale.

• We derived a specific expression of the determinant 
factor for our noncanonical system. In this work, we 
determined the 1-loop pre-factor and found a behavior 
different from canonical theories. 

• Unfortunately, 1-loop analysis breaks down when the 
potential barrier completely vanished. We used variation 
perturbation method instead and obtain a finite lifetime.

Research summaly
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1. Introduction and Summary

2. 1-loop analysis
• Comment on zeromode
• Functional determinant

3. Reduction to cubic oscillator and comparison to TCC

Contents
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1-loop analysis
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• To get decay rate (lifetime), we must calculate bounce action, zero mode 
normalization constant and functional determinant.

• We must note that 𝑁! doesn’t correspond to 𝐵 in noncanonical theories.
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[S. R. Coleman, Phys. Rev. D 15, 2929-2936 (1977) [erratum: Phys. Rev. D 16, 1248 (1977)] ]



𝜁 function regulatization
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canonical 𝑚

• Functional determinant＝infinite products of eigenvalues          .

• One can treat the UV divergence via zeta function regularization.

• The regularization procedure is well known for canonical case .
How about non-canonical case? 

need some developments !!



Contour deformation method
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Contour deformation method [K. Kirsten et al., (2003);K. Kirsten et al., (2004)]
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• Spectral zeta function can be written by a contour integration of the
meromorphic function which has simple poles at eigenvalues.



Analytic continuatinued spectral 𝜁 function
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：number of negative modes ： 1st order coefficient of small 𝜆 expansion

• The asymptotic expansion of characteristic func. at large 𝜆 is order 𝜆.
• We can perform analytic continuation by subtracting N terms and add
them back. [F. Gesztesy and K. Kirsten, (2019); G. Fucci et al., (2021)]



Removing scattering mode

12

[M.Marino, “Instanton and Large N” (2015);ST, (2023)]
• We need to extract a scattering mode which diverge at 𝛽 → ∞.

• The scattering mode can be regularized by reference determinant.

• We get a complete 1-loop result of the lifetime.



Numerical calculation (lifetime)
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Numerical calculation (lifetime)
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Reduction to cubic oscillator
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• For the cubic oscillator, the decay rate for low potential barriers is 
well investigated by variational perturbation method.

[H.Kleinert and I. Mustapic, Int.J.Mod.Phys.A 11 (1996) 4383-4400]

• For nearly flat potential, we can expand our DBI Lagrangian and 
approximate by the anharmonic oscillator.
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Comparison to TCC bound
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• We compare the critical lifetime for completely flat potential to TCC.
• All parameters are rewritten by string scale 𝑀"#, Planck scale 𝑀$% and 
string coupling constant 𝑔".
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Thank you!



BACKUP



Discrepancy between bounce action and normalization constant
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EoM : 

Difference between the instanton action and the background.

Normalization constant of the zeromode.



Gelfand-Yaglom method
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[I.M.Gelfand and A.M.Yaglom, J. Math. Phys. 1, 48 (1960)]

• 𝑀 and 𝑁 are 2×2 matrices, which determine boundary conditions.

• 𝜓&' (𝑖 = 1, 2) are independent solutions for zeromode equations.


