Massive Spin-2 particles and the swampland

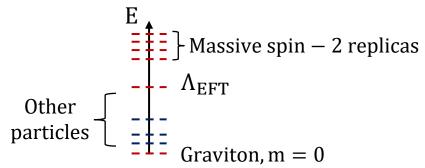
Joan Quirant

Based on 2307.xxxx with S. Kundu and E. Palti

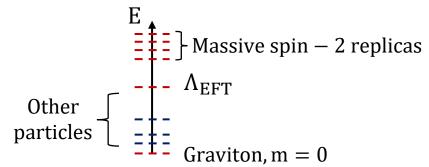
String Phenomenology 2023

Daejeon, 4th July 2023

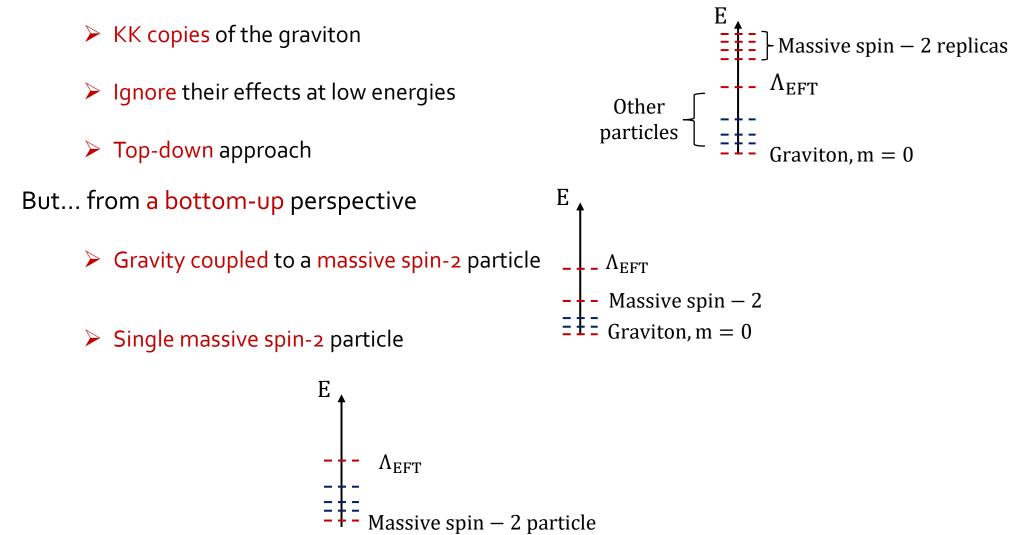
- Massive spin-2 particles appear in (string) compactifications
 - **KK copies** of the graviton
 - Ignore their effects at low energies
 - Top-down approach



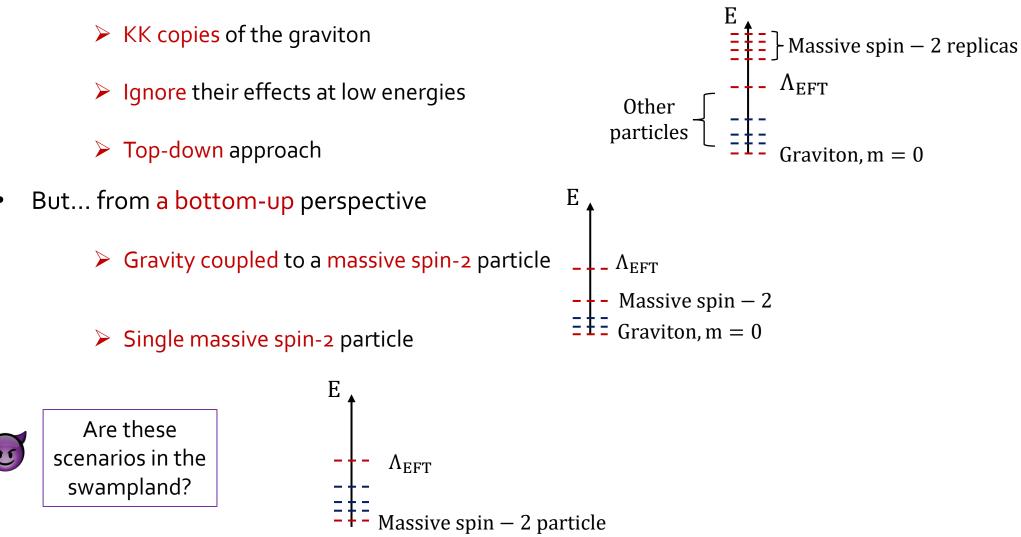
- Massive spin-2 particles appear in (string) compactifications
 - **KK copies** of the graviton
 - Ignore their effects at low energies
 - Top-down approach
- But... from a bottom-up perspective



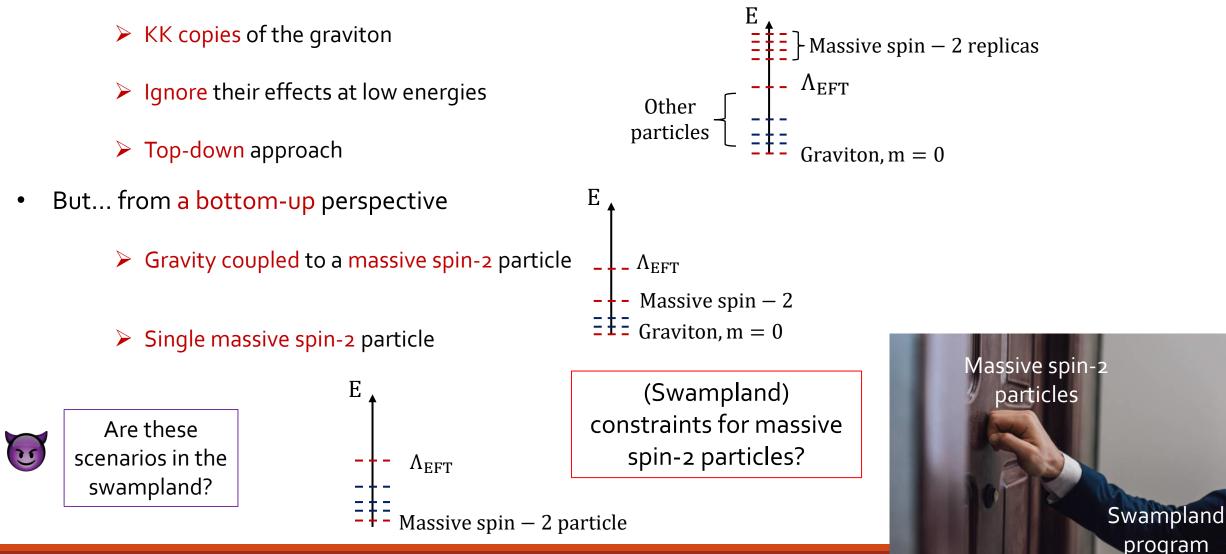
• Massive spin-2 particles appear in (string) compactifications



• Massive spin-2 particles appear in (string) compactifications



• Massive spin-2 particles appear in (string) compactifications



Contents

o) Motivation

We will only consider d = 4 in this talk

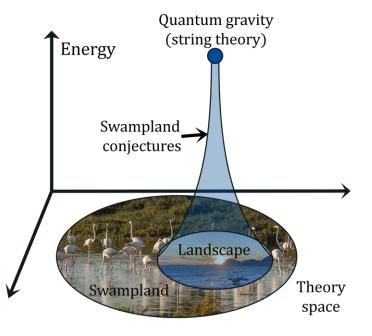
1) The Classical Regge Growth Conjecture (CRG)

2) Vertices (three-point amplitudes and contact terms)

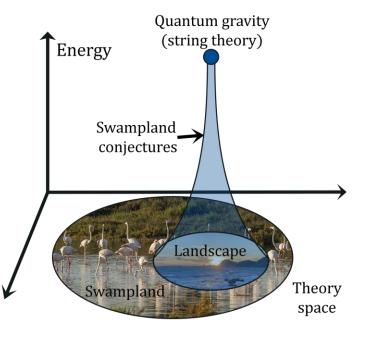
3) Results

4) Conclusions and outlook

- We are all familiar with the swampland program
 - Properties EFT must satisfy to be compatible with quantum gravity.



- We are all familiar with the swampland program
 - Properties EFT must satisfy to be compatible with quantum gravity.



• Spin-2 conjecture Klaewer, Lüst, Palti '18

 \succ WGC to the helicity-1 mode of the massive spin-2 ($w_{\mu\nu}$) with mass m:

$$w_{\mu
u}$$
 and $g_{\mu
u}$: $\Lambda_{\rm EFT} \sim rac{mM_p}{M_w}$

Only $w_{\mu\nu} : \Lambda_{\rm EFT} \sim m$

- Classical Regge Growth (CRG) Conjecture
 - Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19
 - Technically not a swampland conjecture but same spirit. It states

The S-matrix of a consistent classical theory cannot grow faster than s² at fixed (and physical) t

> Classical: non analyticities can only be simple poles. Tree-level scattering

- Classical Regge Growth (CRG) Conjecture
 - Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19
 - > Technically not a swampland conjecture but same spirit. It states

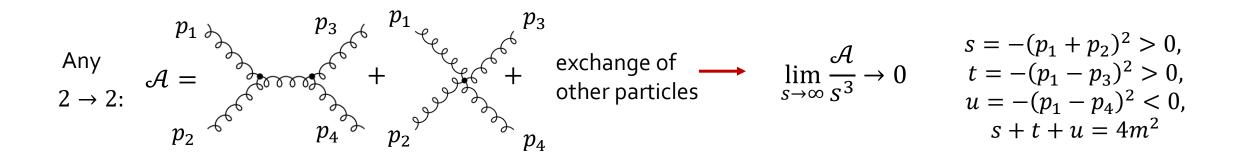
The S-matrix of a consistent classical theory cannot grow faster than s² at fixed (and physical) t

Classical: non analyticities can only be simple poles. Tree-level scattering

- Classical Regge Growth (CRG) Conjecture
 - Formulated in Chowdhury, Gadde, Gopalka, Halder, Janagal, Minwalla '19
 - > Technically not a swampland conjecture but same spirit. It states

The S-matrix of a consistent classical theory cannot grow faster than s² at fixed (and physical) t

> Classical: non analyticities can only be simple poles. Tree-level scattering



- Evidence for the conjecture: 3+1 arguments in support of it
- True in any two-derivative theory for spin< 2. True for classical string scattering amplitudes and Einstein S-matrix.</p>
 Camanho, Edelstein, Maldacena, Zhiboedov '14
- \succ It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, m ≤ 2 . Subtleties changing to the usual S(t, s).
- Connection to the chaos bound Chandorkar, Chowdhury, Kundu, Minwalla '21

Take AdS/CFT \rightarrow Theory on the bulk having a CFT dual \rightarrow Flat limit \rightarrow If $S \sim s^n$, $n > 2 \rightarrow$ The CFT violates the chaos

bound proposed in Maldacena, Shenker, Stanford '15.

- Evidence for the conjecture: 3+1 arguments in support of it
- True in any two-derivative theory for spin< 2. True for classical string scattering amplitudes and Einstein S-matrix.</p>
 Camanho, Edelstein, Maldacena, Zhiboedov '14
- > It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, $m \leq 2$. Subtleties changing to the usual S(t, s).
- Connection to the chaos bound Chandorkar, Chowdhury, Kundu, Minwalla '21

Take AdS/CFT \rightarrow Theory on the bulk having a CFT dual \rightarrow Flat limit \rightarrow If $S \sim s^n$, $n > 2 \rightarrow$ The CFT violates the chaos

bound proposed in Maldacena, Shenker, Stanford '15.

- Evidence for the conjecture: 3+1 arguments in support of it
- True in any two-derivative theory for spin< 2. True for classical string scattering amplitudes and Einstein S-matrix. Camanho, Edelstein, Maldacena, Zhiboedov '14
- \succ It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, $m \leq 2$. Subtleties changing to the usual S(t, s).
- Connection to the chaos bound Chandorkar, Chowdhury, Kundu, Minwalla '21

Take AdS/CFT \rightarrow Theory on the bulk having a CFT dual \rightarrow Flat limit \rightarrow If $S \sim s^n$, $n > 2 \rightarrow$ The CFT violates the chaos

bound proposed in Maldacena, Shenker, Stanford '15.

- Evidence for the conjecture: 3+1 arguments in support of it
- True in any two-derivative theory for spin< 2. True for classical string scattering amplitudes and Einstein S-matrix. Camanho, Edelstein, Maldacena, Zhiboedov '14
- \succ It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, $m \leq 2$. Subtleties changing to the usual S(t, s).
- Connection to the chaos bound Chandorkar, Chowdhury, Kundu, Minwalla '21

◆Take AdS/CFT → Theory on the bulk having a CFT dual → Flat limit → If $S \sim s^n$, n > 2 → The CFT violates the chaos

bound proposed in Maldacena, Shenker, Stanford '15.

- Evidence for the conjecture: 3+1 arguments in support of it
- True in any two-derivative theory for spin< 2. True for classical string scattering amplitudes and Einstein S-matrix. Camanho, Edelstein, Maldacena, Zhiboedov '14
- \succ It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, $m \leq 2$. Subtleties changing to the usual S(t, s).
- Connection to the chaos bound Chandorkar, Chowdhury, Kundu, Minwalla '21

♦ Take AdS/CFT → Theory on the bulk having a CFT dual → Flat limit → If $S \sim s^n$, n > 2 → The CFT violates the chaos

bound proposed in Maldacena, Shenker, Stanford '15.

- Evidence for the conjecture: 3+1 arguments in support of it
- True in any two-derivative theory for spin< 2. True for classical string scattering amplitudes and Einstein S-matrix. Camanho, Edelstein, Maldacena, Zhiboedov '14
- ▶ It can be argued that in the 'impact parameter (δ) space': $S(\delta, s) \sim s^m$, $m \leq 2$. Subtleties changing to the usual S(t, s).
- Connection to the chaos bound Chandorkar, Chowdhury, Kundu, Minwalla '21

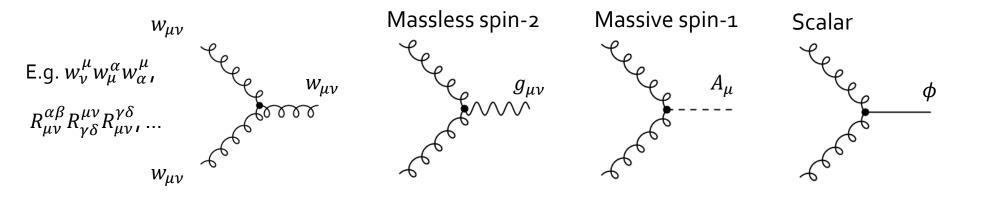
♦ Take AdS/CFT → Theory on the bulk having a CFT dual → Flat limit → If $S \sim s^n$, n > 2 → The CFT violates the chaos

bound proposed in Maldacena, Shenker, Stanford '15.

- > Nonperturbative gravitational scattering of scalar particles in d > 4 satisfies $S \sim s^n$, $n \leq 2$ Häring, Zhiboedov '22
- Apply the CRG to theories containing a massive spin-2 particle $w_{\mu\nu}$ 😇
- ≻ Construct a theory where the scattering of $2 \rightarrow 2$ (identical) massive spin-2 particle goes like $A \sim s^n$, $n \leq 2$?
- > Include all possibilities: exchange of a massive and massless spin-2 particle, a spin-1 particle and a scalar particle

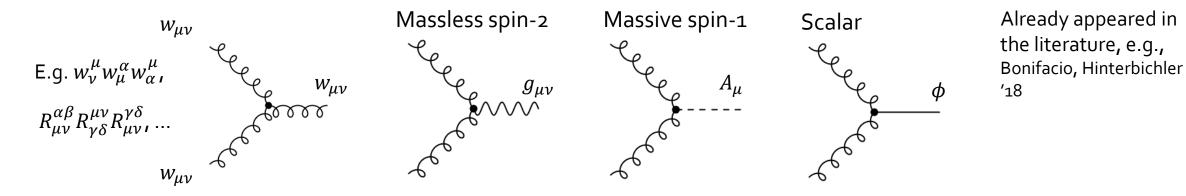
• Model (lagrangian) independent approach: construct directly the tree-level amplitudes. How?

- Model (lagrangian) independent approach: construct directly the tree-level amplitudes. How?
 - 1. Find all possible on-shell cubic vertices. Following Costa, Penedones, Poland, Rychkov `11

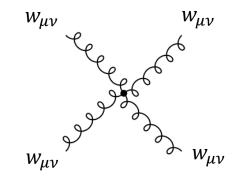


Already appeared in the literature, e.g., Bonifacio, Hinterbichler '18

- Model (lagrangian) independent approach: construct directly the tree-level amplitudes. How?
 - 1. Find all possible on-shell cubic vertices. Following Costa, Penedones, Poland, Rychkov `11

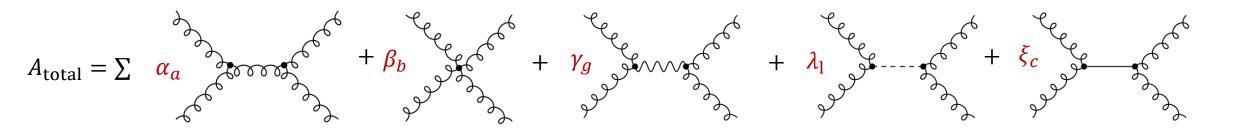


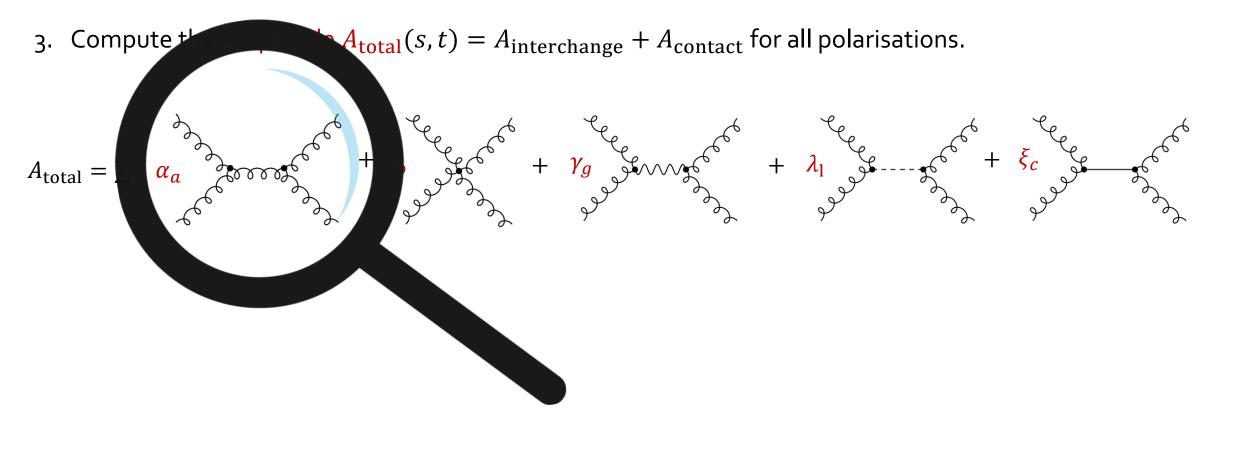
2. Find all possible Lorentz-invariant quartic vertices (finite number of derivatives). Using Bonifacio, Hinterbichler, Rose '19

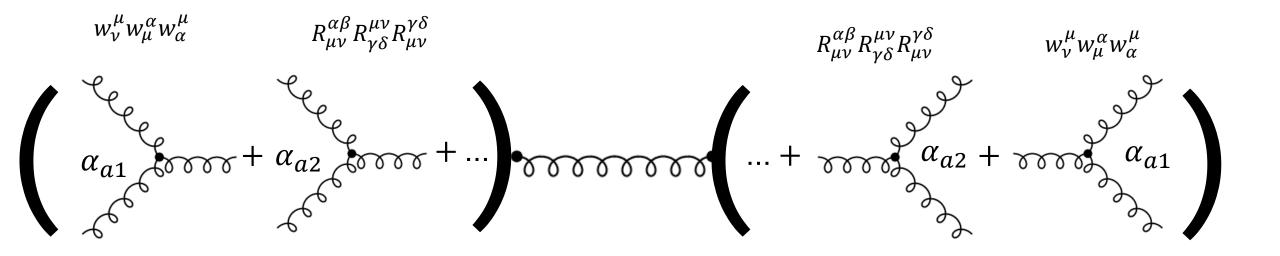


E.g.
$$w_{\nu}^{\mu}w_{\mu}^{\alpha}w_{\alpha}^{\beta}w_{\beta}^{\nu}$$
, $\partial^{\lambda}w_{\nu}^{\mu}\partial_{\lambda}w_{\mu}^{\alpha}w_{\alpha}^{\beta}w_{\beta}^{\nu}$,...

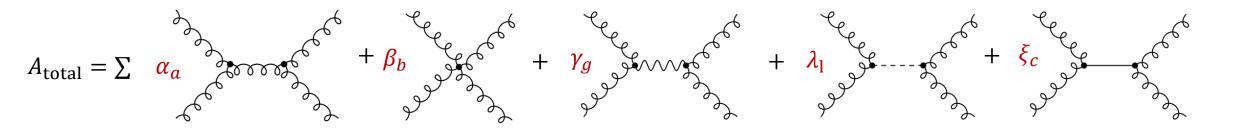
3. Compute the Amplitude $A_{\text{total}}(s, t) = A_{\text{interchange}} + A_{\text{contact}}$ for all polarisations.





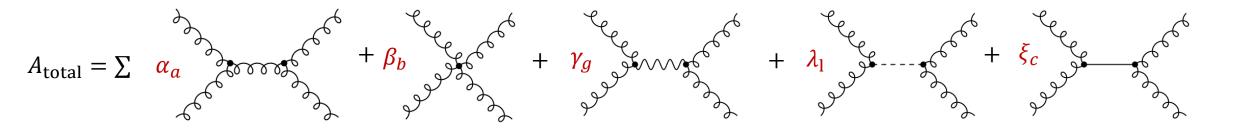


3. Compute the Amplitude $A_{\text{total}}(s, t) = A_{\text{interchange}} + A_{\text{contact}}$ for all polarisations.



4. Take { $s \to \infty$, *t* fixed} and expand $A_{total}(s, t) = A_0 s^0 + A_1 s^1 + A_2 s^2 + A_3 s^3 + A_4 s^4 + \cdots$

3. Compute the Amplitude $A_{\text{total}}(s, t) = A_{\text{interchange}} + A_{\text{contact}}$ for all polarisations.



- 4. Take { $s \to \infty$, *t* fixed} and expand $A_{\text{total}}(s, t) = A_0 s^0 + A_1 s^1 + A_2 s^2 + A_3 s^3 + A_4 s^4 + \cdots$
- 5. Impose $A_i = 0, i \ge 3$. Solution for $\{\alpha, \beta, \gamma, \lambda, \xi\} \neq 0$?

Briefly...

Massive-2 – massive 2 – massive 2 vertices:

1 renormalizable operator $(w_{\nu}^{\mu} w_{\alpha}^{\nu} w_{\mu}^{\alpha})$ 4 non-renormalizable operators

Massive-2 – massive 2 – massive 1 vertices:

1 renormalizable operator

1 non-renormalizable operators

Contact terms

1 renormalizable operator $(w_{\nu}^{\mu} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta})$

Many non-renormalizable operators (consider any finite number of derivatives)

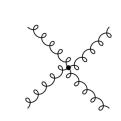
Only a small number contributes at a given s^n

Massive-2 – massive 2 – graviton vertices: 3 renormalizable operator (e.g. $w^{\mu\nu}w^{\alpha\beta}R_{\mu\alpha\nu\beta}$)

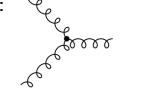
3 non-renormalizable operators

Massive-2 – massive 2 - scalar:

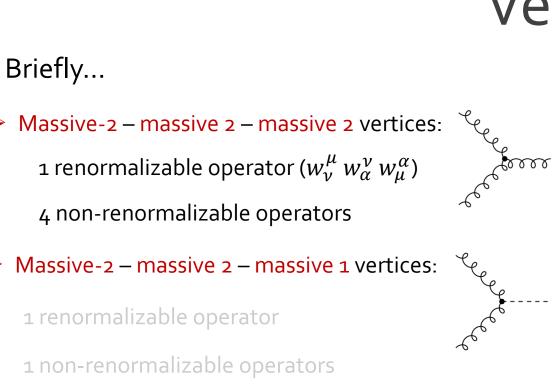
1 renormalizable operator ($w^{\mu\nu}w_{\mu\nu}\phi \sim s^2$ 2 non-renormalizable operators



Only parity even interactions



Vertices



Contact terms

 \succ

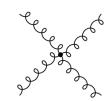
1 renormalizable operator $(w_{\nu}^{\mu} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta})$

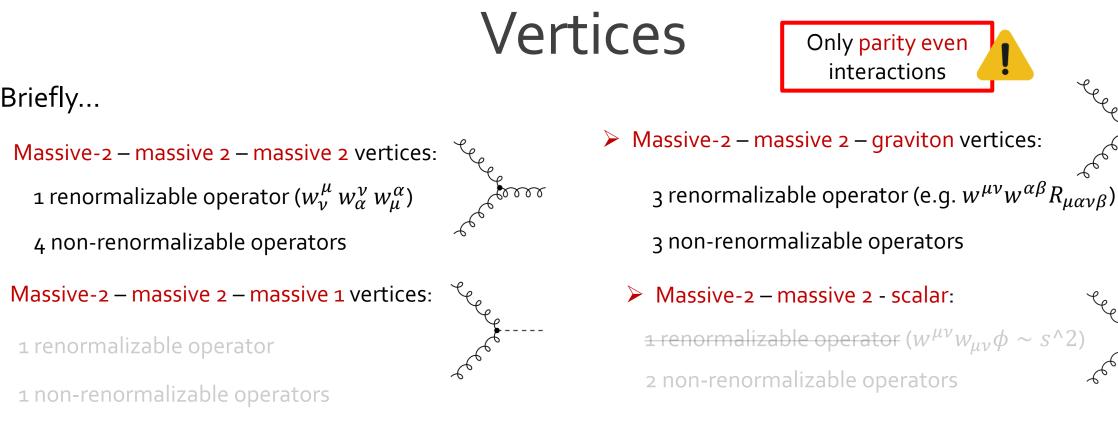
Many non-renormalizable operators (consider any finite number of derivatives)

Only a small number contributes at a given s^n

VerticesOnly parity even
interactions \wedge Massive-2 - massive 2 - graviton vertices:
 \wedge renormalizable operator (e.g. $w^{\mu\nu}w^{\alpha\beta}R_{\mu\alpha\nu\beta}$)
3 non-renormalizable operators \wedge Massive-2 - massive 2 - scalar:
1 renormalizable operator ($w^{\mu\nu}w_{\mu\nu}\phi \sim s^2$)

2 non-renormalizable operators





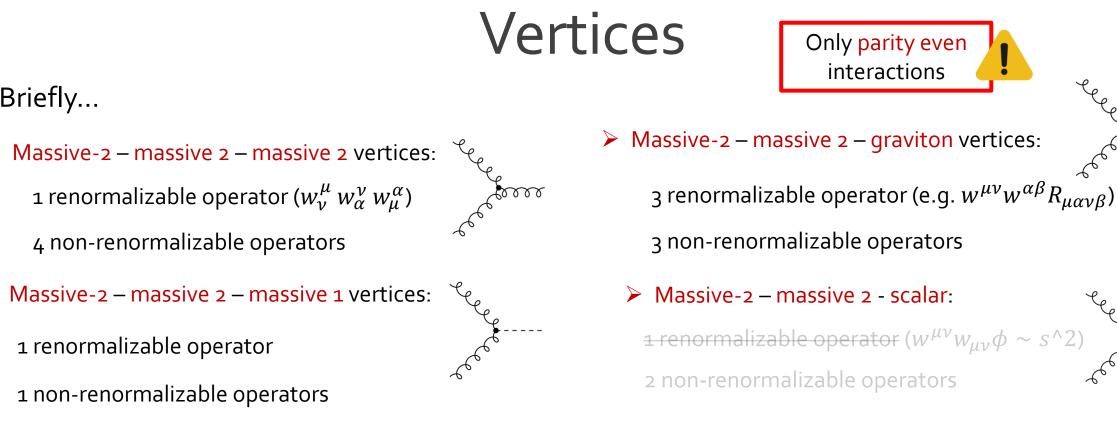
Contact terms

 \succ

Briefly...

1 renormalizable operator $(w_{\nu}^{\mu} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta})$

Many non-renormalizable operators (consider any finite number of derivatives)



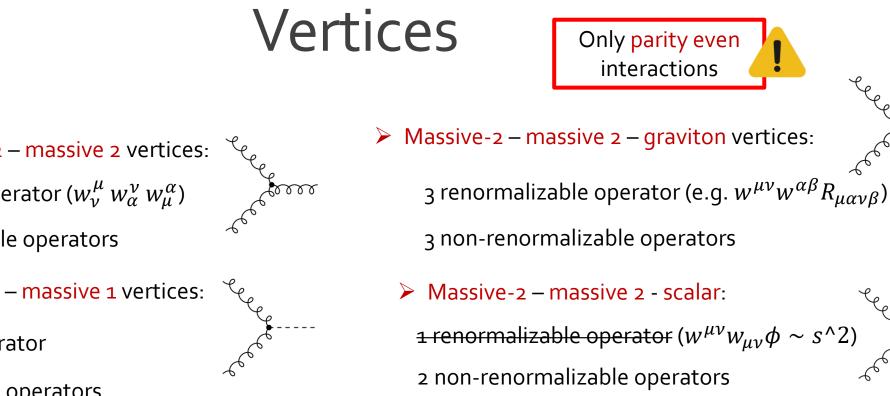
Contact terms \succ

Briefly...

 \succ

1 renormalizable operator $(w_{\nu}^{\mu} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta})$

Many non-renormalizable operators (consider any finite number of derivatives)



Briefly...

Massive-2 – massive 2 – massive 2 vertices:
 1 renormalizable operator (w^μ_ν w^ν_α w^α_μ)
 4 non-renormalizable operators

Massive-2 – massive 2 – massive 1 vertices:

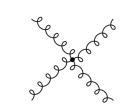
1 renormalizable operator

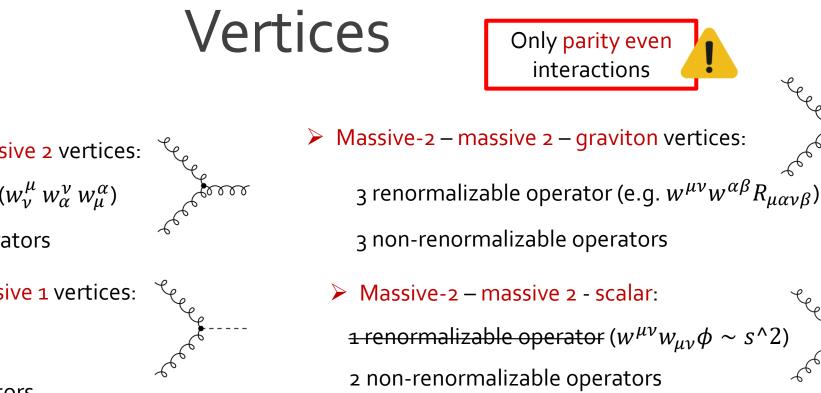
1 non-renormalizable operators

Contact terms

1 renormalizable operator $(w_{\nu}^{\mu} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta})$

Many non-renormalizable operators (consider any finite number of derivatives)





• Briefly...

Massive-2 – massive 2 – massive 2 vertices:
 1 renormalizable operator (w^μ_ν w^ν_α w^α_μ)
 4 non-renormalizable operators

Massive-2 – massive 2 – massive 1 vertices:

1 renormalizable operator

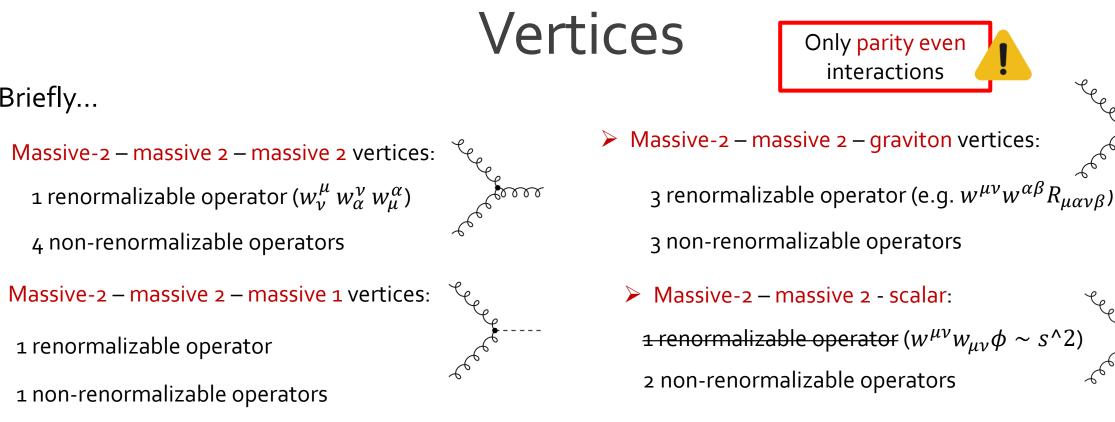
1 non-renormalizable operators

Contact terms

1 renormalizable operator $(w^{\mu}_{\nu} w^{\nu}_{\alpha} w^{\alpha}_{\beta} w^{\beta}_{\mu})$

and the forest

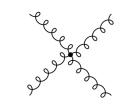
Many non-renormalizable operators (consider any finite number of derivatives)



Contact terms

Briefly...

1 renormalizable operator $(w_{\nu}^{\mu} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta})$



Many non-renormalizable operators (consider any finite number of derivatives)

Only a small number contributes at a given s^n

6 renormalizable operators

10+*many* non-renormalizable operators

How to deal with the many? Algorithm developed in Bonifacio, Hinterbichle '18; Bonifacio, Hinterbichle Rose' 19

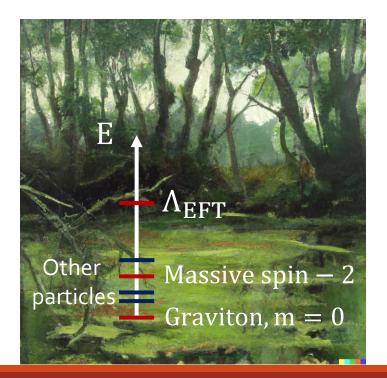
• To satisfy the CRG: all cubic vertices considered must vanish → the theory is trivial

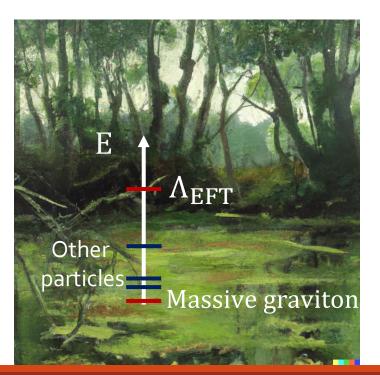
• To satisfy the CRG: all cubic vertices considered must vanish→ the theory is trivial

If the CRG conjecture is true, a theory containing a single (interacting) massive spin-2 particle (and no higher spin particles) would be inconsistent.

• To satisfy the CRG: all cubic vertices considered must vanish→ the theory is trivial

If the CRG conjecture is true, a theory containing a single (interacting) massive spin-2 particle (and no higher spin particles) would be inconsistent.





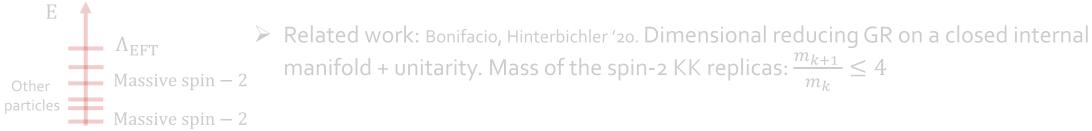
• CRG conjecture ($A \sim s^n$, $n \leq 2$): EFT containing a single massive spin-2 and no higher spin particles would be in the swampland.

> Only considered parity even interactions, d = 4. Include parity odd terms? $d \neq 4$?

Constraints if we add higher spin particles? Constrains if we add more massive spin-2 particles?

manifold + unitarity. Mass of the spin-2 KK replicas: $\frac{m_{k+1}}{m_k} \leq 4$

- Prove the CRG conjecture. Have a more direct evidence in support of it. Apply it to other contexts.
- Stay tunned!



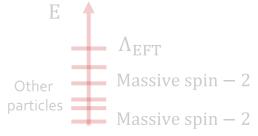
 CRG conjecture (A ~ sⁿ, n ≤ 2): EFT containing a single massive spin-2 and no higher spin particles would be in the swampland.

> Only considered parity even interactions, d = 4. Include parity odd terms? $d \neq 4$?

• Constraints if we add higher spin particles? Constrains if we add more massive spin-2 particles?

Related work: Bonifacio, Hinterbichler '20. Dimensional reducing GR on a closed internal manifold + unitarity. Mass of the spin-2 KK replicas: $\frac{m_{k+1}}{m_k} \le 4$

- Prove the CRG conjecture. Have a more direct evidence in support of it. Apply it to other contexts.
- Stay tunned!



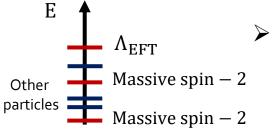
 CRG conjecture (A ~ sⁿ, n ≤ 2): EFT containing a single massive spin-2 and no higher spin particles would be in the swampland.

• Only considered parity even interactions, d = 4. Include parity odd terms? $d \neq 4$?

• Constraints if we add higher spin particles? Constrains if we add more massive spin-2 particles?

Related work: Bonifacio, Hinterbichler '20. Dimensional reducing GR on a closed internal manifold + unitarity. Mass of the spin-2 KK replicas: $\frac{m_{k+1}}{m_k} \le 4$

- Prove the CRG conjecture. Have a more direct evidence in support of it. Apply it to other contexts.
- Stay tunned!



CRG conjecture ($A \sim s^n$, $n \leq 2$): EFT containing a single massive spin-2 and no higher spin particles would be in the swampland.

Only considered parity even interactions, d = 4. Include parity odd terms? $d \neq 4$?

Constraints if we add higher spin particles? Constrains if we add more massive spin-2 particles? ٠

> Related work: Bonifacio, Hinterbichler '20. Dimensional reducing GR on a closed internal manifold + unitarity. Mass of the spin-2 KK replicas: $\frac{m_{k+1}}{m_k} \leq 4$ Other Massive spin -2

Prove the CRG conjecture. Have a more direct evidence in support of it. Apply it to other contexts.

particles

 $\Lambda_{\rm EFT}$

Massive spin -2

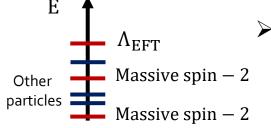
 CRG conjecture (A ~ sⁿ, n ≤ 2): EFT containing a single massive spin-2 and no higher spin particles would be in the swampland.

Solve the observation of the ob

• Constraints if we add higher spin particles? Constrains if we add more massive spin-2 particles?

➢ Related work: Bonifacio, Hinterbichler '20. Dimensional reducing GR on a closed internal manifold + unitarity. Mass of the spin-2 KK replicas: $\frac{m_{k+1}}{m_k} \le 4$

- Prove the CRG conjecture. Have a more direct evidence in support of it. Apply it to other contexts.
- Stay tunned!



• CRG conjecture ($A \sim s^n$, $n \leq 2$): EFT containing a single massive spin-2 and no higher spin particles would be in the swampland.

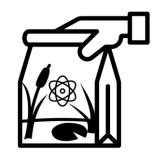
Only considered parity even interactions, d = 4. Include parity odd terms? $d \neq 4$?

Constraints if we add higher spin particles? Constrains if we add more massive spin-2 particles? ٠

> Related work: Bonifacio, Hinterbichler '20. Dimensional reducing GR on a closed internal Other Massive spin – 2 manifold + unitarity. Mass of the spin-2 KK replicas: $\frac{m_{k+1}}{m_k} \leq 4$

- Prove the CRG conjecture. Have a more direct evidence in support of it. Apply it to other contexts.
- Stay tunned!

 $\Lambda_{\rm EFT}$



Renormalizable operators

• In principle, it seems natural to consider only renormalizable vertices. Example:

Normalisable:
$$\alpha \cdot w_{\nu}^{\mu} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta} \rightarrow \alpha s^{m} t^{n}$$

Non-renormalisable: $\frac{\beta}{\Lambda^{2}} \cdot \partial^{\xi} w_{\nu}^{\mu} \partial_{\xi} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta} \rightarrow \frac{\beta}{\Lambda^{2}} s^{m} t^{n}$
Non-renormalisable: $\frac{\beta}{\Lambda^{2}} \cdot \partial^{\xi} w_{\nu}^{\mu} \partial_{\xi} w_{\alpha}^{\nu} w_{\beta}^{\alpha} w_{\mu}^{\beta} \rightarrow \frac{\beta}{\Lambda^{2}} s^{m} t^{n}$

• We are being more general and assuming that it could happen $\alpha \sim \frac{\beta}{\Lambda^2}$