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The resulting spectrum contains a G = 1 FNu'i 4+ (D ) )¢

— [< i> 4 + < a> ]

massless spin-1/2 state, the goldstino: 7

. . i B
The goldstino cguphngs are suc.h that 5G = fe + (G SHE _ ¢ GﬂG> 0,G
supersymmetry is realised nonlinearly:
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- Nonlinear SUSY can be implemented by imposing superfield constraints:

G2
nilpotent constraint: S*=0 — §= F SUSY breaking <« G = goldstino
S
- Orthogonal constraint: S(®-®) =0
Smep = Im@(G, Fg, Red), Xy = X(G, Fg, Red), Fy,=F,G,Fg Reg)

EFT construction
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- Gravitino sector of /4 = 1 orthogonal SUGRA:

S = — J'd4x\ /—g {i‘i’ﬂy””p V,¥, + m‘i’ﬂy””‘l’y}

transverse components

longitudinal components <«——  super-Higgs mechanism

3

i, ‘Pﬂ contains 4 < 2
degrees of freedom: 1

2



Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)n/w ;



Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)r//w ;

Y1in }

S = [d4x {1/73/2 <i}7”a,4 — am) Wap + Wip

i7°0y + i (Cg + iC;7°) 70, — am




Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)r]/w ;

Y1in }

S = Jd“x {1/73/2 (W”aﬂ - am) Wsp + Wip

transverse component £,

i7°0) + i (Cg + iC;7°) 70, — am




Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)r]/w ;

longitudinal component &£,

5 = Jd4x {1/73/2 (17”0,,{ - am) Wapp + Wi | 17700 + i (Cr +iCp7°) 70, - anm




Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)n/w ;

5 = Jd“x {1/73/2 (17”5,4 - am) Wan + Wip |i7°00 + i (Cr +iCp7") 70, — am

— The longitudinal gravitino 1s characterised by a non-trivial sound speed:

Y
Wy

_ 272
=crk

+ a2m2



Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)n/w ;

5 = Jd“x {1/73/2 (17”5,4 - am) Wan + Wip |i7°00 + i (Cr +iCp7") 70, — am

— The longitudinal gravitino 1s characterised by a non-trivial sound speed:

c; =Cz+ Cf =

(p — 37/}12)2 + 4rin?

(,0 + 3m2)2



Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)n/w ;

S = Jd“x {1/73/2 (Wﬂau - am) s+ W |i7°00 + i (Cr +iCi7") 70, — am W1/2}

— The longitudinal gravitino 1s characterised by a non-trivial sound speed:

1.
(p — 3m?)” + 4n® p= b+ Vig)

c; =Cz+ Cf =

(p +3m2)° p=%ﬁ—vw>



Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)n/w ;

5 = Jd“x {1/73/2 (17”9,4 - am) Wan + Wip |i7°00 + i (Cr +iCp7") 70, — am

— The longitudinal gravitino 1s characterised by a non-trivial sound speed:

_ 1
K=SS——
4

(@ @)’

W= f(d)S -

- g (D)



Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)n/w ;

S = Jd4x {1/73/2 (17” 0, — am) Wapn + Wi

i7°0) + i (Cx +iC;7") ¥0; — am

— The longitudinal gravitino 1s characterised by a non-trivial sound speed:

k=35 (@ @)

W=f(®@)S+g(®)

gravitino mass m(gp) = g(¢p)



Gravitino in FRW

- Gravitino sector of ./ = 1 orthogonal SUGRA — FRW background g, = az(f)n/w ;

S = Jd“x {1/73/2 (Wﬂau - am) s+ W |i7°00 + i (Cr +iCi7") 70, — am W1/2}

— The longitudinal gravitino 1s characterised by a non-trivial sound speed:

K=SS—1((I)—(i))2 c2 =1 4('02
4 — ° L, ,
W=f(®)S+g(®) (30 +f(0)

1
> (51”(40)2 — g’(¢)2>




Gravitino in FRW
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- Subluminal conditions «—  Positivity bounds on EFT operators

- Equivalence theorem: y, > —0,G At E > m, longitudinal gravitino <— goldstino

W1, couples with the enhanced couplings 1n the limit
SUSY-breaking scale f Mp — oo with f fixed

We can address the superluminality problem in terms of positivity bounds on the

— operators of the low-energy, SUSY goldstino theory.
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- Goldstino - real scalar SUSY lagrangian:
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Causality constraints 1n the rigid limait

- The possible longitudinal gravitino superluminal propagation has a low-energy realisation 1n terms
of positivity bounds

. : : bstruction t Ul
- Any non-trivial such bound should not come from a microscopic theory vonrierion o d
completion of the theory

— The orthogonal constraint S ((I) — (I)) = 0 1s not reliable

—  This 1s a consequence ot the decoupling of the auxiliary field I

1. 1t has no clear physical meaning

it may be badly defined

2. it requires a UV higher-derivative operator — from the very beginning
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=0 = glp=0 & ¢=/¢ SUSY-breaking scale
—> This dynamics is in contrast with the EFT range: 2
1. the whole constraint setup relies on SUSY breaking J
2. before reaching f, the theory starts to see the inflatino y,
M
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the goldstino-inflatino mixing prevents the overproduction
AEFT



Remarks on ¢, = 0

- The sound speed can still vanish, leading to the unbounded gravitinos production

— Backreaction effect




Remarks on ¢, = 0

- The sound speed can still vanish, leading to the unbounded gravitinos production

— Backreaction effect

G,=1,



Remarks on ¢, = 0

- The sound speed can still vanish, leading to the unbounded gravitinos production

— Backreaction effect

G,=T, = T/f[g)

background



Remarks on ¢, = 0

- The sound speed can still vanish, leading to the unbounded gravitinos production

— Backreaction effect

G,=T,=T9+<TY >

gravitino contribution



Remarks on ¢, = 0

- The sound speed can still vanish, leading to the unbounded gravitinos production

— Backreaction effect

G,=T,=T9+<TY >

gravitino contribution

THY — i\ilp},ﬂ(ﬂm ( Va\yIV) _ Vlv)\pa) _ m\i’pyﬂ(ﬂ\{lv)+

+IV, (P ) +iVC (P, ) +igh V(U m9)



Remarks on ¢, = 0

- The sound speed can still vanish, leading to the unbounded gravitinos production

— Backreaction effect

G,=1,= T/ft(,f) + < T/%) > = 8, —8,=8,1098,  the metric changes

gravitino contribution

THY — i\ilp},ﬂ(ﬂm ( Va\yIV) _ Vlv)\pa) _ m\i’pyﬂ(ﬂ\{lv)+

+IV, (P ) +iVC (P, ) +igh V(U m9)



Remarks on ¢, = 0

- The sound speed can still vanish, leading to the unbounded gravitinos production
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gravitino contribution JL
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- We studied gravitino dynamics in supergravity theories with constrained superfields

- Models built via the orthogonal constraint S (® — @) = 0 suffer from two inconsistencies:

2. unbounded gravitational production

—> Dbackreaction on the spacetime geometry < T,%) > =

tension with the SUSY-breaking scale
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inconsistency with the inflatino mass scale

I

the fermion mixing prevents the overproduction






