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Emergence Proposal

Kinetic terms in the IR emerge from integrating out towers of states down 
from the species scale  Λsp = M4d

P / S

The Emergence Proposal 
“reverses the logic” of the 
Swampland Distance 
Conjecture

Ooguri & Vafa ’06Swampland Distance Conjecture:

Along geodesic paths of infinite distance there is an infinite tower of states 
which, asymptotically, becomes exponentially light

Harlow ’15   
Grimm, Palti, Valenzuela ’18  
Heidenreich, Reece, Rudelius ’18   Emergence Proposal



Emergence Proposal

We focus on gauge kinetic functions in 4d EFTs, which receive 1-loop corrections

 infinite distances and small gauge coupling limits in moduli space arise from 
integrating out the infinite towers of light states predicted by the SDC
⟹

IIR
AB = IUV

AB −
S

∑
k=1

qk,Aqk,B log
Λsp

mk

finite! divergent!



Emergence Proposal

We focus on gauge kinetic functions in 4d EFTs, which receive 1-loop corrections

 infinite distances and small gauge coupling limits in moduli space arise from 
integrating out the infinite towers of light states predicted by the SDC
⟹

IIR
AB = IUV

AB −
S

∑
k=1

qk,Aqk,B log
Λsp

mk

Corrections from states up to the species scale

Λsp =
M4d

P

S

finite! divergent!

Dvali ’07



Setup
Goal: test the Emergence Proposal along EFT string limits


Setup: type IIA compactifications on CY3, vector multiplet moduli space



Setup

gauge kinetic terms

Goal: test the Emergence Proposal along EFT string limits


Setup: type IIA compactifications on CY3, vector multiplet moduli space

• EFT string = NS5-brane on Nef divisor  

• complex scalars  

•  gauge fields 

D = eaDa

Ta = ba + ita

U(1) F0, Fa

I = VX (1 0
0 4gab)

Lanza, Marchesano, 
Martucci, Valenzuela ’21



Setup

  with  ta = eaϕ ϕ → ∞

 gs(ϕ) ∼ VX(ϕ) → ∞

Large volume and strong 10d coupling
gauge kinetic terms

Goal: test the Emergence Proposal along EFT string limits


Setup: type IIA compactifications on CY3, vector multiplet moduli space

• EFT string = NS5-brane on Nef divisor  

• complex scalars  

•  gauge fields 

D = eaDa

Ta = ba + ita

U(1) F0, Fa

I = VX (1 0
0 4gab)
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Emergence in type II CY
  Grimm, Palti, Valenzuela ’18    

and try to reproduce the gauge kinetic terms via the Emergence Proposal

IIR
AB = IUV

AB −
S

∑
k=1

qk,Aqk,B log
Λsp

mk

       m2
* ∼ M2

P ( TEFT

M2
P )

w

w = 1,2,3

One can classify infinite distance limits in terms of the scaling weight  (or equivalently 
)

w
K ∼ − n log ϕ

Lanza, Marchesano, 
Martucci, Valenzuela ’21



Emergence in type II CY

Lee, Lerche, Weigand ’19Corvilain, Grimm, Valenzuela ’18

n=w Description Corvilain et al. Lee et al.

3 k≠0 IVd M-theory limit

2 k=0, ka≠0 IIIc J-Class A: T2

1 ka=0, kab≠0 IIb J-Class B: T4 or K3

k = κabceaebec

ka = κabcebec

kab = κabcec

Classification of limits:


  Grimm, Palti, Valenzuela ’18    
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Emergence in type II CY

Result for some components:


  Grimm, Palti, Valenzuela ’18    

and try to reproduce the gauge kinetic terms via the Emergence Proposal

IIR
AB = IUV

AB −
S

∑
k=1

qk,Aqk,B log
Λsp

mk

n=w I00 Iaa (I00)EP (Iaa)EP ESC

3 φ3 φ φ3 φ KK-like tower

2 φ2 φ2 φ2 φ2/3 KK-like tower

1 φ φ φ φ emergent 
(EFT) string

Lee, Lerche, Weigand ’19

Emergent String 
Conjecture

string modes 
dominate!

       m2
* ∼ M2

P ( TEFT

M2
P )

w

w = 1,2,3

One can classify infinite distance limits in terms of the scaling weight  (or equivalently 
)

w
K ∼ − n log ϕ

Lanza, Marchesano, 
Martucci, Valenzuela ’21



Towers in EFT string limits

• Lightest tower of states: D0-branes

• Further tower: D2/D0 bound states charged under U(1)a

Mass scales along the limits

Key point: one needs to take into account all the leading towers in order to properly 
compute the species scale

n=w mKK m* = mD0 mD2 ΛNS5 = T1/2 Λsp (D0’s)

3 φ-1/2 φ-3/2 φ-1/2 φ-1/2 φ-1/2

2 φ-1/2 φ-1 φ-1 φ-1/2 φ-1/3

1 φ-1/2 φ-1/2 φ-1/2 φ-1/2 φ-1/6

Only considering D0’s!



Example

-  ,        t1 ≡ ϕ → ∞ w = 3

-  ,        t2 ≡ ϕ → ∞ w = 2

elliptic fibration over , two moduli X = ℙ2 t1, t2

emergence computation  effective theory=

emergence computation  effective theory≠
I11 ∼ ϕ2/3 I11 ∼ ϕ2

light BPS towers of D2+D0 with fixed D2 charges and growing D0 charge Grimm, Li, Palti ’18    



Example

-  ,        t1 ≡ ϕ → ∞ w = 3

-  ,        t2 ≡ ϕ → ∞ w = 2

elliptic fibration over , two moduli X = ℙ2 t1, t2

emergence computation  effective theory=

emergence computation  effective theory≠
I11 ∼ ϕ2/3 I11 ∼ ϕ2

light BPS towers of D2+D0 with fixed D2 charges and growing D0 charge Grimm, Li, Palti ’18    

Key difference between the two limits: 
 → only w = 3 mD0 ≪ Λsp

 → both , w = 2 mD0 mD2 ≪ Λsp

n=w mKK mD0 mD2 T1/2 Λsp (D0’s)

3 φ-1/2 φ-3/2 φ-1/2 φ-1/2 φ-1/2

2 φ-1/2 φ-1 φ-1 φ-1/2 φ-1/3



Example

 in  double tower of states with arbitrary D2 and D0 charges⇒ w = 2

No other tower below !Λsp

D2 wrapping multiple times 
an elliptic fibre

n=w mKK mD0 mD2 T1/2 Λsp Limit

3 φ-1/2 φ-3/2 φ-1/2 φ-1/2 φ-1/2 5d M-theory

2 φ-1/2 φ-1 φ-1 φ-1/2 φ-1/3 → φ-1/2 6d F-theory

 correct the species scale⇒



Example

 in  double tower of states with arbitrary D2 and D0 charges⇒ w = 2

No other tower below !Λsp

D2 wrapping multiple times 
an elliptic fibre

n=w mKK mD0 mD2 T1/2 Λsp Limit

3 φ-1/2 φ-3/2 φ-1/2 φ-1/2 φ-1/2 5d M-theory

2 φ-1/2 φ-1 φ-1 φ-1/2 φ-1/3 → φ-1/2 6d F-theory

 correct the species scale⇒

Considering the double tower of D2-D0 states in the w = 2 limit lowers the species 
scale but increases the number of species 

 there is a compensating effect⇒

I00 ∼ I11 ∼
SDp

∑
j,k=−SDp

k2 log
Λsp

m( j,k)
∼ SDp ⋅ S3

Dp ∼ ϕ2

sum over both D2 and D0 charges!

matches with the 
EFT scaling!



w=1 limits

n=w mKK m* = mD0 mD2 mD4,fibre T1/2

1 φ-1/2 φ-1/2 φ-1/2 φ-1/2 φ-1/2

Plenty of leading towers, including that of the EFT string oscillations

The leading contribution to  depends on whether the EFT string is:


 - non-critical  D4/D2/D0 bound states dominate and set 


 - critical  string modes dominate and set 

Λsp

→ Λsp

→ Λsp



w=1 limits

n=w mKK m* = mD0 mD2 mD4,fibre T1/2

1 φ-1/2 φ-1/2 φ-1/2 φ-1/2 φ-1/2

Plenty of leading towers, including that of the EFT string oscillations

The leading contribution to  depends on whether the EFT string is:


 - non-critical  D4/D2/D0 bound states dominate and set 


 - critical  string modes dominate and set 

Λsp

→ Λsp

→ Λsp
IAB ∼ ϕ , Λsp ∼ T

- , exponential degeneracy in 


- spectrum populated by charged states 
with  (saturate the BPS bound)

m2
N = TN N

|q |2
max ∼ N

  Castellano, Herraez, Ibañez ’22  

motivated by anomaly 
inflow on axionic strings Heidenreich, Reece, Rudelius ’21   



Remarks
• It is crucial to sum over all the towers below the species scale


• The towers that set  must enter the 1-loop corrections 
  charged states


• In  limits we recover the correct scaling for both critical and non-
critical EFT strings

Λsp
⇒

w = 1



Geometry of the scaling weight
• Focus on 


• Space-time    with metric   

•  characterized by length scales 


• EFT string = higher dim brane wrapping 

w = 2,3

MD = M4 × Xd ds2
D = e2Ads2

4 + M2
D ds2

X

X LI

Σ ⊂ X

decompactification limits

V(X) = V0
X∏

I

LdI
I , d = ∑

I

dI

associated to KK towers

V(Σ) = V0
Σ∏

I

L ̂dI
I , ̂d = ∑

I

̂dI

 controls the EFT string tensionV(Σ)



Geometry of the scaling weight
• Restricting to single scale              scaling weight


• Restrict possible decompactifications:


• Generalized version for many scales  

• Tested in examples (type IIA, M-theory,…)

L0

LI

w =
2 − d
d − ̂d

3
0 1
2 4
4 7

2
0 2
1 4
2 6

̂dw d



Conclusions
• EFT strings are a useful tool to explore infinite distance limits of 4d EFTs. They 

allow to classify such limits in terms of the scaling weight , which carries 
information about the mass of the leading tower .


• In type IIA CY3 compactifications EFT strings are given by NS5-branes wrapping 
Nef divisors. The other relevant towers are bound states of D -branes wrapping 
internal cycles.


• We tested the Emergence Proposal in this context, focusing on the vector multiplet 
moduli space and the gauge kinetic function. In  limits the relevant tower is 
a 2-dim D2-D0 bound states tower. In general the leading tower must dominate 
both the computation of the species scale and the 1-loop corrections.


•  limits contain emergent EFT string limits, in which the oscillations of the 
critical string dominate the spectrum and should be charged. It would be 
important to look at explicit EFT string spectra to test these assumptions.


• In decompactification limits the scaling weight  encodes geometrical information 
about the decompactification.

w
m*

p

w = 2

w = 1

w



Thank you!



Backup slides



EFT
 str

ing

non-EFT string
Asym

pto
tic 

reg
ion

EFT strings
Lanza et al. ’21

In a 4d EFT coupled to gravity, in an asymptotic region of the moduli space with a 
perturbative axionic shift symmetry, an EFT string is:

• a fundamental string, 

• an axionic string, ,  

around its core

Λ2 < T < 2πM2
P

ai → ai + ei ei ∈ ℤ

• approaching its core all the non-perturbative effects 
that break the shift symmetry are suppressed



EFT string flows

-  axion monodromy    for  

-  saxions    for  

ai → ai + ei θ → θ + 2π
si → ei ⋅ ∞ r → 0

  for  si ∼ eiϕ ϕ → ∞

Integral Scaling Conjecture
In an asymptotic limit specified by an EFT string flow, the 

leading tower mass  scales asm*

       m2
* ∼ M2

P ( T
M2

P )
w

w = 1,2,3

EFT string flow

EFT string becomes tensionless, but there can be 
lighter towers

Backreaction on the moduli:

Lanza et al. ’21



Example

-  ,        t1 ≡ ϕ → ∞ w = 3

-  ,        t2 ≡ ϕ → ∞ w = 2

,   I00 ∼ ϕ3 Iab ∼ ϕ

,   ,    const.I00 ∼ ϕ2 I11 ∼ ϕ2 I12, I22

elliptic fibration over , two moduli X = ℙ2 t1, t2

Effective theory

Grimm, Li, Palti ’18    

q = (0,0,0,9,3, − 9k)

q = (0,0,0,1,0, − k)

-  ,        t1 ≡ ϕ → ∞ w = 3

-  ,        t2 ≡ ϕ → ∞ w = 2

,   I00 ∼ ϕ3 Iab ∼ ϕ

,   ,    const.I00 ∼ ϕ2 I11 ∼ ϕ2/3 I12, I22

Emergence computation

light D2/D0 towers  q = (D6,D41, D42, D21, D22, D0)



Example

Key difference between the two limits: 
 → only w = 3 mD0 ≪ Λsp

 → both , w = 2 mD0 mD2 ≪ Λsp

  in  double tower of states: ⟹ w = 2     q = (0,0,0,1,0, − k) → q = (0,0,0,j,0, − k)

Λsp ∼
MP

SD0SD2
∼

MP

S2
D0No other tower below !Λsp

D2 wrapping j times an 
elliptic fibre

n=w mKK mD0 mD2 T1/2 Λsp (D0’s)

3 φ-1/2 φ-3/2 φ-1/2 φ-1/2 φ-1/2

2 φ-1/2 φ-1 φ-1 φ-1/2 φ-1/3

n=w mKK mD0 mD2 T1/2 Λsp

3 φ-1/2 φ-3/2 φ-1/2 φ-1/2 φ-1/2

2 φ-1/2 φ-1 φ-1 φ-1/2 φ-1/3 → φ-1/2

Correct species scale:
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Key difference between the two limits: 
 → only w = 3 mD0 ≪ Λsp

 → both , w = 2 mD0 mD2 ≪ Λsp

  in  double tower of states: ⟹ w = 2     q = (0,0,0,1,0, − k) → q = (0,0,0,j,0, − k)
D2 wrapping j times an 

elliptic fibre

n=w mKK mD0 mD2 T1/2 Λsp (D0’s)

3 φ-1/2 φ-3/2 φ-1/2 φ-1/2 φ-1/2

2 φ-1/2 φ-1 φ-1 φ-1/2 φ-1/3

n=w mKK mD0 mD2 T1/2 Λsp Limit

3 φ-1/2 φ-3/2 φ-1/2 φ-1/2 φ-1/2 5d M-theory

2 φ-1/2 φ-1 φ-1 φ-1/2 φ-1/2 6d F-theory



Example

Before After
Λsp ∼ ϕ− 1

3 Λsp ∼ ϕ− 1
2

S ∼ SD0 ∼ ϕ
2
3

But there is a compensating effect due to the charge degeneracy:

I00 ∼
SDp

∑
j,k=−SDp

k2 log
Λsp

m( j,k)
∼ SDp ⋅ S3

Dp ∼ ϕ2  q = (0,0,0,j,0, − k) →

sum over j

(same for )I11

Considering the double tower of D2-D0 states in the w = 2 limit lowers the species 
scale and changes the number of species:

,  SDp ∼ ϕ
1
2 S ∼ SD0SD2 ∼ ϕ

This effect also occurs for multi-towers of higher dimension, but only if the 
leading multi-tower is made up of charged states

sum over k



Example

,   ,    const.I00 ∼ ϕ2 I11 ∼ ϕ2 I12, I22

,   ,    const.I00 ∼ ϕ2 I11 ∼ ϕ2 I12, I22

Generalize for  (III0 or J-class A) limits using elliptic fibrationw = 2

q = (0,0,0,j,0, − k)

elliptic fibration over , two moduli X = ℙ2 t1, t2

-  ,        t1 ≡ ϕ → ∞ w = 3

-  ,        t2 ≡ ϕ → ∞ w = 2

,   I00 ∼ ϕ3 Iab ∼ ϕ

Effective theory

q = (0,0,0,9,3, − 9k)

-  ,        t1 ≡ ϕ → ∞ w = 3

-  ,        t2 ≡ ϕ → ∞ w = 2

,   I00 ∼ ϕ3 Iab ∼ ϕ

Emergence computation



w=1 limits

n=w mKK m* = mD0 mD2 mD4,fibre T1/2

1 φ-1/2 φ-1/2 φ-1/2 φ-1/2 φ-1/2

IIb or J-class B limits,  →  or  fibration over 

EFT string = NS5-brane on the fibre


Plenty of leading towers, including that of the EFT string oscillations

X K3 T4 ℙ1

The species scale computation should include all the leading towers

Λsp =
M2

P

SKK + SDp
r + Sstr

The leading contribution depends on whether the EFT string is:


 -  critical  string modes dominate and set 


 -  non-critical  D4/D2/D0 bound states dominate and set 

→ Λsp

→ Λsp



Critical case

Scrit ∼
Nmax

∑
N=0

eNαNγ ∼ eNα
maxNγ+1−α

max
 α > 0

γ ∈ ℝ

TNmax ∼ Λ2
sp ∼

M2
P

Scrit

Λsp ∼ T [log
M2

P

T ]
1

2α

∼ ϕ− 1
2 (log ϕ) 1

2α

Scrit ∼
M2

P

T [log
M2

P

T ]
− 1

α

∼ ϕ (log ϕ)− 1
α

String oscillation modes dominate the spectrum and give the leading 
contribution to the species scale

Mass spectrum: m2
N = TN

Degeneracy ansatz:

Nmax ∼ [log
M2

P

T ]
1
α

∼ (log ϕ)1
α

⟹ String scale times 
log corrections

  Castellano, Herraez, Ibañez ’22  



Critical case

∑
q

fN(q) ∼ eNαNγ ∼ S(N)
crit

Ansatz for the charge spectrum:


 -  at each mass level  there are  states, with chargesN fN(q)

q = (0,qD4ea, kabwb, qD0) ⋅ Qt −1 Motivated by anomaly inflow 
on axionic strings

 -   if , 

     saturates the BPS bound 

 

 

 -  charged states populate the light spectrum

fN(q) ≠ 0 |q |2 ≤ N

|q |2
max ∼ N

Heidenreich, Reece, Rudelius ’21   



Critical case
1-loop corrections to the gauge kinetic function (case with one charge):




  


  

I ∼
Nmax

∑
N=1

qmax(N)

∑
q=1

fN(q) q2 log (
Λsp

mN
+ c)

∼
Nmax

∑
N=1

eNαNγ+1 log ( Nmax

N
+ c)

∼ eNα
maxNγ+2−α

max ∼
M2

P

T
∼ ϕ

∑
q

fN(q) ∼ eNαN γ

N

∑
n=1

f (n)log ( N
n

+ c) ∼ g(n)

g′￼= f

ScritNmax ∼
M2

P

T

The scaling is recovered independently of  and !α γ



Non-critical case
Bound states of D4/D2/D0-branes dominate the spectrum and give the 
leading contribution to the species scale

q = (D6, ⃗D4, ⃗D2, D0) = (0,qD4ea, kabwb, qD0) ⋅ Qt −1 qD0, qD4, wb ∈ ℤ

Curvature 
corrections

 determines the dimension of the lattice of charges of BPS 
particles  
b = rank kab

→ r = 2 + b

The lattice is generated by a D4-brane wrapping the  fibre, with 
generic worldvolume fluxes

K3/T4

Λsp ∼
MP

SDp
r

SDp ∼
Λsp

mDp

,  Λsp ∼ ϕ− r
2(2 + r) SDp ∼ ϕ

1
2 + r⟹



Non-critical case
The 1-loop corrections to the gauge kinetic function give

I00 ∼ ∑
q, |qi|≤SDp

q2
D0 log

Λsp

mq
∼ Sr−1

Dp ⋅ S3
Dp ∼ ϕ

sum over , qD4 ⃗q D2

sum over qD0



Remarks
• The precise scaling of  and the number of species does not matter, but it is 

important that we sum over all the relevant towers


• The tower that sets  must enter the 1-loop corrections


• In  limits we recover the correct scaling for both critical and non-critical 
EFT strings


• We did not compute the corrections to the moduli space metric, one expects things 
to work if the spectrum is dominated by BPS states. This could pose further 
constraints on 

Λsp

Λsp

w = 1

fN(q)


